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Abstract: Publicly available optical remote sensing images from platforms such as Sentinel-2 satellites
contribute much to the Earth observation and research tasks. However, information loss caused
by clouds largely decreases the availability of usable optical images so reconstructing the missing
information is important. Existing reconstruction methods can hardly reflect the real-time information
because they mainly make use of multitemporal optical images as reference. To capture the real-time
information in the cloud removal process, Synthetic Aperture Radar (SAR) images can serve as the
reference images due to the cloud penetrability of SAR imaging. Nevertheless, large datasets are
necessary because existing SAR-based cloud removal methods depend on network training. In this
paper, we integrate the merits of multitemporal optical images and SAR images to the cloud removal
process, the results of which can reflect the ground information change, in a simple convolution
neural network. Although the proposed method is based on deep neural network, it can directly
operate on the target image without training datasets. We conduct several simulation and real data
experiments of cloud removal in Sentinel-2 images with multitemporal Sentinel-1 SAR images and
Sentinel-2 optical images. Experiment results show that the proposed method outperforms those
state-of-the-art multitemporal-based methods and overcomes the constraint of datasets of those
SAR-based methods.

Keywords: SAR; multitemporal; Sentinel-2; cloud removal

1. Introduction

Remote sensing platforms such as Sentinel-2 satellites provide a large number of
observation optical images, which contribute a lot to observation tasks such as Earth
monitoring [1–3] and agriculture [4,5]. Nevertheless, the existence of cloud results in the
severe information loss, which has a negative impact on the further application of remote
sensing images. According to the statistics [6], above half of the Earth is covered by cloud
so reconstruction of missing information caused by cloud is of great value. According to
acquisition time of reference data in the reconstruction, traditional cloud removal can be
classified into three families [7] which are, respectively, spatial-based methods, spectral-
based methods and multitemporal-based methods.

Spectral-based methods make use of the bands with intact information as reference
to reconstruct the bands’ missing information by establishing the relationship between
bands. The reconstruction of dead pixels in Aqua MODIS band 6, where 15 of the 20 de-
tectors are non-functional, is a classical case. Several spectral-based methods [8,9] solve
this problem by establishing the polynomial models between bands. Generally, results of
spectral-based methods are of high visual effect and accuracy, but they cannot deal with the
situation where all bands have missing information. Spatial-based methods can deal with
the missing information of all bands. They assume that the missing information and the

Remote Sens. 2021, 13, 3998. https://doi.org/10.3390/rs13193998 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13193998
https://doi.org/10.3390/rs13193998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13193998
https://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/13/19/3998?type=check_update&version=3


Remote Sens. 2021, 13, 3998 2 of 16

remaining information share the same statistic law and geometrical structure so the missing
information can be reconstructed from the remaining information. Spatial-based methods
can be further sub-divided into four sub-classes, which are, respectively, interpolation
methods [10,11], propagation diffusion methods [12–14], variation-based methods [15,16]
and exemplar-based methods [17,18]. Spatial-based methods can well reconstruct the
missing information of all bands, but they can only deal with the missing areas with small
sizes. Even worse, the authority of reconstruction parts cannot be guaranteed because the
reconstruction process is all based on the statistic of remaining areas. Multitemporal-based
methods make use of homogeneous data from other times as reference to reconstruct the
missing information. They outperform the above two methods in the reconstruction of
large missing information. The precondition of traditional heterochronic methods is that
there is no ground change occurring between the two periods. The multitemporal-based
methods can be further divided into three sub-classes which are, respectively, replace-
ment methods [19,20], learning methods [21,22] and filtering methods [23,24]. Recently,
some multitemporal cloud removal methods based on deep learning have been proposed.
For example, Uzkent, et al. [25] introduced deep neural network into the multitemporal
cloud removal task, where a well-trained network is achieved with a large multitemporal
training dataset collected by authors. Singh and Komodakis [26] provided a high-resolution
multitemporal training dataset with several scenes and proposed Cloud-GAN based on
cycle-consistent training to removal clouds. However, these methods cannot adequately
deal with the situation where no training dataset is available. In general, accuracy and
authority of multitemporal methods’ results can be guaranteed due to the existence of
reference data. However, they actually cannot guarantee that no ground change occurs
during the selected time range.

