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Abstract: Global alpine ecosystems contain a large amount of carbon, which is sensitive to global
change. Changes to alpine carbon sources and sinks have implications for carbon and climate
feedback processes. To date, few studies have quantified the spatial-temporal variations in ecosystem
carbon storage and its response to global change in the alpine regions of the Qinghai-Tibet Plateau
(QTP). Ecosystem carbon storage in the northeastern QTP between 2001 and 2019 was simulated and
systematically analyzed using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)
model. Furthermore, the Hurst exponent was obtained and used as an input to perform an analysis
of the future dynamic consistency of ecosystem carbon storage. Our study results demonstrated that:
(1) regression between the normalized difference vegetation index (NDVI) and biomass (coefficient
of determination (R2) = 0.974, p < 0.001), and between NDVI and soil organic carbon density (SOCD)
(R2 = 0.810, p < 0.001) were valid; (2) the spatial distribution of ecosystem carbon storage decreased
from the southeast to the northwest; (3) ecosystem carbon storage increased by 13.69% between 2001
and 2019, and the significant increases mainly occurred in the low-altitude regions; (4) climate and
land use (LULC) changes caused increases in ecosystem carbon storage of 4.39 Tg C and 2.25 Tg C
from 2001 to 2019, respectively; and (5) the future trend of ecosystem carbon storage in 92.73% of the
study area shows high inconsistency but that in 7.27% was consistent. This study reveals that climate
and LULC changes have positive effects on ecosystem carbon storage in the alpine regions of the
QTP, which will provide valuable information for the formulation of eco-environmental policies and
sustainable development.

Keywords: InVEST model; global change; ecosystem carbon storage; Hurst exponent;
Qinghai-Tibet Plateau

1. Introduction

Ecosystem carbon storage is recognized as a key indicator of ecosystem function
because it is closely related to the climate regulation and productivity of terrestrial ecosys-
tems [1,2]. Ecosystem carbon storage refers to the cumulative amount of carbon stored
in terrestrial ecosystems [3]. The maintenance of ecosystem carbon storage is one of the
hotspots of common concern around the world [4,5]. Quantitative studies of ecosystem
carbon storage can provide a theoretical basis for the integrated management of natural
ecosystems and the sustainable utilization of natural resources [5,6].
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The quantitative methods of ecosystem carbon storage include field surveys, model
simulations, and remote sensing [7]. As one of the assessment methods, modeling is
becoming increasingly prominent because it can conduct evaluations of carbon storage
at different scales, including global [8], national [9], and regional [10]. Many models
have been used to evaluate carbon storage, such as Vector Autoregression (VAR) [11],
High Accuracy Surface Modeling (HASM) [12], Century [13], Biome-BGC [14], General
Ensemble Biogeochemical Modeling System (GEMS) [4,15], and InVEST [16,17]. The In-
VEST model provides new technology for conducting spatial expression, dynamic analysis,
and quantitative evaluations of ecosystem service function [18]. More importantly, the
InVEST model can easily be used to assess the impacts of climate and LULC changes on
ecosystem carbon storage.

The InVEST model has been used in the United States, Tanzania, Indonesia, and
China [7,19,20]. However, most of these studies have focused on the carbon pool of
single ecosystems, and there are few systematic studies on the carbon storage of terrestrial
ecosystems [7]. Previous studies have shown that climate and LULC changes are the major
factors affecting ecosystem carbon storage [21–24]. Generally, climate change controls
the balance between carbon inputs from plant productivity and carbon outputs from
soil carbon decomposition and alters ecosystem carbon storage [25]. LULC change is an
important process that affects carbon storage: changes in LULC from one type to another
are usually accompanied by a large amount of carbon exchange [23,26]. LULC change can
alter the carbon cycle process by changing the ecosystem’s structure (species composition,
biomass) and function (energy balance, biodiversity, and the cycle of carbon, nitrogen,
and water.) [23].

