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Abstract: Although generative adversarial networks (GANs) are successfully applied to diverse
fields, training GANs on synthetic aperture radar (SAR) data is a challenging task due to speckle noise.
On the one hand, in a learning perspective of human perception, it is natural to learn a task by using
information from multiple sources. However, in the previous GAN works on SAR image generation,
information on target classes has only been used. Due to the backscattering characteristics of SAR
signals, the structures of SAR images are strongly dependent on their pose angles. Nevertheless, the
pose angle information has not been incorporated into GAN models for SAR images. In this paper,
we propose a novel GAN-based multi-task learning (MTL) method for SAR target image generation,
called PeaceGAN, that has two additional structures, a pose estimator and an auxiliary classifier,
at the side of its discriminator in order to effectively combine the pose and class information via
MTL. Extensive experiments showed that the proposed MTL framework can help the PeaceGAN’s
generator effectively learn the distributions of SAR images so that it can better generate the SAR
target images more faithfully at intended pose angles for desired target classes in comparison with
the recent state-of-the-art methods.

Keywords: synthetic aperture radar; automatic target recognition; pose angle estimation; deep
learning; convolutional neural networks; multi-task learning; generative adversarial networks

1. Introduction

Synthetic aperture radar (SAR) is commonly utilized for surveillance systems [1–4].
Since SAR has a compelling characteristic of a penetration, SAR images can be easily
obtained, regardless of any weather condition, whether the time is night or daytime or
the weather is sunny or cloudy, unlike an optical remote sensing. On the other hand, SAR
images generally have serious speckle noise all over the image due to the backscattering of
electromagnetic waves [5], therefore making both human and machine learning algorithms
hard to interpret semantic features of the SAR images [6,7]. However, due to the recent
advent of deep learning methods, deep convolutional neural networks (CNNs) have been
widely used for many SAR tasks such as recognition of SAR targets [8–12] and optical
image classification [13]. However, it is hard to train the CNNs for SAR-related tasks due to
the lack of available SAR images that should be obtained by radar attached to air vehicles
and labeled manually with considerable time consumption [8,14]. For this reason, there is
a need for generative models that can generate abundant SAR data such as “Big Data” for
diverse SAR tasks.

Following the first proposal of the generative adversarial networks (GANs) [15], many
variants of GANs have shown generative power of GANs for both natural and synthetic
images by attaining the similar attributes of their respective original data set [16–26].
Therefore, GAN-based modeling has been one of the most popular generative models [20].
GANs are usually composed of two elements: a generator (G) that aims to learn a mapping
function from some probabilistic input distributions to a real data distribution, and a

Remote Sens. 2021, 13, 3939. https://doi.org/10.3390/rs13193939 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1627-0529
https://doi.org/10.3390/rs13193939
https://doi.org/10.3390/rs13193939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13193939
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13193939?type=check_update&version=2


Remote Sens. 2021, 13, 3939 2 of 25

discriminator (D) that distinguishes whether an input sample comes from the real data
distribution or a generative one [15]. At the end, ideally after both players (the generator
and discriminator) minimize their own losses, the training stage approaches the Nash
equilibrium where the generator can produce images that can hardly be distinguishable by
the discriminator as to whether the samples are real or fake. It is also known that the Nash
equilibrium of GANs can be reached by minimizing a statistical divergence between the
real data distribution and the generative one as well [15,27,28]. After deep convolutional
GAN (DCGAN) was first successfully trained such that both the discriminator and the
generator were trained in a well stabilized manner by several deep learning methods, most
GANs have begun to adopt the DCGAN architecture as their base structure [29].

Similar to other fields, GANs have also recently been applied to SAR-related tasks.
For example, Guo et al. [30] first utilized GANs for generating SAR target images based
on the basic DCGAN, but they reported that the quality of generated images from a
generator were often deteriorated by the so-called mode collapse that frequently occurred
due to the speckle noise. To prevent those phenomena, they added a pre-processing step,
called clutter normalization, for reducing an influence of clutter’s speckle noise to boost
target recognition performance. On the other hand, Zheng et al. [31] utilized multiple
discriminator-based GAN model (MGAN) to generate SAR target images without any
additional pre-processing by incorporating a semi-supervised learning method. They
realized that inherent target-class features from unlabeled SAR target images and label
smoothing regularization (LSR) would help improve the generating stability and the quality
of generated SAR target images.

On the other hand, either pose angle estimation or regression of objects via both
CNNs and GANs have been treated as an important auxiliary task to boost the main tasks
of classification and generation networks for non-SAR data [32–35]. However, research
related to SAR tasks tend to only focus on an intensity information of SAR images and
have not taken any pose angle information into account for their main tasks.

