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Abstract: Ecological engineering is a widely used strategy to address environmental degradation
and enhance human well-being. A quantitative assessment of the impacts of ecological engineering
on ecosystem services (ESs) is a prerequisite for designing inclusive and sustainable engineering pro-
grams. In order to strengthen national ecological security, the Chinese government has implemented
the world’s largest ecological project since 1999, the Grain for Green Program (GFGP). We used a
professional model to evaluate the key ESs in Lvliang City. Scenario analysis was used to quantify
the contribution of the GFGP to changes in ESs and the impacts of trade-offs/synergy. We used
spatial regression to identify the main drivers of ES trade-offs. We found that: (1) From 2000 to 2018,
the contribution rates of the GFGP to changes in carbon storage (CS), habitat quality (HQ), water
yield (WY), and soil conservation (SC) were 140.92%, 155.59%, −454.48%, and 92.96%, respectively.
GFGP compensated for the negative impacts of external environmental pressure on CS and HQ,
and significantly improved CS, HQ, and SC, but at the expense of WY. (2) The GFGP promotes the
synergistic development of CS, HQ, and SC, and also intensifies the trade-off relationships between
WY and CS, WY and HQ, and WY and SC. (3) Land use change and urbanization are significantly
positively correlated with the WY–CS, WY–HQ, and WY–SC trade-offs, while increases in NDVI
helped alleviate these trade-offs. (4) Geographically weighted regression explained 90.8%, 94.2%, and
88.2% of the WY–CS, WY–HQ, and WY–SC trade-offs, respectively. We suggest that the ESs’ benefits
from the GFGP can be maximized by controlling the intensity of land use change, optimizing the
development of urbanization, and improving the effectiveness of afforestation. This general method
of quantifying the impact of ecological engineering on ESs can act as a reference for future ecological
restoration plans and decision-making in China and across the world.

Keywords: Grain for Green Program; ecosystem services trade-offs; scenario analysis; spatial
regression; Midwestern Shanxi

1. Introduction

Ecosystem services (ESs) refer to all the benefits that human beings obtain directly or
indirectly from the natural ecosystem to meet and maintain their living needs [1,2]. The
Millennium Ecosystem Assessment (MEA) divides ESs into four basic types, including
regulating services (e.g., soil conservation and carbon storage), provisioning services
(e.g., water and timber), supporting services (e.g., biodiversity conservation and nutrient
cycling), and cultural services (e.g., forest recreation) [2,3]. Human development patterns
over the last few centuries have detrimentally affected the health and resilience of natural
ecosystems [3,4]. Declines in ESs have been observed at global and regional scales, and these
declines pose a significant threat to human well-being [2,5]. Ecological engineering is a
widely adopted countermeasure that attempts to mitigate the contradiction between human
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development and ecosystem protection [6,7]. Ecological engineering aims to increase
the sustainable supply of ESs by repairing or improving ecosystem functioning [8,9].
At present, global investment in the development of ecological engineering amounts to
billions of dollars per year [9], and quantitative assessment of the effects of ecological
engineering on ESs has attracted the attention of many managers, research organizations,
and researchers [10].

ESs are good indicators for evaluating the ecological benefits of ecological engineering,
as they effectively connect human well-being and the natural environment [1,11]. ES
trade-offs occur when the increase of a certain ES is at the cost of reducing another ES [2,12].
Therefore, revealing the influencing factors of ES trade-offs is crucial to maintaining the
sustainable supply of multiple ESs [12,13]. The frequent conversion between land use types
caused by high-intensity human activities is the main cause of ES declines [14,15]. Rebuilding
the ecological functioning of degraded ecosystems by changing land use patterns and
intensity of use is the main aim of most ecological projects [8,16], which will have strong
impacts on the supply and trade-offs between ESs [17,18]. Ecological engineering that
unilaterally promotes a single ES makes it difficult to maximize ecological benefits [19], and
may even negatively affect ecosystem functioning and cause other services to decline [20,21].