The QTP is the highest and largest plateau in the world, with an average elevation of
more than 4000 m [22,27]. The soil has been reported to have accumulated plentiful soil
organic matter, and its carbon density is obviously higher than that at similar latitudes,
mainly due to its relatively low temperature and very high altitude, and thus the QTP has
been regarded as a huge carbon pool [22,28,29]. Some studies of the QTP have evaluated
carbon storage by using the InVEST model, but the spatial-temporal pattern of ecosystem
carbon storage is still uncertain due to studies with low statistical power and insufficient
sample sizes [30]. In addition, due to its unique geographic and ecological conditions,
the alpine ecosystem of the QTP is very fragile and sensitive to climate change [31]. In
the past 50 years, the air temperature of the QTP has increased by 0.2 ◦C per decade,
roughly twice the observed rate of global warming [22], and annual precipitation has
increased at the rate of 0.91 mm per year (1961–2007) [32]. Rapid warming and wetting
undoubtedly shape the structures and processes of the ecosystem, which, in turn, lead
to dramatic changes in the carbon cycle. Because climate warming tends to boost both
plant production and soil respiration, there is some uncertainty about the change trend of
ecosystem carbon [33,34]. It should be noted that the global warming trend will continue,
according to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) [35], which may further modify the dynamics of ecosystem carbon storage
and amplify the uncertainty regarding the QTP. Hence, it has become urgent to analyze
the spatial-temporal patterns of ecosystem carbon storage in the QTP more accurately,
assess the impact of global change on ecosystem carbon storage, and detect the dynamic
consistency of ecosystem carbon in the future.

Currently, studies on the spatial-temporal patterns of ecosystem carbon storage and
their response to global change in the Shule River Basin on the northeastern margin of the
QTP are especially rare. Taking the upstream regions of the Shule River Basin as a case
study, the main goals of this research were: (1) to clarify and analyze the spatial-temporal
patterns of ecosystem carbon storage and its change trend; (2) to explore the response
characteristics of ecosystem carbon storage to climate and LULC changes; and (3) to detect
the consistency of dynamic of ecosystem carbon storage in the future. This study has
important guiding significance for the rational planning of environmental protection and
the formulation of relevant policies in alpine regions.
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2. Materials and Methods
2.1. Study Area and Climate Conditions

The Shule River, known as the “natural water tower” and “lifeline” of herders and
farmers, is the second-largest inland river in the Hexi Corridor of China [36]. The up-
stream regions of the Shule River Basin (96.2◦–99.0◦E, 38.2◦–40.0◦N) lies in a mountainous
area with abundant precipitation, which is the catchment area of the main stream of the
Shule River Basin, and covers an area of about 1.38 × 104 km2 (Figure 1). The altitude
ranges from 1900 to 5733 m and gradually decreases from the edge to the middle region.
Further, dozens of glaciers lie in this area [37]. The study area has a typical continental
climate [38,39], with a low mean annual air temperature, little precipitation, and high
actual evaporation [36,37]. The mean annual air temperature and annual precipitation
from 1990 to 2019 were −5.24 ◦C and 201.64 mm, respectively (Figure 2). During this
period, the mean annual air temperature and annual precipitation increased at the rate of
0.03 ◦C and 4.70 mm per year (p < 0.01), respectively. The change in climate in the study
area showed a trend towards warmer and wetter conditions. In addition, the dominant
vegetation types are alpine swamp meadows, alpine steppes, and alpine meadows [40].

Figure 1. Location of the study area and ecological plots.

2.2. Data Source and Processing

Meteorological data. The meteorological station data from around China from 1990–2019
were provided by the China Meteorological Data Service Center (http://data.cma.cn/
(accessed on 7 October 2019)). Original air temperature and precipitation data were interpo-
lated into grid data using the spatial interpolation tool of geographic information systems.

LULC data. The Moderate Resolution Imaging Spectroradiometer (MODIS) Land
Cover Type (MCD12Q1) Version 6 product provides global LULC types at yearly intervals
(2001–2019). The classification method of the International Geosphere Biosphere Program
(IGBP) was used in this study. The product was provided by NASA Earth Science Data
Systems (https://search.earthdata.nasa.gov/search (accessed on 16 October 2020)).

http://data.cma.cn/
https://search.earthdata.nasa.gov/search
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Figure 2. Temporal dynamics of the mean annual air temperature (A) and annual precipitation
(B) in 1990–2019. These dots are data points for each year, and the shaded areas represent the 99.0%
confidence intervals of the regression equation.

NDVI data. Based on the SPOT/VEGETATION NDVI satellite remote sensing data,
datasets of monthly NDVI were generated using the maximum value synthesis method.
The NDVI values for the growth seasons (May to September) from 2000 to 2019 were
obtained for this study. The datasets were provided by the Resource and Environmental
Science and Data Center (http://www.resdc.cn/ (accessed on 21 November 2020)).