Multi-task learning (MTL) that optimizes several loss functions jointly to obtain
information from multiple tasks is well known to be effective in performing its main
task in contrast to a single task learning by benefiting from a regularization effect on the
usage of multiple objective functions [36,37]. For example, training a model to predict
latent variables in auxiliary classifiers can be hint for a given main task [37]. In addition,
MTL makes the model improve a generalization by collecting joint features from related
tasks [36].

To tackle all above issues synthetically, we first present a GAN-based MTL method,
called PeaceGAN, for SAR target image generation that can estimate their pose angles
by its pose estimator and can learn their target-class features by its auxiliary classifier
simultaneously, both being located at the side of the discriminator part. Figure 1 shows the
overall structure of our proposed PeaceGAN.

Figure 1. Overall architecture of our proposed PeaceGAN. The model is composed of four compo-
nents: a generator (G), a discriminator (D), a pose estimator (PE), and an auxiliary classifier (AC).
After training finishes, the generator can produce abundant SAR target images with intended target
classes at desired pose angles.
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To the best of our knowledge, the PeaceGAN is the first approach to jointly learn both
the pose angle and the target class information at the same time so that the main task of
SAR target image generation via GAN training becomes more stable, thus improving the
quality of the resultant generated SAR target images. The contributions of our works are
summarized as follows:

• We first propose a novel GAN-based generative model, called PeaceGAN, that is jointly
trained in an end-to-end manner with multi-task learning of estimating both pose
angle and target class information of SAR target images. The proposed PeaceGAN
explicitly disentangles both pose angles and target classes in learning the distributions
of SAR target images, leading to the enlarged diversity and the increased quality of
generated SAR target images. Finally, the proposed PeaceGAN can generate SAR
target images with both desired pose angles and target classes compared to the recent
state-of-the-art methods.

• Moreover, we introduce three indirect evaluation methods as standard metrics to mea-
sure (i) the adequacy of generated SAR target images as training data, (ii) the fidelities
of them in target class perspective, and (iii) their exactitude in pose angle perspective,
thus evaluating the generator’s ability in producing the generation diversity of SAR
target images at various pose angles for different target classes.

The remainder of this paper is organized as follows: Section 2 briefly reviews related
works on GAN-based methods for SAR target image generation, multi-task learning for
GANs, and evaluation metrics for GANs; Section 3 introduces the proposed GAN-based
MTL method for SAR target image generation, called PeaceGAN; Section 4 describes the
proposed indirect evaluation methods for adequacy and quality of the generated SAR target
images; Section 5 shows experimental results and analyses to demonstrate the effectiveness
of the proposed PeaceGAN for SAR target image generation; and Section 6 concludes
this paper.

2. Related Works
2.1. GAN-Based Methods for SAR Target Image Generation

Since training the GANs is generally to solve a minmax problem on the parameters
of deep neural networks, it is severely hard in practice for stable learning, and therefore
it often fails to appropriately train the GAN-based networks by facing with mode collapse
problems [19,28,38]. Moreover, both the standard training methods and the structures
of GANs have no significant advantages, neither in SAR image classification nor genera-
tion [39]. The main reason is the characteristic of SAR images that have the highest spatial
resolution collected by X-band SAR with a resolution of 0.3 × 0.3 m, far lower than those
of the optical images. The lower resolution makes both networks and human experience a
subtler distinction between different target classes and pose angles of SAR target images.
Moreover, speckle noise from the interference of reflected wave at the transducer aperture
makes it even harder for the GANs to be stably trained.

Zheng et al. [31] focused on improving SAR target recognition performance of CNN-
based framework with semi-supervised GAN learning using multiple discriminators
(MGAN) and LSR. The one generator is trained against the feedback aggregated from all
the multi-discriminators, which leads the GAN training framework to be more stable. The
MGAN also adopts LSR on unlabeled images from the generator in a semi-supervised
manner to reduce the confidence of the CNN classifier in obtaining effective supplement;
however, multiple discriminators have to be employed with high computation complexities.
Moreover, the MGAN cannot even directly fuse pose angle information of SAR images
into GAN training. Therefore, the MGAN cannot generate SAR target images at desired
pose angles of the intended target classes. However, since our proposed PeaceGAN can
disentangle both the pose angle and target class information simultaneously, it can generate
SAR target images at any given pose angle in a controlled manner, which can provide a
high flexibility of generating the SAR target images.
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2.2. Multi-Task Learning for GAN-Based Image Synthesis

