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Abstract: Wildfires are major natural disasters negatively affecting human safety, natural ecosystems,
and wildlife. Timely and accurate estimation of wildfire burn areas is particularly important for
post-fire management and decision making. In this regard, Remote Sensing (RS) images are great
resources due to their wide coverage, high spatial and temporal resolution, and low cost. In this
study, Australian areas affected by wildfire were estimated using Sentinel-2 imagery and Moderate
Resolution Imaging Spectroradiometer (MODIS) products within the Google Earth Engine (GEE)
cloud computing platform. To this end, a framework based on change analysis was implemented
in two main phases: (1) producing the binary map of burned areas (i.e., burned vs. unburned);
(2) estimating burned areas of different Land Use/Land Cover (LULC) types. The first phase was
implemented in five main steps: (i) preprocessing, (ii) spectral and spatial feature extraction for pre-
fire and post-fire analyses; (iii) prediction of burned areas based on a change detection by differencing
the pre-fire and post-fire datasets; (iv) feature selection; and (v) binary mapping of burned areas
based on the selected features by the classifiers. The second phase was defining the types of LULC
classes over the burned areas using the global MODIS land cover product (MCD12Q1). Based on
the test datasets, the proposed framework showed high potential in detecting burned areas with
an overall accuracy (OA) and kappa coefficient (KC) of 91.02% and 0.82, respectively. It was also
observed that the greatest burned area among different LULC classes was related to evergreen needle
leaf forests with burning rate of over 25 (%). Finally, the results of this study were in good agreement
with the Landsat burned products.

Keywords: fire detection; wildfire damage assessment; burned area; GEE; Sentinel-2; MODIS

1. Introduction

Natural disasters are generally divided into two main categories: geophysical (e.g.,
wildfires, floods, earthquakes, and droughts) and biological (e.g., biotic stresses) [1]. Among
natural geophysical disasters, wildfire occurs more than a thousand times annually over
different regions of the globe [2–4] and can cause considerable economic and ecological
damages, as well as human casualties. Additionally, wildfires have significant long-
term impacts on both the environment and people, such as changing the structure of
the ecosystems, soil erosion, destructing wildlife habitats, and increasing potential of
flooding [4]. Moreover, wildfires emit a considerable amount of greenhouse gases (e.g.,
carbon dioxide and methane) which results in global warming [5]. Therefore, reliable,
timely, and detailed information on burned areas in a wildfire event is necessary.

Wildfire mapping using traditional methods (e.g., field surveys and manual digi-
tization) has many limitations. Although traditional methods can provide the highest
accuracies, they are time-consuming and have limitations in terms of automation and
repeating measurements over a long period of time. However, automated RS applications
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are more efficient in terms of cost, time, and coverage [6–8], and facilitate accurate wildfire
mapping with many advanced machine learning algorithms (e.g., deep learning).

RS has been widely used for wildfire mapping and monitoring. For instance,
Dragozi, et al. [9] investigated the effects of derivative spatial and spectral features to
map burned areas using IKONOS imagery in Greece. To this end, they utilized a Support
Vector Machine (SVM) and fuzzy complementary criterion for classification and feature
selection, respectively. Moreover, Oliva and Schroeder [10] evaluated the Visible-Infrared
Imaging Radiometer Suite (VIIRS) active fire products with the resolution of 375 (m) to
estimate burned areas in ten different areas worldwide. Based on this research, the burned
areas depended on the environment features and behavior of fire. Additionally, Chen,
et al. [11] detected forest burned areas based on multiple methods using Landsat TM
data. Their proposed method utilized four spectral indices to determine burned areas.
Afterwards, the damaged areas were obtained by selecting an optimum threshold based on
histogram analysis. Furthermore, Hawbaker, et al. [12] proposed a burned area estimation
algorithm based on dense time-series of Landsat data and generated the Landsat Burned
Area Essential Climate Variable (BAECV) products. This method utilized surface reflectance
and multiple spectral indices as inputs into the gradient boosted regression models to
generate burned probability maps. Finally, the burned areas were extracted from the gener-
ated burned probability maps using a combination of pixel-level thresholding and region
growing process. Pereira, et al. [13] also proposed an automatic sample generation method
for burned area mapping using VIIRS active fire products over the Brazilian Cerrado
savanna. They also used one-class SVM algorithm for burned area mapping. Moreover,
Roteta, et al. [14] developed a locally adapted multitemporal burned area algorithm based
on Sentinel-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) datasets over
the sub-Saharan Africa. This method had two main parts: (1) burned areas were detected
based on a fixed threshold, and (2) tile dependent statistical thresholds were estimated for
each predictive variable in a two-phase strategy by overlaying the MCD14ML products.
Furthermore, Ba et al. [15] developed a burned area estimation method using a single
MODIS imagery based on back-propagation neural network and spectral indices. Their
method had three main phases: (1) extraction of samples for five classes (cloud, cloud
shadow, vegetation, burned area and bare soil), (2) feature selection, and (3) classification
based on back-propagation neural network. They also evaluated the performance of the
proposed method at three different areas in Idaho, Nevada, and Oregon. Woźniak and
Aleksandrowicz [16] also developed an automatic burned area mapping framework based
on medium resolution optical Landsat images. This method was implemented in four
main steps: (1) extraction of the spectral indices and differencing them, (2) multiresolution
segmentation and masking, (3) detection of the core burned areas based on an automati-
cally adjusted threshold, and (4) region growing procedure and neighborhood analysis for
detection of final burned areas. Additionally, Otón, et al. [17] presented a global product
of burned areas using Advanced Very High Resolution Radiometer (AVHRR) imagery. A
synthetic burned area index was proposed using a combination of spectral indices and
surface reflectance data in the form of a single variable. The final burned area product
was obtained based on the time series classification of synthetic burned area indices using
the Random Forest (RF) algorithm. Finally, Liu, et al. [18] evaluated the performance of
ICESat-2 photon-counting LiDAR data in estimating burned and unburned areas using
both RF and logistic regression methods. They tested recent fires in 2018 in northern
California and western New Mexico. This study confirmed the feasibility of employing
ICESat−2 data for burned forest classification.

RS application for wildfire mapping and change analysis over large areas has several
challenges, such as efficiently processing big RS data (e.g., thousands of satellite images).
To address this issue, several cloud computing platforms have been so far developed, one
of the most widely used among which is Google Earth Engine (GEE) [19,20]. This platform
has brought a unique opportunity for undertaking Earth Observation (EO) research studies.
GEE has been designed for parallel processing, storing, and mapping different types of RS
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datasets at various spatial scales. GEE has been extensively used for various applications,
including wildfire mapping and trend analysis due to its key advanced characteristics,
such as being free to use, providing high-speed parallel processing without downloading
data, and being user-friendly. For example, Long, et al. [21] developed an automated
framework to map burned areas at a global-scale using dense time-series of Landsat-8
images within GEE for 2014 to 2015. This method was based on feature generation from
various spectral indices with a RF classifier. Moreover, Zhang, et al. [22] generated a global
burned area product using Landsat-5 satellite imagery and a RF classifier within GEE. They
also analyzed the spatial distribution pattern of the global burned areas. Furthermore,
Barboza Castillo et al. [23] investigated forest burned areas using a combination of Sentinel-
2 and Landsat-8 satellite images within the GEE cloud platform over Uttarakhand, Western
Himalaya. They mapped forested burned area by differencing the spectral indices for
post and pre fire events as well as combining unsupervised clustering and supervised
classification methods.