Ecosystem carbon parameters. Biomass and SOCD data were collected in 2000.
The biomass data were obtained from the Carbon Dioxide Information Analysis Cen-
ter (CDIAC), and SOCD data were provided by the European Soil Data Centre (ESDAC)
(0–30 cm). Because biological carbon is relatively stable and small, it was obtained from
field surveys and the literature [7,41–43]. In addition, the root-to-shoot ratios (RSRs) of
different LULC types were collected from the IPCC 2006 national greenhouse gas emission
inventory [44].

Field survey data. The LULC type of the ecological plots is grassland. Sampling
occurred during the growth seasons of 2011–2019. The locations of the ecological plots can
be found in Figure 1. We collected about 374 biomass samples (including aboveground
biomass (AGB) and belowground biomass (BGB)) and 585 soil organic carbon (SOC)
samples. In detail, each 50 × 50 cm quadrat was selected randomly in each ecological
plot, and the living AGB was harvested. Previous studies reported that more than 90%
of the BGB in alpine grassland is concentrated in the top 30 cm of the soil [38,45]. Hence,
we collected BGB from each quadrat at a depth of 0–30 cm using soil cores 4.8 cm in
diameter. Soil samples were crumbled by hand, rocks were removed, and samples were
then passed through a sieve with a 0.2 cm pore size, then cleaned repeatedly to obtain the
BGB. The AGB and BGB were weighed (0.01 g) after drying (24 h at 80 ◦C), and the carbon
contents were converted by a ratio of 0.475 [44].

Samples for SOC were collected from each quadrat and were split into 0–10, 10–20, and
20–30 cm sections, then packed in plastic bags and brought to the laboratory. The dichromate
oxidation method (Walkley–Black procedure) was used to measure the SOC [46]. In addition,
volumetric soil samples for each depth were sampled using a cutting ring (volume of
100 g/cm3) and dried at 105 ◦C to determine the bulk density. The volume of rock frag-

http://www.resdc.cn/
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ments (i.e., coarser than 2 mm) was measured by submerging moist rock fragments and
recording the volume of displaced water [38]. The soil organic carbon density (SOCD, unit:
kg/m2) was calculated using Equation (1) [38,47]:

SOCD =
n

∑
i=1

hi × BDi × SOCi × (1− Ci)/100 (1)

where hi, BDi, SOCi, and Ci are soil thickness (cm), bulk density (g/cm3), SOC (g/kg),
and the volume percentage of soil particles >2 mm at layer i, respectively.

In addition, all grid data were resampled with a spatial resolution of 500 m and
projected using the World Geodetic System 1984.

2.3. Methods
2.3.1. Carbon Module

The carbon storage module in the InVEST model was used to estimate the ecosystem
carbon storage in a specific region. This module consists of four carbon pools: aboveground
biomass carbon, belowground biomass carbon, SOC, and humus carbon [1]. Aboveground
biomass includes living plant materials above the soil level (such as leaves, bark, branches,
trunks, etc.); belowground biomass refers to the living root systems of the aboveground
plants. In contrast, soil organic matter comprises the organic component of soil, whereas
humus is derived from leaf litter and the wood of standing and lying trees. The LULC
types and their carbon density are the basic parameters of the module [18]. In the InVEST
3.2.0 User’s Guide, more detailed descriptions can be found [48]. The calculation formulae
are shown in Equations (2) and (3):

Cecosystem = Cabove + Cbelow + Csoil + Chumus (2)

Czone =
n

∑
i=1

Ci × Ai (3)

where Cecosystem, Cabove, Cbelow, Csoil , and Chumus are the ecosystem carbon, aboveground
biomass carbon, belowground biomass carbon, SOC, and humus carbon, respectively; Ci is
the carbon density of the LULC type i; and Ai is the area of LULC type i.

2.3.2. Parameter Inversion of the Key Carbon Pool

Reviewing previous studies, we found that four main methods are used to esti-
mate carbon density: literature reviews, field measurements, empirical modeling, and
remote sensing. Due to differences in the estimation methods, the results may vary
greatly [30]. Some studies used MODIS-NDVI products to establish the relationship
between biomass and SOCD and demonstrated the scientific adaptability of this ap-
proach [30,49–51]. In this study, we used the spatial analysis tool of ArcGIS to acquire
various values (including NDVI, biomass carbon, and SOCD) for each LULC type based
on the dataset of 2000. Jan Joseph et al. [52] thought that the carbon density of built-up
land and water bodies is zero, and thus the urban and built-up land, permanent snow and
ice, and other water bodies were not considered in our study. In addition, nonirrigated
farmland and bare land were also not considered due to their anomalous carbon density
data. In accordance with the requirements of the fit of strong correlation, two quadratic
curve equations, namely Biomass–NDVI and SOCD–NDVI, were constructed (Table 1). The
key parameters (including biomass and SOCD) were calculated for 2001–2019 according
to the regression equations and NDVI. Additionally, the biomass of each LULC type was
divided into AGB and BGB according to the RSRs.