Despite the success of above cloud removal methods, they usually use homogeneous
data as reference, but not heterogeneous data such as synthetic aperture radar (SAR) data.
Considering the possible ground information change, SAR can reflect real-time ground
information compared with the multitemporal data due to its strong penetrability against
cloud, making it great reference data in the cloud removal task. However, the relationship
between the optical image and SAR image is so complex that traditional methods cannot
simulate the relationship due to the limited fitting ability. In recent years, many brand new
cloud removal methods, which view SAR data as reference, have arisen due to the develop-
ment of deep learning. Due to the strong nonlinear fitting ability of deep neural networks,
they can better simulate the relationship between SAR and optical images. Generally,
these new methods can be divided into isochronic methods and heterochronic methods.

Isochronic SAR-based methods [27–30], which view contemporary SAR data as refer-
ence, attempt to train a deep neural network to establish the relationship between SAR and
optical images. Then they directly map the SAR images to the cloudy areas of optical image
as the cloud removal results. For example, the authors of [31] made use of pix2pix [32]
model to map the relationship between paired SAR and optical images. In [27], the authors
introduced CycleGAN [33] model to train the network unpaired SAR and optical images
and the results show good visual effect. In [30], a deep dilated network was proposed to
establish the relationship between SAR and optical images more accurately. After obtaining
simulated optical images from SAR images, the authors of [29] further made use of the
information around the corrupted areas to guide the correction of spatial and spectral
information of simulated optical images. To remove cloud in Sentinel-2 images, in [28] the
authors provided a dataset including the Sentinel-2 images, Landsat optical images and
Sentinel-1 SAR images to train the network. Despite the success of the above methods,
they do not perform well in the areas with dense texture because directly mapping the
SAR images to optical images relies too much on the fitting ability of the network and the
quality of training datasets.

To relieve the difficulty of direct transformation, some studies [34–37] proposed
heterochronic SAR-based methods by further adding multitemporal SAR and optical
images as reference. With pix2pix model, the authors of [34] synthesized the corrupted
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optical image with multitemporal SAR and optical images. Based on [34], in [36] the authors
further made use of multitemporal SAR images as a constraint to optimize the network.
In [35], the authors analyzed the results of transformation with multitemporal SAR and
optical images and found that heterochronic reconstruction with SAR data outperforms
isochronic SAR-based methods under the same model. The above three methods focus
on the optical simulation of a selected area with multitemporal optical and SAR images
but cannot operate in the real application of cloud removal. Moreover, they have to
retrain the network when encountering new periods or areas. Meraner, Ebel, Zhu and
Schmitt [37] published a multitemporal SAR and optical dataset, which contains triplets of
the multitemporal optical images, contemporary SAR and optical images, and proposed a
novel network trained with this dataset. Different from the above methods, the trained
network can be applied to areas except the training dataset. This is the first attempt to apply
the network to cloud removal in real applications. However, the visual effect of results
in [37] are not that satisfying. Moreover, existing methods are all data-driven methods
which will be of non-sense if training datasets are not enough or available.

Considering the merits and demerits of the traditional methods and SAR-based
methods, we propose a novel method to remove cloudy images from Sentinel-2 satellite
by exploiting multitemporal images from Sentinel-1 and Sentinel-2 satellites. Similar with
other heterochronic cloud removal methods which use multitemporal optical and SAR
images as reference, we treat the contemporary SAR image, the multitemporal SAR and
optical image as input to a simple deep neural network and obtain an output. Then two
optimization terms are constructed to constrain the local and global information of the
output. After several times of optimization, the output of network will serve as the
target cloud removal result. Different from those cloud removal methods based on deep
networks [25,26], we need no datasets for network training. The main contributions of the
proposed method are summarized as follows:

• Based on deep neural network, we propose a novel method to remove clouds in images
from Sentinel-2 satellite with multitemporal images from Sentinel-1 and Sentinel-2
satellites. The cloud removal results can reflect the ground information change in the
reconstruction areas during the two periods.

• Different from the existing SAR-based methods which need large training datasets,
the proposed method can directly act on a given corrupted optical image without
datasets, confirming that a large training dataset is unnecessary in the cloud re-
moval task.

• Severe simulation and real data experiments are conducted with multitemporal optical
and SAR images from different scenes. Experimental results show that the proposed
method outperforms many other cloud removal methods and has strong flexibility
across different scenes.

We organize our paper as follow: In Section 2, we present the workflow of the proposed
reconstruction method. In Section 3, simulation and real data experiments are conducted
with Sentinel-1 and Sentinel-2 images in different scenes to verify the effectiveness and
flexibility of the proposed method. Some discussions are included in Section 4. In Section 5,
we summarize the proposed method and discuss future improvements.