Ecological degradation is one of the main reasons for the increasing frequency of
natural disasters [22]. In order to achieve carbon neutrality and strengthen national eco-
logical security, the Chinese government has implemented the world’s largest ecological
project since 1999: the Grain for Green Program (GFGP) [23]. With the implementation
of the GFGP, vegetation cover has increased significantly [24] and various ESs, such as
biodiversity and climate regulation, have been significantly improved [25]. However, large-
scale planting of non-native vegetation not only leads to a significant increase in water
consumption and evapotranspiration [26], which aggravates the potential conflict between
regional ecosystem functioning and human demand for water resources [27], but also
further challenges the achievement of balance between green and grain land, especially in
arid regions [28,29]. This has rendered uncertain the sustainability of the ecological benefits
of the GFGP. Therefore, quantitative assessment of the impacts of ecological engineering
on ESs and analysis of the dominant factors driving ES trade-offs are prerequisites for the
design of inclusive and sustainable ecological engineering [30].

In the context of rapid socio-economic development, most studies have confirmed
that the GFGP can improve ESs and change the relationship between ecosystem support
services and regulation services [31,32]. However, this change is influenced by multiple
factors, such as natural, anthropogenic, climatic, and socio-economic factors [33]. There are
few studies that quantify the contribution rate of ecological engineering to changes in ESs
and the impacts of ecological engineering on the relationship between different ESs. In this
study, we focus on Lvliang City, Shanxi Province, an area typical of the GFGP. This region
has serious soil erosion and is a typical ecologically fragile zone. Our specific objectives
are: (1) to quantify the contribution rate of the GFGP to changes in ESs; (2) to analyze the
impacts of the GFGP on the trade-offs and synergy between ESs; and (3) to identify the
factors influencing the trade-offs between ESs and put forward suggestions for promoting
the inclusive and sustainable development of the GFGP. This research should serve as a
reference for future ecological engineering projects in China and around the world.

2. Materials and Methods
2.1. Study Area

Lvliang City is located in the east-central region of China’s Loess Plateau and the
western region of Shanxi Province, and has an area of about 21,100 km2 (Figure 1). Lvliang
City has a continental monsoon climate with four distinct seasons, synchronized rain and
heat, and sufficient sunlight. The average annual temperature is between 0.4 ◦C and 12.2 ◦C,
and the average annual precipitation is between 438 and 588 mm. The elevation of the
study area ranges from 561 to 2806 m a.s.l., with high terrain in the middle of the study area
and lower terrain on the edges (Figure 1). Vegetation cover in the mountains of the central
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and eastern regions is relatively high, and human activities and industrial development are
mainly concentrated in the southeastern plains; the western loess hilly regions have broken
terrain, barren soil, and sparse vegetation [34,35]. Due to the low coverage rate of surface
vegetation coupled with the landform type of prevalent ravines, the area has serious soil
erosion and is typically an ecologically fragile area [34]. In recent years, because of the
GFGP, the vegetation coverage rate in this area has increased significantly, the functions
of various ecosystems such as climate regulation and soil conservation have improved
significantly, and ESs have, accordingly, changed significantly [24,35].
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Figure 1. Location and elevation of study area.

2.2. Data Sources and Descriptions

In this study, we used multi-source data products, such as land use, meteorology, soil,
and digital elevation models, to evaluate ESs. Detailed descriptions and data sources are
shown in Table 1. In ArcGIS 10.2, all data are converted to the same projected coordinate
system (WGS_1984_UTM_Zone_49N), and the “Resample” tool is used to unify the raster
data resolution to 30 m.

Table 1. Description and sources of data used to evaluate ESs.

Data Data Format Data Description Data Sources

Land use maps Raster
(30 m)

Land use maps interpreted
from Landsat TM/ETM/OLI
images. Land use types are

classified into seven
categories: farmland, forest,
grassland, shrub land, water
body, construction land, and

unused land.

Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

(http://www.resdc.cn/ (accessed on 16 March
2021))

Digital Elevation Model Raster
(30 m) Elevation data. Geospatial Data Cloud (http://www.gscloud.cn

(accessed on 16 March 2021))

Meteorological data Raster
(1 km)

Including monthly average
temperature and precipitation,
annual average temperature

and precipitation, and
potential evapotranspiration.