In addition, the performance of regression equations can be assessed by comparing
the simulated and observed values, and systematic quantification of their performance
accuracy can be determined by the coefficient of determination (R2) (ranging from 0 to 1),
p-value (p), and root mean squared errors (RMSE). Among these, the R2 describes the
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decrease in collinearity between the measured and simulated data [39,53]. A higher value
of R2 represents less error variance, and values above 0.5 are regarded as acceptable. RMSE
is one of the statistical indicators of error. It is commonly accepted that the lower the RMSE,
the better the model performance [54]. All R2 values in the text refer to the adjusted R2.

Table 1. The regression equations of biomass–NDVI and SOCD–NDVI.

Regression Equations R2 p

Biomass = −45.64 × NDVI2 + 32.08 × NDVI − 1.27 0.974 0.001
SOCD = −471.71 × NDVI2 + 289.33 × NDVI + 5.67 0.810 0.001

2.3.3. Hypotheses of Climate and LULC Changes

Generally, changes in ecosystem carbon storage in the region can be attributed to
changes in the LULC type and carbon density [49]. To some extent, the change in carbon
density is a direct indicator that reflects the effect of climate change on ecosystem carbon
storage. To further explore the main factor affecting the change in ecosystem carbon storage,
we took 2001 as the control year, and three hypotheses were designed regarding 2019 values:
actual condition, LULC change only, and climate change only (Figure 3). This process is
described as follows [49]:

1. The change in ecosystem carbon storage under actual condition is described as ∆C,
and the formula is expressed in Equation (4):

∆C =
n

∑
i=1

(Ai2Di2 − Ai1Di1) (4)

where Ai1 and Ai2 are the area of LULC type i before and after the change, respectively;
Di1 and Di2 are the ecosystem carbon densities of LULC type i before and after the
change, respectively.

2. The change in ecosystem carbon storage caused by climate change only can be ex-
pressed by Equation (5):

∆CD =
n

∑
i=1

Ai1(Di2 − Di1) (5)

3. The ecosystem carbon density of each LULC type is constant, and thus the change in
ecosystem carbon storage is caused by LULC change only, which can be expressed as
Equation (6):

∆CL =
n

∑
i=1

Di1(Ai2 − Ai1) (6)

4. According to all three hypotheses, the contribution of climate and LULC change to
the change in the ecosystem carbon storage can be described by Equations (7) and (8):

RL =
∆CL

∆CL + ∆CD
× 100% (7)

RD =
∆CD

∆CL + ∆CD
× 100% (8)

where RL and RD are the contributions of LULC and climate changes to the change in
ecosystem carbon storage, respectively.
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Figure 3. Simulation of ecosystem carbon storage under different hypotheses.

2.3.4. Linear Regression Analysis

Linear regression analysis was used to detect the spatial change in the research objects
(including meteorological elements and ecosystem carbon storage) with time-series data.
The slope of the linear regression is considered to be the best index for quantifying the
change trend of the research object during the study period. The slope can be calculated by
Equation (9):

slope =
n×∑n

i=1 i× Bi − (∑n
i=1 i)(∑n

i=1 Bi)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (9)

where n is the number of years in the study period, i is the serial number of the year,
and Bi is the value of research object in the year i. Positive and negative values of the slope
refer to positive and negative trends, respectively.

The correlation coefficient (r) of the linear regression can be used to test the significance
of the change trend. It is expressed in Equation (10):

r =
cov(i, Bi)√

var(i)var(Bi)
(10)

where cov and var are the covariance and variance functions, respectively. When p < 0.01,
the change trend is extremely significant; when 0.01 < p < 0.05, the change trend is signifi-
cant; and when p > 0.05, the change trend is non-significant.