2. Methods
2.1. Problem Formulation

Some notations of data are given here for simplification. We use paired SAR and
optical images from two periods, t1 and t2. Among them, we denote the SAR and optical
images from t1 by S1 and O1. SAR and optical images from t2 are denoted by S2 and
O2. We hypothesize here that the target optical image to be reconstructed is O2 and the
rest three images serve as the reference. Deep neural networks, which are labeled as G,
are introduced in our cloud removal process.
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In the reconstruction with contemporary SAR data, the idea of existing methods is to
train the network G with paired SAR and optical images from the same time, whose process
is described in Equation (1):

G∗ = argmin
∣∣∣∣∣∣O1 − G(S1)

∣∣∣|11 (1)

Then they directly transform SAR images to contemporary optical images with the
trained network.

These methods perform well when dealing with very high-resolution SAR and optical
pairs [27]. When it comes to the medium-resolution images such as Sentinel-1 and 2 images,
the results may not be satisfying [31]. To deal with medium-resolution remote sensing
images, some reconstruction methods [34–36] make use of multitemporal optical and SAR
data as reference. These methods aim to train the network G with the concatenation of
S1, S2 and O1 as input and O2 as target to relieve the difficulty of direct transformation
from SAR to optical images. Then the trained network is applied to new data. The general
training and application process are described in Equation (2):

G∗ = argmin
∣∣∣∣∣∣O1 − G(S1, S2, O2)

∣∣∣|11 (2)

These methods cannot work when there are not enough training datasets due to the
adversarial training strategy and the deep network structure. Furthermore, they will obtain
unsatisfying results when they deal with images outside the domain of training datasets,
which is very common in SAR-optical tasks. These drawbacks indicate the poor flexibility
of deep learning methods in this application.

2.2. Method for Cloud Removal

Instead of the ideal training condition where O2 in training datasets have no missing
information, we attempt to deal with a more general situation, where the given O2 has
missing information and the training dataset is unavailable. We aim to obtain O∗2 which is
the reconstruction result of O2. Here we also make use of S1, S2 and O1 as reference images
and introduce a deep neural network, which is denoted as G. The whole framework of our
method is displayed in Figure 1a.

First, we implement a cloud detection algorithm to get the missing information
mask M from O2:

M = Fmask(O2) (3)

Then, we concatenate the images in the sequence of O1, S1, S2 and treat them as the
input of network G for a simulated output OG

2 : which is described in Equation (4):

OG
2 = G(S1, S2, O1) (4)

With the cloud mask M and the simulated output map OG
2 , we make use of the

residual information of O2 to construct a local optimization term to optimize the simulated
output OG

2 in the network G. The reconstruction term is described in Equation (5):

Llocal =
∣∣∣∣∣∣M�O2 −M�OG

2

∣∣∣|11 (5)

�means the Hadamard product operation. With Equation (5), we expect that network
G can learn the ground information change between t1 and t2, and further impose the
real-time ground information to the expected cloud removal results OG

2 . The process of
Equations (4)−(5) is displayed in Figure 1b.

However, the remaining information in O2 is local so it cannot perfectly constrain
the global information and continuity of cloud removal results. To further guarantee the
authority and reflect the ground information changes in OG

2 , we concatenate the images
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in the sequence of OG
2 , S2 and S1, and feed them again to the same network G for another

output OG
1 :

OG
1 = G(S2, S1, OG

2 ) (6)

Then, another optimization term is constructed with this output OG
1 and O1 to con-

strain the global information and continuity, which is described in Equation (7):

Lglobal =
∣∣∣∣∣∣OG

1 −O1

∣∣∣|11 (7)

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

 

 
(a) The whole framework of our method 

 

 

 

(b) Operation of local constraint (c) Operation of global constraint 

Figure 1. The flowchart of our method. 

3. Experiments 

3.1. Experiment Settings 
3.1.1. Data Introduction 

From the Sentinel 1 and Sentinel 2 satellites, we collected eight groups of SAR images 
and optical images from two periods, respectively, for the simulation experiments and 
two groups of SAR and optical images from two periods for real data experiments. The 

Figure 1. The flowchart of our method.



Remote Sens. 2021, 13, 3998 6 of 16

Assume that OG
2 can reflect the local ground information change with the sole Equation (5).