The MTL for deep learning is motivated from a biological view of human learning.
That is, a human naturally learns a main task by utilizing related tasks as additional
information. The harder the main task is, the greater importance of MTL in improving
both the performance and the generalization of networks [36]. Here, the GAN training is
also complex and hard in practice. Tran et al. [35] tried to apply MTL into a GAN training
framework for an image synthesis and proposed a disentangled representation GAN,
called DRGAN, that adopts an encoder–decoder structure for its generator by providing
pose codes of face variations to the decoder and forces its discriminator to perform pose
estimation. The class labeling method of DRGAN is similar to a semi-supervised GAN [40]
that has C-class nodes for classification and one additional node for the real/fake decision
at the output of D. However, DRGAN is based on an auto-encoder structure for image
synthesis, which is totally different from our PeaceGAN. This is because, while the DRGAN
is an image-to-image translation network that takes a face image to be rotated into a desired
pose angle for pose-invariant face recognition, our PeaceGAN takes noise input with both
an intended pose angle and a target class label and does not translate but generates a
corresponding SAR target image of the class at the desired pose angle.

On the other hand, the pose angle information of SAR images has been utilized as prior
for target recognition, which helps decrease computation complexity and improve target
recognition performance [12,41–44]. Moreover, the backscattered intensities of the same
target class SAR images are differently observed at different pose angles due to the back-
scattering characteristics of speckles [12,45,46]. Therefore, it is essential to consider the pose
angle information of SAR images for GAN learning. Motivated by this, we propose our
PeaceGAN, which can be effectively trained and generate SAR target images of different
classes at intended pose angles. This can be accomplished by training the PeaceGAN for
MTL with a GANs loss (adversarial loss), a pose angle loss, and a target class loss (cross
entropy loss).

2.3. Evaluation Metrics for GANs

One of the GAN applications is to generate rich data for data augmentation to train
deep neural networks. Therefore, it is essential to evaluate the adequacy of generated data
as training and test data for intended applications such as classification (target recognition
for SAR images in our case). The Frechet inception distance (FID) is most widely used as a
metric to evaluate the generated data during GAN training where intra-class mode drop-
ping can be effectively detected [20]. However, this quantitative metric is well suited for
only optical images, not SAR images, because it utilizes the feature maps of the pre-trained
InceptionNet [47] using optical images [20,48]. The images generated by trained GANs
are often evaluated via a user study by using the Amazon Mechanical Turk (MTurk) [49],
which is also not suitable for SAR images because the characteristics of SAR images are
very different from those of optical images and their interpretations require the expertise
in SAR, which is very costly and time-consuming.

On the other hand, there are indirect evaluation methodologies by using pre-trained
deep neural networks, which are effective in checking the adequacy of generated data
for intended target applications. Choi et al. [50] trained a facial expression classifier with
the Radboud Faces Database, yielding a near-perfect accuracy of 99.55%. They used the
pre-trained classifier for quantitative evaluation of their proposed StarGAN [50]. Guo
et al. [30] adopted a similar methodology by using the high accuracy of a pretrained
target classification model to evaluate a GAN result for SAR target image in the target
class-perspective. Intuitionally, this kind of indirect evaluation method can be used to
judge the suitability of the generated images for the case of either a lower classification
error or a larger accuracy rate, that is, whether they can be considered realistic with class-
distinguishable features or not. Therefore, we extend this indirect methodology for two
of our quantitative evaluations by pre-training both classifier and pose estimator to check
the adequacy of the generated SAR target images in terms of both target class- and pose
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angle-distinguishable features. Furthermore, another introduced indirect method for
evaluating adequacy as training data for SAR target recognition using a simple classifier is
also described in Section 4 in detail.

2.4. CNN-Based Methods for High-Level SAR Target Tasks

Recently, CNN-based methods for high-level SAR-related tasks, such as recognition,
detection, and segmentation, have also shown promising results. Amrani et al. [51] adopted
both YOLOv4 [52] fine-tuned with SAR target images and deep CNN to reduce speckle
noise. They also proposed multi-canonical correlation analysis (MCCA) to adaptively
choose and combine CNN features effectively, which has led their method to achieve
state-of-the-art accuracy on SAR target recognition tasks. Feng et al. [53] utilized modified
A-ConvNets [11] with two-decoupled head branches to semantically segment SAR vehicle
images. They also utilized the ASC (attribute scattering center) model to supplement
the lack of annotation for the deep learning-based segmentation models. Their model
achieved the best performances in both segmentation and classification for SAR target
images. Yang et al. [54] proposed a one-stage object detection framework based on both
RetinaNet [55] and a rotatable bounding box (RBox) to solve both the problems of feature
misalignment in scales and unbalanced distribution of positive samples that were not
handled in previous SAR ship detection methods. Their method achieved the highest
average precision (AP) compared with other one-stage RBox-based state-of-the-art methods.
Geng et al. [56] proposed a two-stage SAR ship detection method by first segmenting
target candidates for detection and by then adopting a lightweight CNN to finally detect
the ship targets. They utilized Grad-CAM [57] to analyze attentive pixels in detail by
visualizing the model’s features. Yue et al. [58] proposed a semi-supervised CNN model to
handle insufficient labeled SAR data problems for SAR automatic target recognition (ATR).
Their method proposed a loss function based on a scatter matrix that is calculated by the
linear discriminant analysis (LDA) method for target class probabilities, showing higher
recognition performances than other semi-supervised methods.