2.3.5. Hurst Exponent

The Hurst exponent is a classic method for detecting long memory in time series,
which was proposed by the hydrologist H.E Hurst in 1951 [55]. R/S analysis is a superior
and well-known method used for estimating Hurst exponent and was introduced by
Mandelbrot [55,56]. In this study, we used this method to test the consistency of the
future dynamics of ecosystem carbon. The main calculation procedures are shown in
Equations (11)–(15) [56]:

1. Divide the time series {ξ(τ)} (τ = 1, 2, . . . , n) into τ subseries x(t), and, for each
subseries, t = 1, . . . , τ.

2. Define the mean sequence of the time series:

ξτ =
1
τ ∑τ

t=1 x(t), τ = 1, 2, . . . , n (11)
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3. Calculate the cumulative deviation:

X(t, τ) =
t

∑
u=1

(ξ(u)− (ξ)τ), 1 ≤ t ≤ τ (12)

4. Create the range sequence:

R(τ) = max
1≤t≤τ X(t, τ)− min

1≤t≤τ X(t, τ), τ = 1, 2, . . . , n (13)

5. Create the standard deviation sequence:

S(τ) =

(
1
τ

τ

∑
t=1

(ξ(t)− (ξ)τ)
2

)1/2

, τ = 1, 2, . . . , n (14)

6. Rescale the range:
R(τ)
S(τ)

= (cτ)H (15)

The value of the Hurst exponent ranges from 0 to 1, according to Hurst [57] and
Mandelbrot [58]. When the value is equal to 0.5, this indicates that the time series is a
random series without consistency (i.e., the change trend of the time series in the future
would not be related with that in the study period); when the value is greater than 0.5,
it refers to the consistency of the time series (i.e., the change trend of the time series in
the future is the same as that in the study period, with the greater value for the more
consistency); and when the value is less than 0.5, which indicates the inconsistency of the
time series in the future, with theless value for the more inconsistency.

3. Results
3.1. Verification of Key Carbon Pool Parameters

To evaluate the performance of the regression equations, we analyzed the relationships
between the observed values from the field survey and the simulated values (including
AGB, BGB, and SOCD) for 2011–2019 (Figure 4). The R2, p, and RMSE were used to evaluate
the agreement between the observed and simulated variables. The results indicated that
the simulated values were sufficiently consistent with the measured values (p < 0.01),
with correlation coefficients of 0.901, 0.925, and 0.866, respectively. Additionally, the RMSE
values were relatively small.

Figure 4. Comparisons of the simulated and observed aboveground biomass (AGB) (A), belowground biomass (BGB) (B),
and soil organic carbon density (SOCD) (C) of grassland in 2011–2019. These lines are the fitting lines of the regression
equation, and the shaded areas represent the 99.0% confidence intervals of the regression equations.
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3.2. Climate Change

The spatial distribution of mean air annual temperature and annual precipitation
could be characterized by large regional features. Specifically, the spatial variation range in
the mean annual air temperature was -17.35 to 6.20 ◦C, gradually increasing from southeast
to northwest (Figure 5A), while annual precipitation varied from 100.17 to 533.24 mm,
diminishing from the southeast to northwest (Figure 5B). In addition, as shown in Figure 5C,
significant warming mainly occurred in parts of the northwest (p < 0.05) from 2001 to 2019,
and the rest of the study area also experienced obvious increases (p > 0.05). Figure 5D
shows the changes in annual precipitation during the study period, which clearly indicate
an extremely significant increase in precipitation across the whole study area (p < 0.01).

Figure 5. Distributions of the mean annual air temperature (A), and annual precipitation (B), and
changes in the mean annual air temperature (C) and annual precipitation (D) in 2001–2019.

3.3. Distribution of LULC and Change in LULC

In this study area, grassland is the major LULC type, encompassing more than 44.74%
of the regional area. This LULC type is mostly located at the east of the northwest and
in low-altitude regions of the southeast (Figure 6). The second most common LULC type
is desert, accounting for about 41.40%, mainly distributed in the west of the northwest
and in high-altitude regions of the southeast. Further, cropland, permanent snow and ice,
permanent wetland, and built-up land accounted for about 4.72%, 4.04%, 2.73%, and 2.37%,
respectively. In the marginal high-altitude regions, the main LULC types are desert and
permanent snow and ice. Cropland and permanent wetland are located in the northwest of
the study area, while built-up land is scattered throughout the study area.

In Table 2, the rows and columns represent the area of the six LULC types in 2001
and 2019, respectively. The values of the main diagonal represent the area of each LULC
type that persisted in 2019, and the off-diagonal values show the converted area of each
LULC type from 2001 to 2019. In fact, only the desert showed a diminishing trend in 2019
compared with 2001, shrinking by 1492.86 km2. Compared with 2001, the area increased by
1174.33 km2 for grassland and by 128.11, 97.28, 60.64, and 32.49 km2 for permanent snow
and ice, cropland, permanent wetland, and built-up land in 2019, respectively (Table 2).
Hence, the area of grassland increased the most during the study period (78.66%), followed
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by permanent snow and ice (8.58%). In practice, there was a decline in desert, which can
be mainly attributed to the transition from desert to grassland, permanent snow and ice,
cropland, and permanent wetland: 691.85, 300.59, 322.26, and 151.05 km2, respectively.
Additionally, a small part of the grassland was also converted to built-up land (17.50 km2)
and permanent snow and ice (11.04 km2).