As discussed, although many methods have been so far proposed to map burned
areas, a few of them were developed within GEE. Moreover, although different algorithms
have been developed for mapping burned areas using RS datasets, there are still several
limitations as follows:

(1) Many burned area products contain moderate spatial resolution. However, with the
increasing availability of higher spatial resolution satellite imagery (e.g., Sentinel-2
with 10 (m) spatial resolution), there is potential to produce more detailed products
in terms of spatial resolution.

(2) Many RS methods for burned area mapping which are based on high-resolution
imagery are complex and do not support the mapping of burned areas over large regions.

(3) Although multi sensor-based methods for burned area mapping provide promising
results, most of them are not computationally efficient.

(4) A thresholding method which is applied in many research studies for discriminating
burned from unburned areas does not provide accurate results for large regions,
because burned areas at different regions depend on the characteristics of ecosystem
and behavior of fire. Thus, a dynamic thresholding method should be developed to
obtain high accuracies over different regions.

(5) Many methods are based on the binary mapping (i.e., burned vs. unburned). How-
ever, estimation of the Land Use/Land Cover (LULC) over burned areas is necessary
for many applications.

(6) Many methods only use some specific spectral features. However, the potential of
spatial features should be also comprehensively investigated to improve wildfire
mapping and monitoring.

To address these issues, a framework was proposed in this study by leveraging GEE
big data processing platform. The proposed method was implemented in two phases. The
first phase detected burned area and was implemented in five main steps: (1) preprocessing,
(2) spatial and spectral feature extraction; (3) change detection by image differencing on
spatial and spectral features; (4) feature selection using the Harris’s Hawk Optimization
(HHO) algorithm; and (5) mapping burned area by applying a supervised classifier to the
selected features. The second phase estimated the type of burned LULC using MODIS
LULC products.

The main contributions of this study are: (1) mapping Australian burned areas and
damage assessment at a higher spatial resolution compared to other studies in GEE;
(2) estimating burned area for different types of LULC using an innovative idea (most
previous methods were only focused on binary burned mapping); (3) implementing a
novel feature selection algorithm (i.e., HHO) for determining the most optimal spectral
and spatial features for burned area mapping, (4) investigating the importance of features
for burned area mapping; (5) utilizing a combination of spatial and spectral features for
burned area mapping; and (6) comparing the performance of different classifiers for burned
area mapping.
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2. Materials and Methods
2.1. Study Area

The study area is mainland Australia with an area of 7.692 (Mkm2). This study uses
Australian wildfire as a case study to evaluate the accuracy of the proposed method to map
the burned area between September 2019 to February 2020. Australian wildfire started in
the southeast of the country in June 2019 and rapidly spread throughout the continent [24].
Based on several reports, at least 28 people were killed, and more than 3000 homes were
destroyed or damaged during this incident. Moreover, during the Australian wildfires an
enormous amount of CO2 was released into the air which negatively impacted the quality
of air. Due to the large extent of the Australian continent, it has six major climatic zones
(i.e., desert, temperate, equatorial, subtropical, tropical, and grassland climates). Most
areas experience the annual average rainfall of less than 600 (mm), and in some areas the
annual average rainfall can be more than 1200–8000 (mm) [25].

2.2. Satellite Data

In this study, Sentinel-2 optical satellite images were utilized. Sentinel-2 is an Earth
Observation (EO) mission launched by the European Space Agency (ESA) to continue ESA’s
global services on multispectral high spatial resolution observations. This mission includes
the Sentinel-2A and Sentinel-2B satellites. The temporal resolution of the constellation is
5 days. The MultiSpectral Instrument (MSI) is the main sensor of Sentinel-2 and is based on
the pushbroom concept. MSI provides 13 spectral bands with a wide spectral coverage over
the visible, Near Infrared (NIR) and Shortwave Infrared (SWIR) domains at different spatial
resolutions from 10 (m) to 60 (m) [26]. The data is freely available at Sentinel Scientific
Data Hub (https://scihub.copernicus.eu). In this study, the level 1C products of Sentinel-2,
which are available in GEE (Dataset ID: ee.ImageCollection(“COPERNICUS/S2_SR”), were
used. All maps are presented in a reference geographic coordinate system of the World
Geodetic System 1984 (WGS 1984).

2.3. Reference Data

Reference samples are necessary to train any supervised classification algorithm. In
this study, reference samples for the burned areas were generated using multiple reports
about the locations of wildfires (https://www.ktnv.com/) [27]. Figure 1a illustrates the
location of burned areas generated from these reports. Furthermore, the samples for the
burned and unburned areas were generated by visual interpretation of the Sentinel-2 time
series imagery, acquired during September 2019 to February 2020. In addition, Figure 1a
was used for generation of sample data for several burned areas. Figure 1b illustrates
the spatial distribution of the reference samples for both burned and unburned areas and
some regions for visual accuracy assessment, and Table 1 provides the number of samples.
Finally, all samples were randomly divided into three groups: training (50%), validation
(17%), and test (33%). The validation dataset was used as an intermediate dataset for the
fine tuning of the utilized classifiers [28].

Table 1. The number of reference samples for the burned and unburned areas.

Class Number of Samples Training Validation Test

Burned 5485 2806 877 1802
Unburned 5433 2654 870 1909

https://scihub.copernicus.eu
https://www.ktnv.com/
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Figure 1. (a) The locations of Australian active wildfires reported on https://www.ktnv.com/ identified by the red color. 
(b) The spatial distribution of the generated reference samples and the five regions which were selected for visual accuracy 
assessment.

Table 1. The number of reference samples for the burned and unburned areas. 

Class Number of Samples Training Validation Test 
Burned 5485 2806 877 1802

Unburned 5433 2654 870 1909

Figure 1. (a) The locations of Australian active wildfires reported on https://www.ktnv.com/ identified by the red
color. (b) The spatial distribution of the generated reference samples and the five regions which were selected for visual
accuracy assessment.
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2.4. MODIS LULC Product

The MODIS LULC product was used in this study to determine the LULC types
over the burned areas. Figure 2 demonstrates the MODIS LULC map over Australia
(https://modis.gsfc.nasa.gov/). This map contains 17 classes (see Table 2 and Figure 2).
The original spatial resolution of the MODIS LULC map is 500 (m) which was resampled to
10 (m) to conform the spatial resolution of Sentinel-2. As is clear, the dominant classes are
open Shrublands and Grasslands. Forests are also mainly found in south east and south
west of the country. In this study, the MODIS LULC products available in GEE (Dataset ID:
ee.ImageCollection(“MODIS/006/MCD12Q1”)) were used.
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Table 2. The Land Use/Land Cover (LULC) classes along with their descriptions used in the Moderate Resolution Imaging
Spectroradiometer (MODIS) LULC product [29].