National Earth System Science Data Center
(http://www.geodata.cn/ (accessed on 16

March 2021))

Soil properties Raster
(1 km)

Including soil texture, topsoil
sand fraction, topsoil silt

fraction, topsoil clay fraction,
topsoil organic carbon, root
restricting layer depth, and

plant available water content.

Harmonized World Soil database
(http://www.iiasa.ac.at/Research/LUC/

External-World-soil-database/HTML/
(accessed on 16 March 2021))

http://www.resdc.cn/
http://www.gscloud.cn
http://www.geodata.cn/
http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
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Table 1. Cont.

Data Data Format Data Description Data Sources

Evapotranspiration
coefficient (Kc) Excel format Plant evapotranspiration for

different land use types.

Food and Agriculture Organization of the
United Nations (FAO)

(http://www.fao.org/3/X0490E/x0490e0b.htm
(accessed on 16 March 2021))

Watershed boundary Shapefile Digital watershed atlas. HydroSHEDS (http://hydrosheds.org/
(accessed on 16 March 2021))

2.3. Quantifying Ecosystem Services

The InVEST model is used to quantify four key ESs: water yield (WY), soil conser-
vation (SC), habitat quality (HQ), and carbon storage (CS). WY is calculated based on
the difference between annual average precipitation and actual annual evapotranspira-
tion [29,36]. SC refers to the erosion control ability of the ecosystem to prevent soil loss
and the ability to store and maintain sediment [36,37]. The sediment delivery ratio module
calculates soil conservation services based on the difference between potential (under
extremely degraded conditions without vegetation cover) and actual (under current land
cover and management conditions) soil loss [19,36,37]. HQ refers to the ability to provide
resources and environmental conditions for the survival and development of species or
populations, which depends on the abundance of natural resources [36,38]. The habitat
quality module calculates the HQ according to the habitat suitability of each land use type,
the impact distance and weight of threat factors, and the sensitivity of each land use type to
threat factors [36,38]. Through previous studies [38–41], we determined the impact distance
and weight of threat factors, the habitat suitability of each land use type, and the sensitivity
parameters to each threat factor (Tables S1 and S2). The carbon module quantifies CS using
previous local research on the carbon density of different land use types [42–44] (Table S3).
To avoid the influence of abnormal climate fluctuations in a single year, we selected the
average rainfall and temperature from 2000 to 2018 as the general results from the study
area [45,46]. Table 2 provide greater detail on the process of assessment of each ES.

Table 2. Methods for quantifying ESs.

ESs Methods Mathematical Expression

WY InVEST model water yield
module

WYx = (1− AETx/Px)× Px
WYx: annual water yield for each grid cell; AETx: annual actual evapotranspiration for
pixel x; Px: annual precipitation on pixel x; Biophysical coefficients of model input are
shown in Table S3.

SC InVEST model sediment
delivery ratio module

SC = R× K× LS× (1− C× P)
SC: soil conservation; R: rainfall erosion factor; K: soil erosion factor; LS: slope length
and gradient factor; C: vegetation cover factor; P: support practice factor. R and K are
calculated to refer to the method of Yang et al. [32] and Zhang et al. [37]. We assigned C
and P values according to existing literature [17,36,39] (Table S3).

HQ InVEST model habitat quality
module

HQ = Hj ×
[

1−
(

DZ
xj

DZ
xj+KZ

)]
HQ: habitat quality; Hj: habitat suitability for habitat type j; Dxj: degree of habitat
degradation in pixel x that is in habitat type j; K: half-saturation constant; Z: default
parameter of the normalized constant model.

CS InVEST model carbon module
CS = Ca + Cb + Cs + Cd
CS: carbon storage; Ca, Cb, Cs, and Cd are carbon densities in aboveground biomass,
belowground biomass, soil, and dead matter, respectively, for each land use type.