By transforming OG
2 back to O1 with Equations (6) and (7), we expect that this global

optimization term can further constrain the network G to diffuse the knowledge of ground
information change from the local areas to cloudy areas, so that the results can reflect
the global ground information changes between t2 and t1. The process of Equation (6) is
displayed in Figure 1c.

For further continuity of the cloud removal result OG
2 , we then impose a total variation

term to the optimization term. The total optimization term can be described as follows:

Ltotal = Llocal + Lglobal + TV(OG
2 ) (8)

Finally, different from those deep learning methods who retain the network G after
optimization for further application such as Equations (1) and (2), we abandon the net-
work but only retain the final optimization output OG∗

2 as the final reconstruction result.
The action is described in Equation (9):

OG∗
2 = argminLtotal (9)

The whole process needs no training datasets, but only the target image with clouds
and reference images. Compared with those deep learning methods, our method does not
need to consider transfer learning when it comes to novel images outside the domain of
training datasets, ensuring the flexibility of the proposed method.

2.3. Network Structure

In the proposed method, we use a simple network with five main consecutive blocks.
In the first and fourth block, there are a convolution operation layer, a batch normalization
layer and a non-linear activation layer. The second and the third blocks are the residual
blocks whose structure is displayed in Figure 1. After processed by two convolution and
batch normalization blocks, the input feature map adds the output feature map as the final
output. The aim of the residual blocks is to avoid the gradient vanishing problem. The final
block has a convolution operation layer and a non-linear activation layer to obtain the
target reconstruction result. The total network design is presented in Figure 1.

3. Experiments
3.1. Experiment Settings
3.1.1. Data Introduction

From the Sentinel 1 and Sentinel 2 satellites, we collected eight groups of SAR images
and optical images from two periods, respectively, for the simulation experiments and two
groups of SAR and optical images from two periods for real data experiments. The gap
between the two periods is less than one year. Within one period, the gap of the acquired
time of SAR and optical images is constrained within a week to confirm that SAR and
optical images from the same time share the same ground information. SAR images are
obtained in the mode of IW and have two bands which are, respectively, VV and VH.
We preprocessed the SAR images with deburst, calibration, terrain correction and finally
unified the spatial resolution into 10 m. The optical images have the resolution of 10 m and
we only chose the R, G and B bands in the experiments for the sake of simplification. We
cropped patches with the size of 2000 × 2000 in the same areas of optical and SAR images
from the two periods. The acquisition time of these images is listed in Table 1.
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Table 1. Acquisition time of images.

Simulation exp S1 S2 O1 O2

1 22 March 2020 8 July 2020 23 March 2020 6 July 2020
2 16 November 2019 2 May 2020 14 November 2019 2 May 2020
3 20 October 2019 23 May 2020 19 October 2019 21 May 2020
4 1 November 2019 13 December 2019 31 October 2019 10 December 2019
5 18 October 2019 5 December 2019 19 October 2019 8 December 2019
6 24 March 2020 5 April 2020 26 March 2020 5 April 2020
7 27 August 2019 9 August 2020 23 August 2019 7 August 2020
8 31 August 2019 2 July 2020 5 September 2019 1 July 2020

Real data exp S1 S2 O1 O2

1 9 April 2021 3 May 2021 8 April 2021 3 May 2021
2 20 April 2021 14 April 2021 23 April 2021 15 April 2021

3.1.2. Mask Production

For the simulation reconstruction experiments, we collected the optical images with
cloud corruption from Sentinel 2 and made use of Fmask 4.3 algorithm to catch the masks
of clouds and their shadows in these images. Then, we cropped the patches randomly
with the size of 2000 × 2000 from these cloud masks. We filtered 8 patches which have
around 30% of cloud areas and their corresponding optical patches. Furthermore, in the
eight groups of optical and SAR images, we selected one optical image in each group and
replaced the information of some areas with the corresponding areas of the optical cloud
patch to simulate the corrupted optical images. For the real data experiment, we directly
made use of Fmask 4.3 algorithm to detect the clouds and their shadow in the image to
make the cloud mask.

3.1.3. Evaluation Methods

We made use of four popular evaluation indexes to assess the reconstruction results of
the proposed method. They are, respectively, peak-signal-to-noise ratio (PSNR), Structure,
Similarity index (SSIM), Spectral Angle Mapper (SAM) and Correlation Coefficient (CC).
They can evaluate the spectral and spatial fidelity of the cloud removal results. For PSNR,
SSIM and CC, a higher score indicates a better result. For SAM, a lower score means the
better result.