Number Name Class Area (km2) Percent (%)

1 Evergreen Needle leaf Forests 22,445 0.41
2 Evergreen Broadleaf Forests 113,805 2.10
3 Deciduous Needle leaf Forests 0.2 0
4 Deciduous Broadleaf Forests 795 0.01
5 Mixed Forests 3100 0.05
6 Closed Shrublands 183,366 3.38
7 Open Shrublands 2,336,706 43.18
8 Woody Savannas 91,285 1.68
9 Savannas 474,943 8.77

10 Grasslands 1,816,831 33.57
11 Permanent Wetlands 8134 0.15
12 Croplands 162,705 3.00
13 Urban and Built-up Lands 6843 0.12
14 Cropland/Natural Vegetation Mosaics 652 0.01
15 Permanent Snow and Ice 214 0.003
16 Barren 175,241 3.23
17 Water Bodies 14,365 0.265

Total Area = 5,411,430 (km2)

2.5. Landsat Burned Area Product

Burned area product of Landsat was used to assess the results of the proposed method
in this study. The Landsat level 3 burned area product is designed to detect burned areas
across all ecosystems [30]. This product is available at spatial resolution of 30 (m) from 2013
to present. The Landsat-8 burned product is generated based on surface reflectance and
top of atmosphere brightness temperature data. In this study, the burned area products of
Landsat-8 generated from September 2019 to February 2020 were used after aggregating
them based on a burned probability threshold of 0.8 (Figure 3).

2.6. Proposed Method

The flowchart of the proposed method is provided in Figure 4. The proposed frame-
work was implemented in two main phases: (1) binary burned area mapping (i.e., burned
vs. unburned), (2) estimation of burned areas across different LULC types. More details on
the proposed framework are provided in the following subsections.

2.6.1. Phase 1: Binary Burned Areas Mapping

The first phase of the proposed method for binary burned areas mapping included
five steps: (1) preprocessing; (2) spatial-spectral feature extraction; (3) change detection
to predict burned areas by differencing pre-fire and post-fire layer-staked images (i.e.,
original spectral bands, spectral indices, and texture features); (4) feature selection using
the HHO optimizer and supervised classifiers; and (5) binary burned area mapping using
the selected features and the optimum classifier algorithm. These steps are discussed in
more details in the following subsections.

Preprocessing

In this study, all preprocessing steps were performed in the GEE big data processing
platform. The atmospheric correction was performed using the module Py6S that is
available at https://github.com/robintw/Py6S. Moreover, the cloudy regions in the
images were masked using the F-Mask algorithm with a threshold of 10%. Finally, all the
spectral bands were resampled to 10 (m).

https://github.com/robintw/Py6S
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Feature Extraction

Although most wildfire studies conducted using RS methods have only utilized
spectral features, spatial features could also provide valuable information to improve the
results. Therefore, both spectral and spatial features were extracted and investigated in
this study.

The spectral indices have many applications in RS image analysis [31]. The main
characteristic of these indices is that they make some features more discernible compared
to the original data (i.e., spectral bands). In this study, 90 different spectral indices were
used (see Appendix A). These features could improve the result of burned area mapping.
Since the proposed method was based on change detection, several areas were unwantedly
included in changes, such as the boundary of water bodies and rapidly growing vegetation.
Therefore, several water indices were used to reduce false alarms originated from undesired
changes in water bodies. Vegetation indices were also necessary due to diversity of
vegetation over the entire study area and the similarity of the burned vegetation response
with those of croplands. Many research studies have argued that the burned indices
improved the accuracy of burned area mapping [15,32,33].
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The spatial features, such as texture indices, can also improve the results of LULC
classification [34]. Texture refers to the relationship between an individual pixel with its
neighboring pixels and provides valuable information for LULC classification. Different
features, such as density, equality, non-roughness, and size uniformity, can be generated by
texture analysis. In this study, 17 texture features were generated from the Grey Level Co-
occurrence Matrices (GLCM) (seen Appendix B). It is worth noting that textural features are
usually extracted from a panchromatic band. However, since Sentinel-2 does not contain a
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panchromatic band, three visible bands were combined based on Equation (1) to generate
the panchromatic band.

Bpan = 0.2989× B4 + 0.5870× B3 + 0.1140× B2 (1)

where Bpan is the panchromatic band and B2, B3, and B4 are the blue, green, and red bands,
respectively. The window size for texture analysis was set to 3 × 3.
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Change Detection

Change detection is one of the most important applications of RS and has been widely
used for estimating burned areas using pre- and post-fire datasets [32]. In this study, image
differencing was used as the change detection algorithm. Image differencing is a simple
and popular change detection algorithm [6]. This algorithm is based on the band-to-band
pixel subtraction of datasets from the first- and second-time datasets (Equation (2)):

δb = Yb
r,c − Xb

r,c (2)

where, Xb
r,c and Yb

r,c are the pixel values in the first and second images in the row r and
column c for band b, respectively.

Feature Selection

The main purpose of feature selection is eliminating redundant features and using
only the most optimal features during the classification [35]. In this study, feature selection
was implemented in two steps: (1) defining the number of features, and (2) identifying the
most useful features by an optimizer. To this end, the HHO algorithm was employed in
this study. HHO is a new population-based and nature-inspired optimization algorithm,
which has been widely used for optimization purposes in different fields [36]. HHO is
based on the chasing-escaping patterns observed between the hawks and their prey (such
as rabbit). In this method, the Harris’ hawks are considered as candidate solutions and
the intended prey is considered as the best candidate solution in every iteration. The
HHO algorithm has three main steps, including amaze pounce (exploration), transforming
from exploration to exploitation, and exploitation [37]. The main purpose of exploration
phase is mathematically modeling the waiting, searching, and discovering the desired hunt.
Transforming from exploration to exploitation is applied based on the external energy
of a rabbit. The exploitation is considered the residual energy of the prey. In the HHO
algorithm, three parameters need to be initialized: total population size (N), maximum
iteration, and number of features.

Figure 5 illustrates the proposed feature selection framework using the HHO algo-
rithm. HHO is initialized with the number of agents, number of features and number of
iterations. The initial values of the three HHO parameters were manually set after trial and
error. Finally, 15, 500, and 60 were selected as the optimum values for the total population
size, maximum iteration, and number of features, respectively. Then, the population of
agents (solutions) was evaluated by a fitness function (i.e., Overall Accuracy (OA) of the
classifier). The fitness of population of agents was calculated based on the performance of
the classifiers on the test dataset. In this study, the supervised classifiers of the k-Nearest
Neighbors (kNN), Support Vector Machine (SVM), and Random Forest (RF) were trained
using the training samples and their performances were evaluated using the validation
dataset. Since classifiers are sensitive to input features, it was required to tune the classifier
parameters when the input features were changed [20,38]. In this study, the optimization
of the tuning parameters of the classifiers was applied based on the grid search algorithm.
The feature selection process was continued until all interactions were finished.