2.4. Calculation of Trade-Offs Between Ecosystem Services

Correlation analysis is an effective tool to identify relationships between pairs of
ESs, with significant negative correlations representing trade-offs and positive correlations
representing synergies [47]. The size of the Pearson correlation coefficient indicates the
strength of the trade-off and synergy relationships [47]. Obviously, this method ignores the

http://www.fao.org/3/X0490E/x0490e0b.htm
http://hydrosheds.org/
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difference in the geographical space of the change rate of the ES trade-offs. The root mean
squared error (RMSE) quantifies the average difference between the standard deviation of
a single ES and the average ES’s standard deviation [47,48]. The dispersion degree of the
standard deviation of distance of average ESs is described, and reflects the difference in the
geographical space of the change rate of the ES’s trade-offs [49,50]. Therefore, this study
uses the RMSE to quantify the trade-offs between ESs. To eliminate the influence of ES unit
differences, we first standardize the value of each ES.

ESi =
ESi,obs − ESi,min

ESi,max − ESi,min
. (1)

where ESi is the standardized value; ESi,obs is the raw value; and ESi,min and ESi,max are the
minimum and maximum values of the i ESs, respectively. RMSE is calculated as follows:

RMSE =

√
1

n− 1

n

∑
i=1

(
ESi − ES

)2
(2)

where ES is the expected value of n kinds of ESs. In two dimensions, RMSE represents the
distance from the coordinate point to the diagonal, and the relative position of the coordinate
point represents the relative benefit of a certain ecosystem service [49]. Lu et al. [48] and
Luo et al. [50] provide detailed instructions and procedures for the calculation of such
trade-offs.

2.5. Actual Land Use Changes and Scenarios

The local administrative department of the GFGP provided vector data for the imple-
mentation area of the GFGP in Lvliang City as of the end of 2018. We set up a scenario
where the GFGP was not implemented and quantified the impact of the GFGP on regional
ESs by comparing this alternative scenario with the actual scenario.

(1) Actual scenario: we evaluated ESs before (2000) and after (2018) the implementation
of the GFGP based on actual land use. By comparing ESs in 2000 and 2018, we can
understand actual changes of ESs under the implementation of the GFGP.

(2) Alternative scenarios where the GFGP was not implemented (2018S): this is a
simulated scenario. We assume that during the period 2000–2018, the actual GFGP im-
plementation area did not implement the GFGP; that is, the land use types remained,
unchanged, at their state in 2000, while the land use types in other regions were consistent
with actual changes. By comparing ESs in 2018S and 2018, we were able to quantify the
impact of the GFGP on ESs.

Terrain fragmentation due to soil erosion is the main cause of ecological degradation in
the Loess Plateau [51]. The design and implementation of the GFGP on the sub-watershed
scale to carry out comprehensive control of soil erosion has achieved good results [19,52].
In addition, as a physical geographical unit, the sub-watershed scale can more accurately
reflect biophysical characteristics [19]. Therefore, we obtained the average value of each
ES at the sub-watershed scale through the Zonal Statistics tool in ArcGIS 10.2. At the
sub-watershed scale, the impact of GFGP on ESs was quantified and the trade-offs among
ESs and their influencing factors were analyzed.

2.6. Geographically Weighted Regression Model

Previous studies have confirmed that there are obvious geographical differences in
ESs [53,54]. It is difficult for the classic global regression to reflect the differences in the
relationship between ES trade-offs and influencing factors in geographic space, and not
fully reflect actual local processes [55]. Geographically weighted regression (GWR) obtains
local coefficients by minimizing residuals, taking into account differences in the spatial
variation in the relationship between ES trade-offs and influencing factors, which improves
the reliability of the model [56].
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ESs and their trade-off relationships are affected by factors such as land use [57],
climate [58], vegetation [19], geomorphology [59], and urbanization [60]. We selected eight
influencing factors to include in our model: the dynamic degree of comprehensive land use
change (LUD; Refer to Li et al. [61] method for calculation), annual average temperature
(TEM), NDVI, annual average precipitation (PRE), percentage of construction land (CON),
elevation (DEM), slope (SLO), and potential evapotranspiration (PET) (Table S4 provides
detailed calculation methods or sources). To avoid the influence of multicollinearity, all
factors were tested for multicollinearity in SPSS 21, and the factors with VIF greater than
five were eliminated (Table S5). These preliminary analyses left us with LUD, NDVI, PRE,
DEM, and CON as independent variables and the trade-off relationships between ESs as
dependent variables for our GWR model. The lower the AICc value of the model output,
the more concise the model and the more reliable the regression estimation. The higher
adjusted R2 indicates a higher explanatory power and a better fit [56]. The mathematical
expression of the model is as follows:

yi = β0(ui, vi) +
p

∑
j=1

β j(ui, vi)xij + εi, i ∈ {1, 2, . . . , n} (3)

where y is the dependent variable; (ui, vi) is the spatial location of the i-th sample; β0 (ui,
vi) is the intercept; p is the number of influencing factors; xij represents the independent
variables; βj (ui, vi) is the estimated coefficient of the i-th sample for the j-th driving factors;
and εi is the error term.