3.1.4. Implementation Details

We conducted our experiments under the framework of Pytorch 1.0 with one GPU of
RTX 2080Ti. The reconstruction result was obtained by optimizing the output of network
with Adam optimizer. The learning rate of the network in our method was set as 0.001 and
the number of optimization epochs was set as 2000.

3.1.5. Comparison Methods

Three traditional multitemporal-based reconstruction methods were selected as com-
parison methods in our discussion. They are, respectively, Adaptive Weighted Tensor
Completion (AWTC) [38], Modified Neighborhood Similar Pixel Interpolation (MNSPI) [39]
and Weighted Linear Regression (WLR) [40].

3.2. Simulation Experiment Results

The experiment results are displayed in Figure 2. Figure 2a,b presents the simulated
optical image with missing information and the multitemporal optical image from adjacent
period. Figure 2c−d shows the SAR images obtained from the same time as optical images
shown in Figure 2a−b. Figure 2e is the cloud mask. Figure 2 f−h, respectively, displays the
reconstruction results of AWTC, MNSPI and WLR. Figure 2i is the result of the proposed
method and Figure 2j displays the ground truth of corrupted optical image. We selected
two areas and magnify them in Figures 3 and 4.
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Figure 3. Magnified area 1 of simulation experiment results. Area boxed in yellow is the town area. In O1, the town area and
the surrounding area share the same spectral information while in the ground truth they are different. Only the proposed
method can differentiate the town area and the surrounding area.

In Figure 3, the area boxed in yellow is mainly the town area. In the ground truth
image, the spectral information of the town area and surrounding agricultural area is
vividly different from each other. However, in the reference image O1, the town area and
the surrounding agricultural area share the similar spectral information and it is very
easy to mix them up. Therefore, in the results of WLR and MNSPI, the boxed town area
is reconstructed as agricultural land because they can only take O1 as reference image.
Even worse, AWTC only obtains blurry results in the gap areas. The proposed method,
on the other hand, can distinguish the town area from the surrounding agricultural area
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and the cloud removal result has accurate spectral information thanks to the reference
images S1 and S2. The above example indicates that reconstruction process of traditional
methods is just information cloning from the optical images from adjacent periods and
does not take the ground information change into consideration. Therefore, the traditional
multitemporal-based methods may not be practical in real applications. Our method can
reflect the ground information changes which are displayed in two SAR images from
two periods.

Figure 4. Magnified area 2 of simulation experiment results. The area boxed in red is the town area while the surrounding
area boxed in yellow is the agricultural area. In O1 they share the same spectral information while in the ground truth they
have totally different spectral information. The three comparison methods either reconstruct the town area into agricultural
area or the agriculture area into town area. Our method can distinguish the two kinds of ground objects.

Another example is the area displayed in Figure 4. The area boxed in red is the town
area while the surrounding area boxed in yellow is the agricultural area. In the ground truth
image, the town area and the agricultural area has obviously different spectral information
while in the reference image O1, the two areas share the same spectral information. WLR re-
constructs the town area into the agricultural area while the agricultural area in the result
of MNSPI has wrong spectral information. The result of AWTC is blurry because AWTC
cannot deal well with images with large size. The proposed method perfectly distinguishes
the town area and agricultural area, and the result has true spectral information.

Table 2 lists the quantitative evaluation of our method and three traditional multitemporal-
based methods. We mark the highest score in each index in bold and the second highest
score with underline. Our method obtains highest scores in all four evaluation indexes.
Simulation experiments indicate that the introduction of auxiliary multitemporal SAR
images is of vital importance to reflect the ground change in the results.

Table 2. Quantitative evaluation of simulation results.

PSNR SSIM CC SAM

WLR 35.9515 * 0.9679 * 0.9782 * 0.2894 *
MNSPI 34.9646 0.9661 0.9721 0.3617
AWTC 32.6143 0.9487 0.9596 0.4800
Ours 37.3142 * 0.9748 * 0.9842 * 0.2586 *

* The best scores are marked in bold while the second highest are marked with underline. Our method achieves
all best scores in all four indexes.
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3.3. Real Experiment Results

Results of real data experiments are displayed in Figure 5. Figure 5a−d, shows, re-
spectively, the corrupted optical image, the reference optical image and SAR images from
two periods. Figure 5e−g displays the results of AWTC, MNSPI and WLR. The result of
our method is presented in Figure 5h. We magnify a selected area of Figure 5 in Figure 6
for further observation.