Classification

After selecting the most optimal features using the HHO algorithm, they were used as
input for three classification algorithms (RF, kNN, and SVM) to produce burned areas maps.
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RF Classifier

RF is an ensemble machine learning algorithm that has been widely used for RS
classifications [39–41]. This method combines a number of weak classifiers to construct a
powerful classifier. RF combines a set of decision trees based on randomly selected subsets
of data where each decision tree classifies input data. A bootstrap sample approach is also
used to train each tree using a set of sample data. Then, the highest number of votes as was
chosen as the classification result [42]. RF classifier has two main tuning parameters which
need to be defined by users. These parameters are the number of features to split each
node and number of trees to grow into a whole forest. More details about the RF classifier
can be found in [42].

k-NN Classifier

The k-NN algorithm is one of the simplest non-parametric classifiers which uses an
instance-based learning approach. kNN has been extensively used for image classifications
due to the simplicity of the implementation of this algorithm [43]. This algorithm classifies
an unlabeled pixel based on the class attributes of its k nearest neighbors. In fact, the
kNN algorithm identifies a group of k training samples that have nearest distance to
unlabeled pixels. Then, it assigns a label of class to unknown pixels by calculating the
average of the response variables. Therefore, k plays an important role in the accuracy of
the kNN classifier and should be selected during the identification of the optimized tuning
parameters. More details about the kNN classifier can be found in [44].
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SVM Classifier

SVM is a supervised non-parametric algorithm based on statistical learning theory
that is commonly utilized for classification purposes [45]. The basic idea of the SVM
classifier is to build a hyperplane that maximizes the margin among classes [46]. SVM
maps the input image data from the image space to feature space, where the classes can be
effectively separated by a hyperplane. The mapping can be applied by different types of
kernel functions, such as the Radial Basis Function (RBF), which has proved to provide the
best performance among kernel types [47]. This classifier has two main tuning parameters:
the kernel parameter (e.g., gamma in RBF) and the penalty coefficient (C). One can refer
to [44] for more details on this algorithm.

As mentioned above, each of these supervised classifiers has some parameters that
should be tuned to obtain the highest possible classification accuracies. One of the simplest
methods for tuning these parameters is the grid search. Based on this approach, a range of
unknown parameters is initially defined, and the model is built by the training data and is
assessed by the validation data. This process continues until the defined bound is finished.
Finally, the optimum tuning parameters correspond to the highest accuracy obtained from
the validation data.

Accuracy Assessment

In this study, the confusion matrix of classification was used for statistical accuracy
assessment. As illustrated in Table 3, a confusion matrix has four components: True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN). Various accuracy
matrices were generated based on these four parameters and were used to report the
accuracy levels. As demonstrated in Table 4, these matrices were Overall Accuracy (OA),
Balanced Accuracy (BA), F1-Score (FS), False Alarm (FA), Kappa Coefficient (KC), Precision
(PCC), Recall, Miss-Detection (MD), and Specificity [48,49].

Table 3. Confusion matrix [48,49].

Predicted

Burned Unburned

Actual
Burned TP FN

Unburned FP TN

Table 4. The metrics which were used for accuracy assessment of the burned map in this study [48,49].

Accuracy Index Formula

Overall Accuracy (OA) (TN+TP)
(N)

Balanced Accuracy (BA) (Recall+Specificity)
(2)

F1-Score (FS) 2×TP
(2×TP+FP+FN)

False Alarm (FA) (FP)
(TN+FP)

Precision (PCC) (TN)
(TN+FP)

Kappa Coefficient (KC) PCC− (TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

(TN+TP+FP+FN)2

1− (TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

(TN+TP+FP+FN)2

Recall (TP)
(TP+FN)

Miss-Detection (MD) (FN)
(TP+FN)

Specificity (TN)
(TN+FP)

Besides statistical accuracy assessment, the wildfire map produced by the proposed
method was visually evaluated over multiple burned areas with different LULC types.
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Moreover, the produced burned area map was compared with the Landsat burned area
product described in Section 2.5.

2.6.2. Phase 2: Mapping LULC Types of Burned Areas

After producing a binary burned area map through the phase 1 of the proposed
method, the LULC types of the burned areas were identified using the MODIS LULC
product available in GEE (see Section 2.4). To this end, the binary burned areas map was
overlaid on the MODIS LULC product and then, the amount of burned areas for different
LULC classes were calculated.

2.6.3. Parameter Setting and Feature Selection

As discussed in Section 2.6.1 the optimal tuning parameters for the classifiers should
be initially selected to obtain the highest possible classification accuracies. Table 5 provides
the optimum tuning parameters for the three classifiers (RF, kNN, and SVM) that were
obtained using the grid search method.

Table 5. The optimum value for the tuning parameters of the classifiers (k-Nearest Neighbors (k-NN),
Support Vector Machine (SVM), and Random Forest (RF)), k- obtained from the grid search method.

Classifier Evaluated Range Optimum Value

RF Number Of Trees = (30:100)
Number Of Features To Split Each Node = (4, 8)

85
8

kNN Number Of Nearest Neighbors = (1:5) 4

SVM Penalty Coefficient = (2−10:210)
Kernel Parameter = (2−10:210)

Penalty Coefficient = 28

Kernel Parameter = 2−5

The HHO algorithm has three main parameters that need to be initialized. The number
of hawks (population size) is set to 15, number of features for feature selection is set to 60,
and the number of iterations is set to 500.

As discussed in Section 2.6.1 121 features (90 spectral features, 13 original spectral
bands, 17 spatial features, and one panchromatic band) were initially extracted. Then, the
HHO algorithm was applied to select the most optimal features. The convergence curves of
the HHO optimizer for the three classifiers were obtained for the test data are illustrated in
Figure 6. The kNN and SVM algorithms converged after 250 iterations, and the RF classifier
converged after 450 iterations. The feature selection process of the SVM took relatively
more time due to solving equations to build a hyperplane at each epoch.

Table 6 provides the selected features for each classifier. As clear, the results of the
HHO algorithm were different for various classifiers, indicating that each classifier was
sensitive to different features. However, multiple common features were identified for all
of them (e.g., NBR, DISS, and B2).
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Table 6. The selected features of the three classifiers (k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), and
Random Forest (RF)) using the Harris’s Hawk Optimization (HHO) feature selection method.

Classifier Original Spectral Bands Spatial Features Spectral Features

RF 9 features: B1, B2, B3, B4,
B8A, B9, B10, B11, B12

9 features: CONTRAST, DISS,
ENT, INERTIA, PROM, SAVG,

SENT, SHADE, VAR

42 features: ARI, ARVI2, AVI, AWEI, Bpan, BAIS2,
BI, BRI, BWDRVI, CARI, CI, CRI700, CVI, DVI,

EPIChla, EPIChlb, GARI, GDVI, GNDVI, GNDVI2,
VARIgreen, MCARItoMTVI2, MCARItoOSAVI,
MNDWI, MSAVI2, MSAVI, MSBI, MTVI2, NBR,
NDSI, NDVI, NGRDI, PVR, RBNDVI, REIP, RI,

SAVI, SIPI, SIWSI, SLAVI, VI, VI700

SVM 10 features: B2, B3, B4, B5,
B6, B7, B8, B8A, B11, B12

6 features: CORR, DENT, ENT,
IMCORR1, DISS, IDM

42 features: ARVI2, BAIS2, BI, BI2, BNDVI, CI,
Datt3, EPIChla, EPIChlab, EPIChlb, EPIcar,

GBNDVI, GDVI, GNDVI, GOSAVI, GVMI, CRI700,
IPVI, VARIgreen, MNDWI, NDVI, NDWI, MSBI,

MTVI2, RBNDVI, NBR, NBR774to677, NDRE,
NDSI, NGRDI, OSAVI, TCARI, VI700, WDRVI,
CCCI, DVI, EPIChla, GEMI, GNDVI, NDVI2,

RDVI, PVR, TCARItoOSAVI, VI

kNN
13 features: B1, B2, B3, B4,
B5, B6, B7, B8, B8A, B9, B10,

B11, B12

4 features: DISS, IMCORR2,
SVAR, SENT

43 features: ARVI, AWEI, Bpan, BAIS2, BI, BI2, CVI,
Datt1, Datt2, Datt3, EVI, GBNDVI, GEMI, GLI,

GNDVI, GNDVI2, GRNDVI, CRI700, IPVI,
MCARI, MSAVI, MSAVI2, MSBI, MSRNR, MTVI2,
mNDVI, MGVI, NBR, NBR774to677, NDII, NDSI,

NDVI2, OSAVI, RBNDVI, RDVI, Rre, SIWSI,
SLAVI, TCARI, TVI, VI, VI700, WDRVI

See Appendices A and B for the description of the features.