Figure 6. Geographical distribution of LULC types during the study period.

Table 2. Conversion of LULC types between 2001 and 2019 (unit: km2).

LULC Type
2019

GL PW CL BUL PSI DL

2001

GL 5438.18 51.72 48.7 17.5 11.04 15.84
PW 168.09 132.44 18.8 9.37 6.42 10.36
CL 237.64 35.98 246.47 26.89 16.07 38.81

BUL 121.88 19.41 24.69 115.75 7.83 20.62
PSI 99.67 15.52 38.22 13.77 279.62 46.66
BA 691.85 151.05 322.26 159.39 300.59 4830.95

Note: Grassland—GL; permanent wetland—PW; cropland—CL; built-up land—BUL; permanent snow and
ice—PSI; Desert land—DL

3.4. Differences in Ecosystem Carbon among LULC Types

The ecosystem carbon density in different LULC types is shown in Figure 7A. The high-
est amount of ecosystem carbon density was found in grassland, reaching 52.80 Mg/ha,
followed by permanent wetland and cropland (about 44.83 and 42.00 Mg/ha, respec-
tively), whereas the ecosystem carbon density of desert was the lowest, up to 29.87 Mg/ha.
Compared with 2001, the ecosystem carbon density of grasslands, permanent wetland,
cropland, and desert increased by 4.14, 7.90, 6.71, and 2.15 Mg/ha in 2019, respectively; the
permanent wetland increased the most.

In terms of ecosystem carbon storage, grassland had the highest, reaching 32.48 Tg C,
followed by desert (up to 16.87 Tg C) (Figure 7B). In contrast, the ecosystem carbon storage
of permanent wetland and cropland was relatively small, up to just 1.81 and 2.86 Tg C,
respectively. Ecosystem carbon storage in 2001 and 2019 was 50.56 and 57.49 Tg C, respec-
tively, implying that ecosystem carbon storage increased during this period. Specifically,
the ecosystem carbon storage of grassland increased the most (8.69 Tg C), followed by
permanent wetland (0.61 Tg C) and cropland (0.88 Tg C), while ecosystem carbon storage
in deserts decreased (−3.26 Tg C).
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Figure 7. The ecosystem carbon density (A) and ecosystem carbon storage (B) of various LULC types.

3.5. Spatial Distribution of and Change in Ecosystem Carbon Storage

The ecosystem carbon storage exhibited strong spatial heterogeneity in the study
area, and the spatial distribution of the ecosystem carbon storage was basically consistent
throughout the study period, i.e., decreasing from southeast to northwest (Figure 8).
In detail, the lowest value of ecosystem carbon storage was for water bodies (close to 0),
where were mainly distributed in marginal high-altitude regions. The highest value of
ecosystem carbon storage occurred in the east of the northwest and in low-altitude regions
of the southeast.

Figure 8. Distribution of ecosystem carbon storage in 2001(A) and 2019 (B).

The change trend of ecosystem carbon storage of each pixel is shown in Figure 9,
indicating that the linear trend of ecosystem carbon storage showed distinct spatial dif-
ferences from 2001 to 2019. In sum, more than 51.48% of the study area experienced ex-
tremely significant (p < 0.01) or significant (p < 0.05) increases in ecosystem carbon storage,
mainly distributed in the east of the northwest and low-altitude regions of the southeast,
while 6.11% of the area had extremely significant or significant decreases; these locations
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were scattered throughout the study area. In contrast, the area with non-significant changes
in ecosystem carbon storage made up about 42.41%, mainly concentrated in the northwest
and high-altitude regions of the southeast.

Figure 9. Changes in ecosystem carbon storage between 2001 and 2019.