3. Results
3.1. Land Use Change

Figure 2 shows the land use patterns in 2000, 2018, and 2018S (the scenario if the GFGP
were not implemented). Compared with 2000, the area of farmland decreased by 28.90%
in 2018, and the area of construction land, forest, grassland, and shrub land increased
by 259.31%, 13.7%, 23.98%, and 4.51%, respectively (Table 3). The area of farmland and
forest under the 2018S scenario decreased by 5.21% and 10.92%, respectively, and the area
of grassland and shrub land increased by 4.20% and 0.87%, respectively (Table 3). Our
results show that the GFGP led to a decrease of 23.69% in the area of farmland, and an
increase of 24.62%, 19.78%, and 3.64% in the area of forest, grassland, and shrub land,
respectively (Table 3), and thus was the main driving force for the significant increase in
regional vegetation cover.
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Table 3. Land use changes from 2000 to 2018 and 2018S. 2018S: the scenario if the GFGP were not implemented.

Land Use Types Farmland Forest Grassland Shrub
Land

Water
Body

Construction
Land

Unused
Land

2018
Change area (km2) −2515.04 527.15 1214.05 140.63 −24.39 656.97 0.62
Change ratio (%) −28.90% 13.70% 23.98% 4.51% −17.36% 259.31% 87.06%

2018S
Change area (km2) −453.05 −420.01 212.61 27.23 −24.39 656.97 0.64
Change ratio (%) −5.21% −10.92% 4.20% 0.87% −17.36% 259.31% 90.36%

Effect of GFGP on land
use change (%) −23.69% 24.62% 19.78% 3.64% 0 0 −3.30%

3.2. ESs Change

Figure 3 shows the spatial pattern of ESs in 2000, 2018, and 2018S (the scenario if
the GFGP were not implemented). The spatial pattern of CS is consistent with land use, and
high-value areas are distributed in mountainous regions with higher forest cover (Figure 3).
Compared with 2000, the average CS in 2018 and 2018S increased by 15.47 (Mg/ha) and
decreased by 6.33 (Mg/ha), respectively. During the study period, the contribution rate
of the GFGP to CS changes was 140.92% (Figure 3). The central and eastern areas are
dominated by forest and grassland, with high HQ, while in the western loess hilly region
and the southeastern plains, HQ is relatively low (Figure 3). Compared with 2000, the
average HQ in 2018 and 2018S increased by 0.035 and decreased by 0.019, respectively.
During the study period, the contribution rate of the GFGP to HQ changes was 155.59%
(Figure 3). WY was high in the center of the study area and low in the outer regions
(Figure 3). Compared with 2000, the average WY in 2018 and 2018S increased by 0.79 (mm)
and 4.36 (mm), respectively. During the study period, the GFGP had a significant negative
impact on WY, with a contribution rate of −454.48% (Figure 3). The central and eastern
regions had high SC values, while the southeast and western regions had relatively low
SC (Figure 3). Compared with 2000, the average SC in 2018 and 2018S increased by
0.947 (ton/ha) and 0.067 (ton/ha), respectively. During the study period, the contribution
rate of the GFGP to SC changes was 92.96% (Figure 3). In general, the implementation of the
GFGP from 2000 to 2018 compensated for the negative impacts of external environmental
pressures on CS and HQ, and significantly improved CS, HQ, and SC; however, this
improvement came at the expense of WY.