3. Results

The confusion matrices of the classifications obtained by different classifiers for two
scenarios (using selected features and without feature selection) are illustrated in Figure 7.
The statistical accuracy results are also provided in Table 7. It was observed that all
classifiers resulted in better accuracies when the HHO feature selection algorithm was
employed. Moreover, the processing time was decreased when HHO was used compared
to the case when all features were utilized. For example, the OA of the kNN algorithm was
improved from 58.13% to 86.34% when HHO algorithm was applied to the selected features.
Moreover, the OA of the SVM algorithm increased from 72.67% to 78.87% and MD rate
reduced from 23.26 to 11.08 when feature selection was utilized. Generally, the HHO feature
selection method improved the performance of the kNN and SVM classifiers in detection
of Burned pixels which was reflected on the TP component in the confusion matrix and
led to decreasing FN pixels. The performance of the RF classifier was also considerably
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improved by feature selection. For example, the detection rate of the unburned pixels (TN)
was improved, which reduced the FP pixels.
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Figure 7. The confusion matrices of the Random Forest (RF), k-Nearest Neighbors (k-NN), and Support Vector Machine
(SVM) classifiers when feature selection was not considered (a–c) and when the Harris’s Hawk Optimization (HHO) feature
selection method was used (d–f).

Table 7. The results of the Overall Accuracy (OA), Balanced Accuracy (BA), F1-Score (FS), False Alarm (FA), Kappa
Coefficient (KC), Precision (PCC), and Miss-Detection (MD) for the three classifiers k-Nearest Neighbors (kNN), Support
Vector Machine (SVM), and Random Forest (RF) are shown for Harris’s Hawk Optimization (HHO) feature selection and
for the whole dataset.

Method OA (%) Precision
(%) MD (%) FA (%) F1-Score

(%) BA (%) Recall (%) Specificity
(%) KC

RF-HHO 91.02 90.73 9.21 8.74 90.75 91.01 90.78 91.25 0.820
RF 89.65 89.17 10.43 10.26 89.36 89.65 89.56 89.73 0.793

SVM-
HHO 78.87 73.28 11.08 30.62 80.35 79.14 88.92 69.37 0.579

SVM 72.67 69.94 23.26 31.15 73.18 72.78 76.73 68.84 0.454
kNN-
HHO 86.34 83.88 11.04 16.13 86.34 86.41 88.95 83.86 0.727

kNN 58.13 56.80 40.89 42.43 57.92 58.33 59.10 57.56 0.166

Comparing the results of the three classifiers, the kNN algorithm had the poorest
performance, especially in detecting burned areas without the feature selection method.
The accuracies of kNN for both burned and unburned classes were under 60% and the
error of classification was more than 40%. Although the performance of the SVM classifier
was improved when feature selection was employed, it had low accuracy in detecting
unburned pixels (lower than 70%). Overall, the RF had the highest accuracy and lowest
errors in terms of MD and FA. RF had the highest performance in detecting both Burned
and Unburned classes. Based on these results, the RF classifier was selected for wildfire
mapping over mainland Australia.

Figure 8 shows the binary burned areas based on the RF classifier applied to the
selected features. Based on this Figure, the coverage of burned and unburned areas were
249,358 (km2) and 5,162,072 (km2), respectively. As clear from Table 7, the OA and KC of
this classification were 91.02% and 0.82, respectively.
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Figure 8. Binary burned area map over mainland Australia using the phase 1 of the proposed method.

After producing the binary burned area map, phase 2 of the proposed method was
applied to detect the LULC types over the burned areas. Figure 9 illustrates the produced
map and Table 8 provides the coverage burned areas for different LULC classes. Based on
the results, Evergreen Needleleaf Forests have suffered a 25% decrease relative to their own
distribution, but the actual area covered by this class is quite small (5629 km2) compared to
other LULC classes, such as Grasslands (91,106 km2), Open Shrublands (71,511 km2), and
Savannas (27,878 km2).
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Figure 9. Land Use/Land Cover (LULC) types over the burned areas in mainland Australia.

Table 8. The area and coverage of different Land Use/land Cover (LULC) types of the burned areas.

Class Area (km2) Burned Percentage of Individual Class (%)

Evergreen Needleleaf Forests 5629 25
Evergreen Broadleaf Forests 27,360 24

Deciduous Needleleaf Forests 0 0
Deciduous Broadleaf Forests 101 12

Mixed Forests 203 6
Closed Shrublands 11,160 6
Open Shrublands 71,511 5
Woody Savannas 8872 11

Savannas 27,878 9
Grasslands 91,106 1

Permanent Wetlands 393 8
Croplands 5034 5

Urban and Built-up Lands 87 2
Cropland/Natural Vegetation Mosaics 24 7

Permanent Snow and Ice 0 0
Barren 0 0

Water Bodies 0 0

Total Area = 249,358 (km2)
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4. Discussion

In this study, the accuracy of the final wildfire map produced using the proposed
method (Figure 10) was also visually assessed over multiple burned areas identified
with blue squares in Figure 1b. These areas were related to different LULC types, such
as Evergreen Broadleaf Forests (sample regions 1, 2, and 4 in Figure 1b), Woody Sa-
vannas (sample region 3 in Figure 1b), and Grasslands (sample region 5 in Figure 1b).
Moreover, the results were compared with those obtained from the Landsat burned area
product (Figure 3). Most burned areas were correctly classified by the proposed method
(central column in Figure 11), and the results were more accurate than those of the Landsat-
8 products (right-hand side in Figure 10). Finally, it should be noted that the produced
burned area map in this study had higher spatial resolution compared to the Landsat
burned areas product.
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Figure 10. Zoomed images over five sample burned areas. The left-hand side shows natural color
composite of the sample region, the central column shows the detected burned area by the proposed
methods, and the right-hand side illustrates the detected burned areas in the Landsat-8 burned areas
product. The rows are for the sample regions identified by the blue squares in Figure 1b (locations
(1), (2), (3), (4), and (5), respectively).
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Figure 11. The importance of the selected features using the Harris’s Hawk Optimization (HHO) algorithm in the random
Forest (RF) classifier.