We can observe from two SAR images that the ground information in the area boxed
in red has changed between the two periods. Due to the fact that no ground truth image
can be referred in this set of experiments, we cannot directly compare the correctness of
each method. However, we find in and that the two areas in the yellow box share the same
ground information in both and. In the results of MNSPI and WLR, the ground objects in
two yellow boxes are different. AWTC again cannot deal with large images and obtains
blurry results. The proposed method, on the other hand, has ground objects with the
same spectral information in the two yellow boxes, confirming the accuracy of our cloud
removal result.

Figure 5. Real experiment results of cloud removal.

4. Discussion

To further explore the function of each data and module of our method, we conduct the
ablation experiment of the proposed method. Then we discuss the efficiency of our method.

4.1. Ablation Study about Loss Function

In this section, we analyze the contributions of each loss function in the proposed
method with the eight groups of multitemporal SAR-optical images used in the simulation
experiment. The model, which contains all three loss functions, is set as the baseline
model. Then we denote the model without total variation term as W/O(TV). The model
without global loss function as W/O(global). On the other hand, we have to admit that
local loss function contributes mainly to the cloud removal results and without the local
loss function, no results will be obtained. Therefore, we cannot do the ablation study
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on the local loss function term. Table 3 lists the quantitative evaluation results of above
ablation models. We mark the highest scores in bold. The evaluation results indicate that
all loss functions contribute positively to the proposed method. Figure 6 displays the cloud
removal results of the proposed method and three ablation models. Figure 7a displays the
cloudy image. Figure 7b−c shows, respectively, the results of models W/O(global) and
W/O(TV). Figure 7d−e is the result of full model and the ground truth. We select an area
from Figure 6 and display it in Figure 8. It can be viewed from Figure 8 that global loss
function contributes a lot to relieving the overfitting of model. Without global loss function,
the model may generate some nonexistent ground information which are boxed in yellow.
Although TV loss function may not contribute as much as global loss function, it also helps
to relieve the overfitting of model. We can see from Figure 8c that without TV loss function,
there still remains some artifacts in the cloud removal result.

Figure 6. Magnified area of real experiment results. From S1 and S2, we can see obvious ground information change.
Moreover, we observe from O1, S1 and S2,that the two areas boxed in yellow share the same ground information. In the
results of three comparison methods, the two areas in yellow boxes are different while in the result of our method, the two
areas share the same spectral information.

Figure 7. Results of ablation models about loss functions.
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Figure 8. Magnified area from Figure 7. Results of model W/O(global) and W/O(TV) have vivid artifacts while the
proposed method has no artifacts in the result.

Table 3. Quantitative evaluation of ablation models about loss function.

PSNR SSIM CC SAM

W/O(TV) 37.2542 0.9747 0.9841 0.2591
W/O(global) 37.2075 0.9746 0.9841 0.2592

Baseline 37.3142 0.9748 0.9842 0.2586
The best scores are marked in bold while the second highest are marked with underline. The full model achieves
all best scores in all four indexes.

4.2. Ablation Study about Reference Data

In this part, we further analyze the function of reference images used in the framework
with the eight groups of multitemporal SAR and optical images. For the sake of fairness,
we set the model with only local loss function as baseline because the construction of global
loss function needs all reference images. With global loss function, we cannot compare the
contribution of each reference image.

The model without and is denoted as W/O(and). We denote the model without as
W/O( ) and the model without as W/O( ). Figure 9 displays the results of the baseline model
and three ablation models. Figure 9a–d shows, respectively, the multitemporal SAR and
optical images. Figure 9e is the cloud mask. Figure 9f–i displays the results of four ablation
models and the baseline model. Figure 9j is the ground truth image. We select an area from
the above images and display it in Figure 10. It can be observed from two SAR images that
obvious ground information change occurs between two periods, which is boxed in red.
Results of models W/O( ) and W/O(and) cannot reflect this ground information change
because reference images do not contain the ground information of. The result of model
W/O( ) reflects the ground information change in the reconstruction result and its result
is satisfying in terms of visual evaluation. However, the shape of some ground objects,
which is boxed in yellow, is not the same as ground truth. The reason may be that W/O( )
retains the corresponding spatial information of in the reconstructed areas of. However,
as is known to all, the shapes of objects in SAR images and optical images are different due
to their different imaging process. W/O( ) does not take the spatial information difference
into consideration so that spatial information of some reconstruction areas is warped.
The baseline model, with the aid of all reference images, can obtain results whose ground
information has an accurate shape, outperforming all ablation models. We also evaluate
our method and three ablation models quantitatively and list the quantitative evaluation
results in Table 4. The highest scores are marked in bold and the second highest scores are
marked with underline. The baseline model undoubtedly achieves the highest scores in
all four indexes and outperforms the remaining three ablation models by a large extent.
The ablation models indicate that all reference images including, and are of vital importance
in the proposed method.