3.3. Trade-Offs Between ESs

The correlation between changes in ESs from 2000 to 2018 and 2018S (the scenarios if
the GFGP were not implemented) was analyzed at the sub-watershed scale. CS, HQ, and
SC have a significant synergistic relationship, and there is a significant trade-off between
these ESs and WY (Table 4). In addition, the correlation coefficients (including positive and
negative correlations) between paired ESs in the actual scenario are larger than those in the
alternative scenario if the GFGP were not implemented (Table 4). This indicates that the
GFGP has intensified the trade-offs and synergies between ESs.

We visualized the WY-CS, WY-HQ, and WY-SC trade-offs using root mean squared
error (RMSE), and our results show that the west and southeast are the high value areas of
the trade-offs (Figure 4). Average tradeoff values of WY-CS, WY-HQ, and WY-SC are 0.051,
0.050, and 0.016, respectively, in the actual scenario, and the average tradeoff values of WY-
CS, WY-HQ, and WY-SC are 0.028, 0.030, and 0.014, respectively, in the alternative scenario
if the GFGP were not implemented (Figure 4). This indicates that the implementation of
the GFGP strengthens the trade-offs between WY-CS, WY-HQ, and WY-SC.
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Table 4. Pearson’s correlation analysis between changes in ecosystem services.

N = 181 CS2018 HQ2018 SC2018 WY2018 CS2018S HQ2018S SC2018S WY2018S

CS2018 1
HQ2018 0.920 ** 1
SC2018 0.835 ** 0.889 ** 1

WY2018 −0.804
**

−0.898
**

−0.641
** 1

CS2018S 1
HQ2018S 0.684 ** 1
SC2018S 0.384 ** 0.397 ** 1

WY2018S −0.645
**

−0.878
** −0.075 1

CS2018 (CS2018S), HQ2018 (HQ2018S), SC2018 (SC2018S), and WY2018 (WY2018S), respectively, indicate changes
in carbon storage, habitat quality, soil conservation, and water yield in 2018 (scenarios with and without the
implementation of the GFGP) relative to 2000; N represents the number of sub-watersheds; ** indicates significance
at the p < 0.01 level.
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3.4. FACTORS Influencing ESs Trade-Offs

We built a GWR model to explore the geospatial relationship between ES trade-offs
and the factors that influence them. Compared with OLS, the adjusted R2 of the GWR
model was greater, and the AICc value decreased significantly (Table 5), indicating that the
GWR results have higher explanatory power and can more accurately reflect the processes
at play.

Table 5. Model fit metrics for ordinary least squares (OLS) regression and GWR.

ES Trade-Offs Fit Metrics
Model

OLS GWR

WY-CS
R2 (adjust) 0.837 0.908

AICc 194.958 128.907

WY-HQ R2 (adjust) 0.901 0.942
AICc 104.279 48.576

WY-SC
R2 (adjust) 0.721 0.882

AICc 291.957 182.843
Abbreviations: CS: carbon storage; WY: water yield; SC: soil conservation; HQ: habitat quality.

The correlation coefficient of the GWR model reflects the spatial non-stationary re-
sponse of ES trade-offs to influencing factors (Figure 5). LUD is significantly positively
correlated with WY-CS, WY-HQ, and WY-SC trade-offs, and the correlation coefficient is
relatively high in the northeast (Figure 5 (a1–a3), Table 6). NDVI is significantly negatively
correlated with WY-CS, WY-HQ, and WY-SC trade-offs, and the correlation coefficient is
relatively high in the southwest (Figure 5 (b1–b3), Table 6). PRE is positively correlated
with WY-CS and WY-HQ trade-offs, but negatively correlated with the WY-SC trade-off,
and the correlation coefficient is high in the southeast (Figure 5 (c1–c3), Table 6). DEM is
negatively correlated with the WY-HQ trade-off, but positively correlated with WY-CS and
WY-SC trade-offs, and the correlation coefficient is larger in the north (Figure 5 (d1–d3),
Table 6). CON is negatively correlated with the WY-CS trade-off, but significantly positively
correlated with WY-HQ and WY-SC trade-offs, and the correlation coefficient is larger in
the south (Figure 5 (e1–e3), Table 6).
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Figure 5. GWR coefficients between ES trade-offs and their influencing factors. Abbreviations: CS: carbon storage;
WY: water yield; SC: soil conservation; HQ: habitat quality; LUD: dynamic degree of comprehensive land use change;
NDVI: Normalized Difference Vegetation Index; PRE: precipitation; DEM: elevation; CON: percentage of construction land.