The sentinel-2 has high potential for burned area detection due to its higher temporal
and spatial resolutions compared to other satellites which provide free data. For example,
many research studies have been conducted to detect burned areas using Landsat imagery
which has low temporal resolution (about 15 days) [3,11,12,21–23,50,51]. The poor temporal
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resolution of Landsat negatively affects the timely mapping of burned areas. Recently,
burned area detection using unnamed aerial vehicle (UAV) imagery were also investigated.
However, these methods have their own limitations, especially over large areas such as
Australian continent [52–56]. Overall, based on the numerical and visual analysis, the
sentinel-2 has a high potential for burned area mapping.

Most studies conducted on burned area mapping have focused on binary burned area
mapping [5,11–18,21,22,33,52,57,58]. However, in most cases, it is very important to know
the land cover types of burned areas. The proposed framework in this study can efficiently
identify the type of land cover in burned areas.

Although selecting optimum features is an important step in burned area mapping,
many studies have ignored it and only employed a few spectral features [56,58–60]. Based
on the experiments in this study, both spectral and spatial features play key roles to obtain
accurate burned maps. For example, based on Figure 11, the spectral indices and spatial
features had high importance compared to the original spectral bands. In summary, the
spectral indices had the highest importance. For instance, the BAIS2 index had the highest
impact on the results by providing the importance of more than 0.2. Additionally, band 9
and 12 of Snetinel-2 had the highest importance compared to other spectral bands. Finally,
SAVG and shade were the most important spatial features for burned area mapping.
Consequently, it is important to use both spatial and spectral features to produce accurate
burned area maps.

It is important to select the optimum spectral and spatial features to obtain accurate
burned area maps. Based on the numerical results in this study, the feature selection by the
HHO algorithm could considerably improve the performance of the classifiers by selecting
optimum features for the classification. Moreover, feature selection improved the efficiency
of the proposed method in terms of time processing.

Many studies have proved the high potential of the deep learning methods for burned
area detection [61–63]. However, these methods need a large amount of training samples,
the collection/generation of which is usually challenging. One of the advantages of the
proposed method is that it could produce accurate burned are maps using relatively lower
numbers of training samples (e.g., 11,000 pixels) compared to the commonly used deep
learning algorithms. Furthermore, most of the deep learning methods require significant
time for training the network, tuning the hyperparameters, and designing efficient archi-
tecture. However, the proposed framework had few tuning parameters and improved the
time efficiency by an optimum architecture.

5. Conclusions

This study estimated burned areas over mainland Australia using Sentinel-2 imagery
at spatial resolution of 10 (m) from September 2019 to February 2020 within the GEE
platform. This study produced an accurate burned area map by (1) estimating burned area
for different types of LULC, (2) utilizing a novel feature selection method for determining
the most optimal spectral and spatial features for burned area mapping, (3) utilizing a
combination of spatial and spectral features for burned area mapping, and (4) comparing
the performance of different classifiers for burned area mapping. The proposed framework
was based on image differencing and supervised machine learning algorithms. Many
spectral (vegetation indices, water indices, soil indices, and burned area indices) and
spatial (texture features extracted from the GLCM matrix) features were initially generated.
Then, the performance of three classifiers was investigated through two scenarios: (1)
classification based on all spectral and spatial features, (2) classification based on the
selected features by the HHO algorithm. It was observed that feature selection significantly
improved the accuracy of the classifications. Additionally, the RF classifier had the highest
accuracy (OA = 91.02%). It was also observed that the proposed method had a higher
accuracy compared to the Landsat burned area product. Based on the burned area map
produced by the proposed method, about 250,000 (km2) across mainland Australia was
damaged by wildfires. Based on the obtained results by feature selection, the BASI2 index
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was the most importance feature among other spectral and spatial features, as well as the
original bands. Among different LULC classes, the Evergreen Needleleaf went through the
most significant damage relative to its extent. Overall, it was concluded that the proposed
algorithm within the GEE cloud platform had a high potential for burned area mapping
over large areas in a costly, timely, and computationally efficient manner.

However, the main limitation of the proposed approach was using the MODIS LULC
product within phase 2 of the method to identify the type of LULC over the burned areas.
This product has low spatial resolution (0.5 km). Thus, future studies should utilize a higher
resolution LULC product or perform the LULC classification using Sentinel-2 images in
the phase 2 of the proposed method.

Author Contributions: Conceptualization, S.T.S., and M.A. (Mehdi Akhoondzadeh); methodology
S.T.S., M.A. (Mehdi Akhoondzadeh), and M.A. (Meisam Amani); visualization S.T.S., and M.A.
(Meisam Amani); supervision S.M., and M.A. (Meisam Amani); funding acquisition, S.M., and
M.A. (Meisam Amani); writing—original draft preparation, S.T.S. and M.A. (Mehdi Akhoondzadeh);
writing—review and editing, S.T.S., M.A. (Meisam Amani), and S.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. y. These
datasets can be found here: [https://code.earthengine.google.com/].

Acknowledgments: The authors would like to thank the European Space Agency (ESA) for providing
the Sen-tinel-2 Level-1C products and National Aeronautics and Space Administration (NASA) for
providing Landsat burned product and MODIS land cover dataset. We thank the anonymous
reviewers for their valuable comments on our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Spectral indices calculated from Sentinel-2 data.

No. Abbreviation Index Formula Description Reference

1 AFRI1 Aerosol free vegetation index 1.6 B8a−0.66∗B11
B8a+0.66∗B11

Vegetation Index [64]
2 AFRI2 Aerosol free vegetation index 2.1 B8a−0.5∗B12

B8a+0.5∗B12
Vegetation Index [64]

3 ARI Anthocyanin reflectance index 1
B3
− 1

B5
Vegetation Index [65]

4 ARVI Atmospherically resistant
vegetation index

B8−(B4−α(B2−B4))
B8+(B4−α(B2−B4))

Vegetation Index [66]

5 ARVI2
Atmospherically

resistant vegetation
index 2

−0.18 + 1.17 ∗ ( B8−B4
B8+B4

) Vegetation Index [66]

6 TSAVI
Adjusted transformed

soil-adjusted vegetation
index

a∗(B8−a∗B4−b)
B8+B4−ab+X(1+a2)

Vegetation Index,
a = 1.22, b = 0.03, X = 0.08 [67]

7 AVI Ashburn vegetation
index 2 ∗ B8a − B4 Vegetation Index [68]

8 BNDVI
Blue-normalized

difference vegetation
index

B8−B2
B8+B2

Vegetation Index [69]

https://code.earthengine.google.com/
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Table A1. Cont.