3.6. Impacts of Changes in Climate and LULC on Ecosystem Carbon Storage

Under actual conditions, the ecosystem carbon storage increased by 6.92 Tg C between
2001 and 2019 (Table 3). Under the hypothesis with LULC change, the ecosystem carbon
storage increased or decreased with LULC change, depending on the type of conversion.
However, the amplitude of the increase was greater than the amplitude of the decrease,
leading to a net increase of 2.25 Tg C in total ecosystem carbon storage. The major increase
in ecosystem carbon storage was caused by land conversion from desert to grassland
(691.85 km2), cropland (322.26 km2), and permanent wetland (151.05 km2). In contrast,
land conversion from grassland, cropland, and permanent wetland to desert caused only
minor variations in ecosystem carbon storage. Under the hypothesis with climate change,
the total ecosystem carbon storage increased by 4.39 Tg C in 2019 compared with 2001,
an increase of 8.69%, which can be attributed to the increase in carbon density promoted
by climate warming and wetting.

Table 3. Ecosystem carbon storage under the different hypotheses (unit: Tg C).

LULC Type
Control Actual Hypothesis with Hypothesis with

Year Condition LUCC Change Climate Change

2001 2019 2019 2019

GL 28.14 36.82 34.04 35.57
PW 1.51 2.12 1.78 1.68
CL 2.42 3.30 2.81 2.57
DL 18.50 15.24 14.18 15.14

Regional carbon storage 50.56 57.49 52.81 54.95

When the three hypotheses were compared, we found that the contribution of climate
change to the change in total regional ecosystem carbon storage was 66.10%, whereas
LULC change only accounted for 33.90%. This reveals the fact that the impact of climate
change on the total ecosystem carbon storage was far greater than that of LULC change.
Further, under the hypothesis with LULC change, the ecosystem carbon density per pixel
was lower than actual conditions (Figure 10A,B). The main regions with a reduction in
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ecosystem carbon storage were distributed in the northwest under the hypothesis with
climate change (Figure 10C), compared with actual conditions.

Figure 10. Ecosystem carbon storage under actual condition (A), the hypotheses with LULC change (B), and the hypothesis
with climate change (C) in 2019.

3.7. Future Trends of Ecosystem Carbon Storage

The Hurst exponent of the ecosystem carbon storage time series in the study area
distinctly increased from southeast to northwest (Figure 11), but the Hurst exponent in
most of the study area, accounting for about 92.73%, was lower than 0.5, indicating that
the trend in ecosystem carbon storage in the future is highly inconsistent. The trend for
ecosystem carbon storage was consistent with the future in only 7.27% of the study area;
these areas were scattered throughout the region.

Figure 11. Distribution of Hurst exponent for the ecosystem carbon storage time series.

4. Discussion
4.1. Temporal Dynamics and Factors Influencing Ecosystem Carbon Storage

The QTP makes an important contribution to the global carbon pool and carbon cycle,
and this ecosystem’s carbon dynamics can mitigate or enhance the impact on atmospheric
CO2 and global warming [59]. In this context, some scholars have explored the temporal
dynamics of ecosystem carbon storage in the QTP. Among them, Zhao et al. [49] found
that the ecosystem carbon storage of the QTP exhibited overall growth in 2001–2010.
The Qinghai Lake Basin (QLB), located in the northeastern margin of the QTP, is the largest
saltwater lake in China and is an important wetland globally. Li et al. [7] evaluated the
temporal dynamics of the ecosystem carbon storage of the QLB in 1990–2015, indicating
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that the ecosystem carbon storage increased by 1.60 Tg C. Located in the hinterland of
the QTP, the Three-River Headwaters Region (TRHR) is the source of the Yangtze River,
the Yellow River, and the Lancang River, and it is also an extremely sensitive area of
China’s ecological environment and the initiating area of climate change. Zhang et al. [60]
discovered that the ecosystem carbon storage in the TRHR fluctuated upward in 2000–2010.
In this study, we found that ecosystem carbon storage obviously increased in the upstream
regions of the Shule River Basin between 2019 and 2001, which is consistent with the
results of the abovementioned studies. This may be attributed to the increase in vegetation
productively caused by climate and LULC changes. On the one hand, over the past few
decades, the study area has experienced warming and wetting. Meanwhile, a significant
portion of it is underlaid by permafrost, and with climate warming, permafrost thawing is
likely to occur. These changes have induced changes in the ecosystem carbon processes,
such as carbon gains attributed to stimulated vegetation productivity and carbon losses
from thawing permafrost; the balance of these fluxes depends on the feedback of permafrost
to warming [30,61]. In fact, the increase in carbon inputs from vegetation caused by climate
change was greater than the loss of carbon, resulting in an obvious increase in ecosystem
carbon storage during the study period. Further, the increase in ecosystem carbon density in
the desert was the least, and deserts were largely replaced by other LULC types, resulting
in the ecosystem carbon storage of deserts decreasing by 3.26 Tg C from 2001 to 2019.
However, the increase in ecosystem carbon storage of other LULC types (which increased
by 10.18 Tg C) is enough to offset the corresponding decrease in deserts; most of the
increased ecosystem carbon storage is due to grassland. Interestingly, compared with other
LULC types, although the ecosystem carbon density of permanent wetland increased the
most (7.90 Mg/ha) in 2019 compared with 2001, its carbon storage increased the least, up
to just 0.61 Tg C, mainly attributed to its relatively small area.