Table 6. Mean statistics of GWR coefficients between ES trade-offs and influencing factors.

ESs Trade-Offs LUD NDVI PRE DEM CON

WY-CS 0.888 −0.036 0.044 0.070 −0.143
WY-HQ 0.794 −0.052 0.120 −0.126 0.206
WY-SC 0.595 −0.054 −0.010 0.424 0.619

Abbreviations: CS: carbon storage; WY: water yield; SC: soil conservation; HQ: habitat quality; LUD: dynamic
degree of comprehensive land use change; NDVI: Normalized Difference Vegetation Index; PRE: precipitation;
DEM: elevation; CON: percentage of construction land.

Local R2 maps describe spatial differences in model goodness of fit, ranging between
0 and 1. Our results show that the selected five influencing factors are closely related
to ES trade-offs, explaining 90.8%, 94.2%, and 88.2% of the WY-CS, WY-HQ, and WY-SC
trade-offs, respectively (Figure 6, Table 5). In general, LUD, CON, and NDVI are the most
important driving factors of ES trade-offs, and they are significantly positively correlated
with LUD and CON while being negatively correlated with NDVI (Figure 6, Table 6). This
means that increasing vegetation cover, controlling the intensity of land use change, and
optimizing the development of urbanization are effective ways to alleviate the trade-offs
between ESs and realize the synergistic promotion of multiple ESs.
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4. Discussion
4.1. Effects of the GFGP on ESs

The GFGP is a successful program for coping with environmental degradation and
increasing the supply of ESs [31]. Although the quality of the regional ecological environ-
ment has been greatly improved [17,62], realizing the coordinated development of multiple
ESs is still a key consideration in optimizing GFGP policies. Our results show that the
implementation of the GFGP significantly increased forest, grassland, and shrub land area
(Table 3), and vegetation cover increased significantly [24], leading to significant increases
in CS, HQ, and SC. This indicates that the GFGP promoted the synergistic relationship
among CS, HQ, and SC. However, CS and HQ, under an alternative scenario where the
GFGP was not implemented, significantly decreased (Figure 3), indicating that the GFGP
effectively compensated for the negative impacts of external environmental pressures on
CS and HQ. By comparing the actual scenario in 2018 with the alternative scenario, we
found that the GFGP is the most important driving force for the increase in SC, with a
contribution rate of 92.96% (Figure 3). In addition, our results show that the GFGP has
had a significant negative impact on WY, with a contribution rate of −454.48% (Figure 3).
This is mainly due to the large-scale planting of non-native vegetation, which leads to a
significant increase in water consumption and evapotranspiration [27,63]. Our research
confirms that the GFGP produces significant ecological benefits while also exacerbating
regional water resource conflicts, which is consistent with previous studies [26,27,51,64].
However, unlike previous studies, we quantified the contribution rate of the GFGP to ES
changes and the impact on the trade-offs/synergies between ESs, providing a more direct
reference for alleviating regional water resource conflicts and realizing the synergistic
promotion of multiple ESs.

4.2. Suggestions on the Inclusiveness and Sustainable Development of the GFGP

Identifying the dominant factors influencing the trade-offs between ESs is critical to
formulating an inclusive and sustainable plan for the GFGP. There are obvious spatial
differences in the relationships between ES trade-offs and their influencing factors [65,66],
and classical global regression models did not fully reflect the relationships between the two
in geographic space [59]. The local coefficients obtained by the GWR model by minimizing
the residuals reflect the spatial non-stationary relationships between them [56], effectively
overcoming the problems with classic regression models. We used the GWR model to
explore the spatially non-stationary relationship between ES trade-offs and their influencing
factors, and our results show that LUD, CON, and NDVI are the most important driving
factors for ES trade-offs (Figure 5, Table 6). The WY–CS, WY–HQ, and WY–SC trade-offs
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were significantly positively correlated with LUD and CON, but negatively correlated with
NDVI (Figure 5 (a1–a3, b1–b3, e1–e3), Table 6).