Remote Sens. 2021, 13, 3998 13 of 16

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 17 
 

 

 

that all reference images including  ,   and   are of vital importance in the proposed 
method. 

(a) 1O  (b) 2O  (c) 1S  (d) 2S  (e) mask 

(f) W/O( 1S  and 2S ) (g) W/O( 1S ) (h) W/O( 2S ) (i) baseline (j) ground truth 

Figure 9. Simulation experiment results of ablation models. 

(a) 1O  (b) 2O  (c) 1S  (d) 2S  (e) mask 

(f) W/O( 1S  and 2S ) (g) W/O( 1S ) (h) W/O( 2S ) (i) baseline (j) ground truth 

Figure 10. Magnified area from Figure 9. Every reference image contributes positively to the final result. 

Figure 9. Simulation experiment results of ablation models.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 17 
 

 

 

that all reference images including  ,   and   are of vital importance in the proposed 
method. 

(a) 1O  (b) 2O  (c) 1S  (d) 2S  (e) mask 

(f) W/O( 1S  and 2S ) (g) W/O( 1S ) (h) W/O( 2S ) (i) baseline (j) ground truth 

Figure 9. Simulation experiment results of ablation models. 

(a) 1O  (b) 2O  (c) 1S  (d) 2S  (e) mask 

(f) W/O( 1S  and 2S ) (g) W/O( 1S ) (h) W/O( 2S ) (i) baseline (j) ground truth 

Figure 10. Magnified area from Figure 9. Every reference image contributes positively to the final result. Figure 10. Magnified area from Figure 9. Every reference image contributes positively to the final result.

Table 4. Quantitative evaluation of ablation models about reference images.

PSNR SSIM CC SAM

W/O(S1 and S2) 36.3542 0.9724 0.9805 0.2803
W/O(S1) 37.1386 0.9743 0.9839 0.2598
W/O(S2) 36.4235 0.9725 0.9808 0.2745

Ours 37.1953 0.9746 0.9841 0.2593
The best scores are marked in bold while the second highest are marked with underline. The full model achieves
all best scores in all four indexes.
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4.3. Time Cost

Despite the fact that the proposed method can take ground information change into
consideration and also obtain results with both good quantitative and qualitative evalua-
tion, we have to admit that the above achievements are at the cost of efficiency. Different
from those deep learning methods that process images in a feed-forward manner with a
well-trained network, the proposed method adopts an image-optimization process which
processes the original images in a backward-propagation manner because there is no extra
dataset to train the network. To process an image with a size of 2000 × 2000, deep learning
methods may only need several seconds while the proposed method will need several
minutes. Table 5 lists the time cost of the proposed method and two comparison methods
on one image with a size of 2000 × 2000. WLR only takes several seconds while MNSPI
takes tens of seconds. The proposed method takes hundreds of seconds, an excessive
amount of time. We will seek a solution for the efficiency of our method in future work.

Table 5. Time cost of three comparison methods and our method.

WLR MNSPI AWTC Ours

Time <4 s 26 s 183 s 842 s

5. Conclusions

In this paper, we proposed a method for cloud removal of optical images from Sentinel-
2 satellites. The proposed method takes advantages of multitemporal optical images from
Sentinel-2 satellites and multitemporal SAR images from Sentinel-1 satellites as reference
for the reconstruction. The whole process is conducted in a deep neural network and does
not need a training dataset. As far as we know, our method is the first multitemporal-
based method that can reflect the ground information change in practical cloud removal
tasks without large training datasets. The success of simulation and real data experiments
confirms the superiority of applicability of the proposed method.

In our future work, we would collect a large training dataset to train a deep neural
network that can operate in a forward manner and reflect the ground information change
in the reconstruction results. Moreover, we will modify the network structure for more
accurate results.
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