Through analysis of the three hypotheses, we found that the contribution of climate
change to the change in ecosystem carbon storage was 66.10%, while the contribution of
LULC change was 33.90%. Thus, climate change is more important than LULC change in
affecting the regional ecosystem carbon storage, which has been confirmed by previous
studies [49]. The main reason is that the scale of LULC change is small, and the conversion
patterns between LULC types can cause both positive and negative effects on ecosystem car-
bon storage, whereas climate change can directly alter the inputs and outputs of ecosystem
carbon storage.

4.2. Spatial Distribution and Factors Affecting Ecosystem Carbon Storage

The spatial distribution of ecosystem carbon storage in the study area was basically
consistent over the study period. Under the integrated impact of climate and LULC changes,
ecosystem carbon storage exhibited strong spatial heterogeneity, decreasing from southeast
to northwest. The lowest values were mainly located in the marginal high-altitude regions.
Because the mean annual air temperature of the high-altitude regions is lower than 0 ◦C,
the LULC type is dominated by permanent snow and ice, so it is difficult for vegetation
to survive, and the ecosystem carbon storage is close to 0. In contrast, the low-altitude
regions can provide more suitable water and temperature environments for vegetation
growth, and the ecosystem carbon storage in these areas is higher. In particular, the highest
ecosystem carbon storage was found in the east of the northwest and in low-altitude
altitude regions of the southeast due to their relatively low air temperature and favorable
precipitation. Plants in these regions grow well and create higher primary productivity,
which is beneficial for carbon accumulation, whereas the opposite is true in the other parts
of the northwest.

In 2001–2019, the precipitation in the whole study area increased significantly, and air
temperature showed an obvious increasing trend. Previous studies [62–64] have demon-
strated that warming and wetting can stimulate plant growth, thus promoting gross and
net primary production. Further, desert has been largely replaced by grassland. Hence,
more than 51.48% of the study area experienced significant increases in ecosystem carbon
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storage in 2001–2019. Additionally, only 6.11% of the study area experienced significant
decreases in ecosystem carbon storage, which can be attributed to the conversion of a
small part of the desert and grassland into built-up land between 2001 and 2019. It is
worth mentioning that the inconsistent dynamic trend of ecosystem carbon storage in the
future may be related to climate change and the intensification of human activities such as
urbanization and overgrazing.

4.3. Uncertainties and Limitations

Firstly, the InVEST model can reliably estimate ecosystem carbon storage in alpine re-
gions, but the model does not consider the process of carbon sequestration and release [49].
Secondly, the parameter inversion of the regression model springs from remote sensing
data, which may bring some uncertainty to estimates of carbon storage. Thirdly, RSRs
usually change under the influence of grazing and climate change [59]. The RSRs come
from the IPCC in this study, which may increase the uncertainty of the simulation. Further,
due to the defects of the InVEST model, we assessed the impact of climate change on
ecosystem carbon storage by controlling the change in carbon density. Finally, detecting the
future trend of ecosystem carbon storage using R/S analysis was a great advance in this
study, but the time of the expected dynamic trends in the future could not be determined.

5. Conclusions

We analyzed the spatial-temporal patterns and change trends of ecosystem carbon
storage and explored the impact of climate and LULC changes on ecosystem carbon
storage between 2001 and 2019. Under the integrated influence of climate and LULC
changes, ecosystem carbon storage increased from 50.56 Tg C in 2001 to 57.49 Tg C in 2019,
an increase of 13.69%. Between 2001 and 2019, more than 51.48% of the ecosystem carbon
storage in the study area increased significantly, and regions with significant decreases
accounted for 6.11%. Additionally, the spatial distribution of ecosystem carbon storage was
heterogeneous, i.e., it decreased from southeast to northwest. By varying three hypotheses,
we found that climate change has a dominant impact on the change in ecosystem carbon
storage, while LULC change has a relatively small impact. The future trend of ecosystem
carbon storage may be dominated by inconsistency. Evaluations of ecosystem carbon
storage in alpine areas are of great significance for decision-making regarding ecological
environmental protection and sustainable development.
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