Land use change and urbanization are the main drivers of declines in CS, HQ, and
SC [57,67], and also have negative impacts on the water conservation capacity of ecosys-
tems [68]. However, land use change and urbanization also reduced the evapotranspiration
of surface vegetation to a certain degree [69], and their impacts on precipitation at smaller
timescales are also limited [70]. Therefore, increases in LUD and CON intensify the trade-
offs between WY–CS, WY–HQ, and WY–SC. NDVI is the most direct manifestation of the
effectiveness of afforestation [71]. The GFGP is the main driver of the increase in regional
NDVI [24], which not only improves CS, HQ, and SC but also improves the water conser-
vation capacity of the ecosystem [72,73]. Therefore, increasing NDVI helps to alleviate the
trade-offs between WY–CS, WY–HQ, and WY–SC.

The correlation coefficient of the GWR model reflects the spatial non-stationary re-
sponse of ES trade-offs to their influencing factors (Figure 5). In the northeast and south of
the study area, urbanization developed rapidly and the intensity of human activity was
high (Figure 2), so the correlation coefficient between LUD, CON, and ES trade-offs was
relatively large (Figure 5 (a1–a3, e1–e3)). In the southwestern region, the terrain is rugged
and vegetation is relatively scarce [34], so the correlation coefficient between NDVI and
ESs trade-offs is relatively high (Figure 5 (b1–b3)). Therefore, controlling LUD and CON in
the northeast and south, and increasing vegetation cover in the southwest, is essential to
alleviate the WY–CS, WY–HQ, and WY–SC trade-offs.

In summary, we propose that future engineering projects should take into account the
geospatial relationships between ES trade-offs and their influencing factors. By control-
ling the intensity of land use change, optimizing the development of urbanization, and
improving the effectiveness of afforestation, the inclusive and sustainable development of
the regional GFGP can be realized.

4.3. Uncertainties and Limitations

Our research provides a direct and flexible method to quantify the impacts of the
GFGP on ESs, but it still has certain limitations. First, changing ESs is a complex process
driven by factors such as nature, human activities, and climate change [17,74]. It is very
difficult to completely quantify the impact of the GFGP on ESs. Our study used the average
climate parameters from 2000 to 2018. Although this method is widely adopted [45,46],
climate change during the research period will certainly have had an impact on ESs. Second,
the input parameters of the model evaluation are taken from previous studies, but due to
the limitations of our data sources, quality, and availability, we did not verify the results
of the ES evaluations. Third, because of the limited availability of data, we had to ignore
some details of the GFGP, such as tree species selection and configuration, vegetation
management methods, etc., although these practices certainly could have a strong impact
on ESs [71]. These problems may introduce some uncertainty into our model results.
Therefore, it is necessary to obtain long-term positioning observation data and conduct
more detailed research on the impacts of the GFGP.

5. Conclusions

Based on scenario analysis, we quantified the impacts of the GFGP on changes in ESs
in Lvliang City, a typical ecologically fragile area, and analyzed the main forces driving ES
trade-offs through spatial regression. Our research shows that the GFGP compensated for
the negative impacts of external environmental pressures on CS and HQ, and significantly
improved CS, HQ, and soil conservation (SC), but this improvement came at the expense of
water yield (WY). While the GFGP promotes the synergistic development of CS, HQ, and
SC, it also intensifies the trade-off relationships between these services and WY. Land use
change and urbanization are significantly positively correlated with the trade-offs between
WY–CS, WY–HQ, and WY–SC, while increasing NDVI helped to alleviate these trade-offs.
Therefore, controlling the intensity of land use change, optimizing the development of



Remote Sens. 2021, 13, 3966 13 of 16

urbanization, and improving the effectiveness of afforestation are effective ways to realize
the inclusive and sustainable development of the GFGP. The general methods used in this
study to quantify the impacts of ecological engineering on ESs can provide a reference for
future ecological restoration plans and decision-making in China and around the world.
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10.3390/rs13193966/s1, Table S1: Threats and their maximum distance of influence and weights.
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for InVEST. Table S4: Description of variables selected in this study. Table S5: Multicollinearity test
among influencing factors.
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