No. Abbreviation Index Formula Description Reference

9 BRI Browning reflectance
index

1
B3
− 1

B5
B6

Vegetation Index [70]

10 BWDRVI Blue-wide dynamic range
vegetation index

0.1∗B7−B2
0.1∗B7+B2

Vegetation Index [71]

11 CI Color Index B4−B3
B3+B4

Vegetation Index [72]
12 V Vegetation B8

B4
Vegetation Index [73]

13 CARI Chlorophyll absorption
ratio index

B5∗
√
(a∗B4+B4+b)2

B4
∗

(a2 + 1)0.5

Vegetation Index, a = (Band5
− Band3)/150

b = B and 3 ∗ 550 ∗ a
[74]

14 CCCI Canopy chlorophyll
content index

(
B8−B5
B8+B5

)

(
B8−B4
B8+B4

)
Vegetation Index [75]

15 CRI550 Carotenoid reflectance
index 550

1
B2
− 1

B3
Vegetation Index [76]

16 CRI700 Carotenoid reflectance
index 700

1
B2
− 1

B5
Vegetation Index [76]

17 CVI Chlorophyll vegetation
index

B8∗B4

(B3)
2 Vegetation Index [77]

18 Datt1 Vegetation index
proposed by Datt 1

B8−B5
B8−B4

Vegetation Index [78]

19 Datt2 Vegetation index
proposed by Datt 2

B4
B3∗B5

Vegetation Index [79]

20 Datt3 Vegetation index
proposed by Datt 3

B8a
B3∗B5

Vegetation Index [79]

21 DVI Differenced vegetation
index 2.4 ∗ B8 − B4 Vegetation Index [80]

22 EPIcar Eucalyptus pigment
index for carotenoid 0.0049 ∗ ( B4

B3∗B5
)

0.7488 Vegetation Index [79]

23 EPIChla Eucalyptus pigment
index for chlorophyll a 0.0161 ∗ ( B4

B3∗B5
)

0.7488 Vegetation Index [79]

24 EPIChlab
Eucalyptus pigment
index for chlorophyll

a + b
0.0236 ∗ ( B4

B3∗B5
)

0.7954 Vegetation Index [79]

25 EPIChlb Eucalyptus pigment
index for chlorophyll b 0.0337 ∗ ( B4

B3
)

1.8695 Vegetation Index [79]

26 EVI Enhanced vegetation
index

2.5 ∗
( B8−B4

B8+6∗B4−7.5∗B2+1 )
1.8695 Vegetation Index [81]

27 EVI2 Enhanced vegetation
index 2 2.4 ∗ ( B8−B4

B8+B4+1 ) Vegetation Index [82]

28 EVI2.2 Enhanced vegetation
index 2.2 2.5 ∗ ( B8−B4

B8+2.4∗B4+1 ) Vegetation Index [82]

29 GARI
Green atmospherically

resistant vegetation
index

B8−(B3−(B2−B4))
B8+(B3+(B2−B4))

Vegetation Index [83]

30 GBNDVI
Green-Blue normalized

difference vegetation
index

B8−(B3+B2)
B8+(B3+B2)

Vegetation Index [84]

31 GDVI Green difference
vegetation index B8 − B3 Vegetation Index [85]

32 GEMI Global environment
monitoring index

n∗(1−0.25∗n)−B4−0.125
1−B4

Vegetation Index, n =
2∗B5

2−B4
2+1.5∗B5+0.5∗B4

B5+B4+0.5
[86]

33 GLI Green leaf index 2∗B3−B5−B2
2∗B3+B5+B2

Vegetation Index [87]

34 GNDVI
Green normalized

difference vegetation
index

B8−B3
B8+B3

Vegetation Index [83]
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Table A1. Cont.

No. Abbreviation Index Formula Description Reference

35 GNDVI2
Green normalized

difference vegetation
index 2

B7−B3
B7+B3

Vegetation Index [83]

36 GOSAVI
Green optimized soil
adjusted vegetation

index

B8−B3
B8+B3+0.16 Vegetation Index [88]

37 GRNDVI
Green-Red normalized
difference vegetation

index

B8−(B3+B5)
B8+(B3+B5)

Vegetation Index [89]

38 GVMI Global vegetation
moisture index

(B8+0.1)−(B12+0.02)
(B8+0.1)+(B12+0.02)

Vegetation Index [90]

39 Hue Hue atan(( 2∗B5−B3−B2
30.5 ) ∗ (B3 − B2)) Vegetation Index [91]

40 IPVI Infrared percentage
vegetation index

B8
(B8+B5)

2 ( B5−B3
B5+B5

+ 1) Vegetation Index [92]

41 LCI Leaf chlorophyll index B8−B5
B8+B4

Vegetation Index [78]

42 Maccion Vegetation index
proposed by Maccioni

B7−B5
B7−B4

Vegetation Index [93]

43 MCARI
Modified chlorophyll

absorption in
reflectance index

((B5 − B4)− 0.2 ∗ (B5 −
B3)) ∗ ( B5

B4
)

Vegetation Index [94]

44 MTVI2 Modified triangular
vegetation index 2

1.5 ∗
1.2∗(B8−B3)−2.5∗(B4−B3)√

(2∗B8+1)2−(6∗B8−5∗
√

B4)−0.5

Vegetation Index [95]

45 MCARItoMTVI2 MCARI/MTVI2 MCARI
MTVI2 Vegetation Index [96]

46 MCARItoOSAVI MCARI/OSAVI MCARI
OSAVI Vegetation Index [95]

47 MGVI Green vegetation index
proposed by Misra

−0.386 ∗ B3 + 0.039 ∗
B4 − 0.505 ∗ B6 + 0.762 ∗

B8

Vegetation Index [97]

49 mNDVI
Modified normalized
difference vegetation

index

B8−B4
B8+B4−2∗B2

Vegetation Index [98]

49 MNSI Non such index
proposed by Misra

0.404 ∗ B3 + 0.039 ∗ B4 −
0.505 ∗ B6 + 0.762 ∗ B8

Vegetation Index [97]

50 MSAVI Modified soil adjusted
vegetation index

2∗B8+1−
√
(2∗B8+1)2−8∗(B8−B5)

2
Vegetation Index [99]

51 MSAVI2 Modified soil adjusted
vegetation index 2

2∗B8+1−
√
(2∗B8+1)2−8∗(B8−B4)

2
Vegetation Index [99]

52 MSBI Soil brightness index
proposed by Misra

0.406 ∗ B3 + 0.6 ∗ B4 −
0.645 ∗ B6 + 0.243 ∗ B8

Vegetation Index [97]

53 MSR670 Modified simple ratio
670/800

B8
B4
−1√

B8
B4
+1

Vegetation Index [100]

54 MSRNir/Red Modified simple ratio NIR/red
B8
B5
−1√

B8
B5
+1

Vegetation Index [101]

55 NBR
Normalized difference
Nir/Swir normalized

burn ratio

B8−B12
B8+B12

Vegetation Index [102]

56 ND774/677 Normalized difference
774/677

B7−B4
B7+B4

Vegetation Index [103]

57 NDII Normalized difference
infrared index

B8−B11
B8+B11

Vegetation Index [104]

58 NDRE Normalized difference
Red-edge

B7−B5
B7+B5

Vegetation Index [105]

59 NDSI Normalized difference
salinity index

B11−B12
B11+B12

Vegetation Index [106]

60 NDVI Normalized difference
vegetation index

B8−B4
B8+B4

Vegetation Index [107]
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Table A1. Cont.

No. Abbreviation Index Formula Description Reference

61 NDVI2 Normalized difference
vegetation index 2

B12−B8
B12+B8

Vegetation Index [85]

62 NGRDI Normalized green red
difference index

B3−B5
B3+B5

Vegetation Index [103]

63 OSAVI Optimized soil adjusted
vegetation index 1.16 ∗ B8−B4

B8+B4+0.16 Vegetation Index [108]

64 PNDVI
Pan normalized

difference vegetation
index

B8−(B3+B2+B5)
B8+(B3+B2+B5)

Vegetation Index [89]

65 PVR Photosynthetic vigor
ratio

B3−B4
B3+B4

Vegetation Index [109]

66 RBNDVI
Red-Blue normalized
difference vegetation

index

B8−(B2+B4)
B8+(B2+B4)

Vegetation Index [89]

67 RDVI
Renormalized

difference vegetation
index

B8−B4√
B8+B4

Vegetation Index [110]

68 REIP Red-edge inflection
point 700 + 40 ∗ ( (

B7+B4
2 )−B5

B6−B5
) Vegetation Index [111]

69 Rre Reflectance at the
inflexion point

B4+B7
2 Vegetation Index [112]

70 SAVI Soil adjusted vegetation
index 1.5 ∗ B8−B4

B8+B4+0.5 Vegetation Index [113]

71 SBL Soil background line B8 − 2.4 ∗ B4 Vegetation Index [80]

72 SIPI Structure intensive
pigment index

B8−B2
B8−B4

Vegetation Index [114]

73 SIWSI Shortwave infrared
water stress index

B8a−B11
B8a−B11

Vegetation Index [115]

74 SLAVI Specific leaf area
vegetation index

B8
B8+B4

Vegetation Index [116]

75 TCARI
Transformed

chlorophyll absorption
Ratio

3 ∗ ((B5 − B4) − 0.2 ∗
(B5 − B3)( B5

B4
)) Vegetation Index [94]

76 TCARItoOSAVI TCARI/OSAVI TCARI
OSAVI Vegetation Index [108]

77 TCI Triangular chlorophyll
index

1.2 ∗ ((B5 − B3) − 1.5 ∗
(B4 − B3)(

√
B5
B4

))
Vegetation Index [117]

78 TVI Transformed vegetation
index

√
NDVI + 0.5 Vegetation Index [118]

79 VARI700 Visible atmospherically
resistant index 700

B5−1.7∗B4+0.7∗B2
B5+2.3∗B4−1.3∗B2

Vegetation Index [119]

80 VARIgreen Visible atmospherically
resistant index green

B3−B4
B3+B4−B2

Vegetation Index [119]

81 VI700 Vegetation index 700 B5−B4
B5+B4

Vegetation Index [120]

82 WDRVI Wide dynamic range
vegetation index

0.1∗B8−B4
0.1∗B8+B4

Vegetation Index [121]

83 NDWI Normalized Difference Water
Index

B3−B8
B3+B8

Water Index [122]

84 MNDWI Modified Normalized Difference
Water Index

B3−B11
B3+B11

Water Index [123]

85 AWEInsh
Automated Water Extraction
Index not dominant shadow

4 ∗ (B3 − B11) − (0.25 ∗
B8 + 2.75 ∗ B12)

Water Index [50]

86 AWEIsh
Automated Water Extraction

Index dominant shadow
B2 + 2.5 ∗ B3 − 1.5 ∗

(B8 + B11) − 0.25 ∗ B12
Water Index [50]

87 BI Brightness Index
√
(B4)

2+(B3)
2

2
Bare Soil Index [124]
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Table A1. Cont.

No. Abbreviation Index Formula Description Reference

88 BI2 Second Brightness Index
√
(B4)

2+(B3)
2+(B8)

2

3
Bare Soil Index [125]

89 RI Redness Index (B4)
2

(B3)
3

Bare Soil Index [72]

90 BAIS2 Burned Area Index for Sentinel-2
(1−

√
B6∗B7∗B8a

B4
) ∗

( B12−B8a√
B8a+B12

+ 1)
Burned Index [33]

91 NBR Normalized Burned Ratio Index B8−B12
B8+B12

Burned Index [102]

Appendix B

Table A2. Textural features computed from the gray level co-occurrence matrix (GLCM).

NO. Abbreviation Full Name Formula Description

1 ASM Angular Second Moment N
∑

i=1

N
∑

j=1
p(i, j)2 textural uniformity

2 CONTRAST Contrast N−1
∑

n=0
n2

N
∑

i=1

N
∑

j=1
p(i, j)2, |i− j| = n degree of spatial frequency

3 CORR Correlation N−1
∑

i=0

N−1
∑

j=0

{i∗j)∗P(i,j)−µx∗µy
σx∗σy

P(i, j)
grey tone linear dependencies in

the image

4 VAR Variance N
∑

i=1

N
∑

j=1
(i− µ)2P(i, j) Heterogeneity of image

5 IDM Inverse Difference Moment N−1
∑

i=0

N−1
∑

j=0

1
1+(i−j)2 P(i, j) image homogeneity

6 SAVG Sum Average 2N
∑

i=2
iPx+y(i)

the mean of the gray level sum
distribution of the image

7 SVAR Sum Variance 2N
∑

i=2

(
i−
[

2N
∑

i=2
iPx+y(i)

])2 the dispersion of the gray level
sum distribution of the image

8 SENT Sum Entropy −
2N
∑

i=2
Px+y(i)log

{
Px+y(i)

} the disorder related to the gray
level sum distribution of the image

9 ENT Entropy −
N−1
∑

i=0

N−1
∑

j=0
P(i, j)∗ log(P(i, j))

Randomness of intensity
distribution

10 DVAR Difference variance 2N
∑

i=2

(
i−
[

2N
∑

i=2
iPx−y(i)

])2 the dispersion of the gray level
difference distribution of

the image

11 DENT Difference entropy −
N−1
∑

i=0
Px+y(i)log

{
Px+y(i)

} Degree of organization of
gray level

12 IMCORR1 Information Measure of
correlation 1

XXY−HXY1
max(HX,HY)

dependency between two
random variables

13 IMCORR2 Information Measure of
correlation 2

√
1− e−2(HXY2−HXY) Linear dependence of gray level

14 DISS Dissimilarity N
∑

i=1

N
∑

j=1
|i− j|P(i, j) Total variation present

15 INERTIA Inertia N−1
∑

i=0

N−1
∑

j=0
(i− j)2 ∗ P(i, j) intensity contrast of image

16 SHADE Cluster Shade N−1
∑

i=0

N−1
∑

j=0

(
i + j− µx − µy

)3 ∗ P(i, j) Skewness of co-occurrence

17 PROM Cluster prominence N−1
∑

i=0

N−1
∑

j=0

(
i + j− µx − µy

)4 ∗ P(i, j) Asymmetry of image

Where the P(i, j) is the (i, j)-th entry of the normalized GLCM, N is the total number of gray levels in the image, and x, y and x, y denote the
mean and standard deviation of the row and column sums of the GLCM, respectively. HXY = −∑N

i=1 ∑N
j=1 P(i, j)log2(P(i, j) + ε),

HXY1 = −∑N
i=1 ∑N

j=1 P(i, j) log2
({

Px(i)Py(j)
}
+ ε
)
, HX = −∑N

j=1 Px(i) log2(Px(i) + ε), HY = −∑N
j=1 Py(i) log2

(
Py(j) + ε

)
, and

HXY2 = −∑N
i=1 ∑N

j=1 Px(i)Py(j) log2
(

Px(i)Py(j) + ε
)
.
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