3. Proposed PeaceGAN—A GAN-Based MTL Method for SAR Target Image Generation

In this section, we explain in detail our proposed GAN-based MTL method for SAR
target image generation, called PeaceGAN, with a pose estimator and an auxiliary classifier.
The PeaceGAN simultaneously learns both the pose angles by a pose estimator and the
target-class features by an auxiliary classifier during training for SAR target image gen-
eration. By doing so, the PeaceGAN can successfully generate the SAR target images of
various classes with high fidelity at any intended pose angle.

3.1. Overall Structure of Proposed PeaceGAN

An overall structure of the PeaceGAN is shown in Figure 2. The proposed PeaceGAN
is basically composed of a discriminator and a generator. In addition, the discriminator
additionally has two newly introduced structures: a pose estimator and an auxiliary
classifier for stable generation of SAR target images. We adopted several guidelines of
DCGAN [29] to design our proposed PeaceGAN, which have been popularly applied
to most settings of GAN training [29]. The architecture of our PeaceGAN is partially
based on DCGAN that (i) replaces all the pooling layers with strided convolutions for D;
(ii) utilizes the batch normalization (BN) [59] in both D and G; (iii) assigns ReLU [60]
activation functions to all layers of G except for the output layer where Tanh is used; and
(iv) uses Leaky ReLU activation functions [61], called lReLU, with a slope size of 0.2 for all
layers in the discriminator [29]. In the next sub-sections, we describe all components of the
PeaceGAN in detail.
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Figure 2. An overall structure of PeaceGAN. PeaceGAN is in essence composed of a discriminator and generator. The
generator takes a concatenated input vector of a random noise vector, a target class vector, and a pose angle vector. In
addition, the discriminator of PeaceGAN additionally has two newly introduced structures: (i) a pose estimator that is
trained to estimate the pose angle values of SAR images in terms of both cosine and sine functions, and (ii) an auxiliary
classifier that is trained to determine which target classes the SAR images belong to. Note that a convolution layer with
vI-wCz-xS-yCh indicates having a v × v-sized input, a w × w-sized convolution filter with zero padding, an x × x-sized
stride, and y output channels. In addition, wCn indicates a w × w-sized convolution filter without zero padding, NN means
nearest-neighborhood upsampling with scale 2, BN means batch normalization, and FCy means a fully connected layer
with output channel size y.

3.1.1. Generator of PeaceGAN

The generator of the PeaceGAN takes a concatenated input vector that is composed
of three vectors: a random noise vector, a target class vector, and a pose angle vector. The
random noise vector z is an Nz-dimensional vector (noted as “Noise” in Figure 2) whose
elements are sampled from Pz(z), which is a random uniform distribution in the range
of [−1, 1]. The target class vector c is an Nc-dimensional one-hot vector with Nc types
of target classes, having the value “1” at the corresponding target class location and the
values “0” at the others, which is indicated as “Class” at the bottom of the generator in
Figure 2. Lastly, the pose angle vector is a Np (=2)-dimensional vector where its first and
second elements are the cosine and sine component values, respectively, for a given SAR
target’s pose angle θreal in the range of [0, 360) at which a desired SAR target image is
supposed to be generated. The generator utilizes a nearest neighborhood upsampling with
scale 2 followed by a 3 × 3-sized zero padding convolution filter with a 1 × 1-sized stride,
indicated as “NN-3Cz-1S” in Figure 2, called a NNConv to upsample feature maps. The
generator has two fully connected (FC) layers and three NNConvs to finally generate a
64 × 64 fake SAR target image in the range of [−1, 1] at its output layer.

In sum, the generator of the PeaceGAN can learn a meaningful mapping function
from the synthesized vector with both target class and pose angle of the SAR target image
and can generate the SAR target images of high fidelity for desired classes at intended pose
angles when the training is successfully conducted.
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3.1.2. Discriminator of PeaceGAN

The discriminator of the PeaceGAN takes two types of input: one is a real SAR target
image and the other is a fake SAR target image generated by the generator, alternatively
during the training. Both types of SAR target images are of a 64 × 64 size with their values
in the range of [−1, 1]. These inputs are sequentially decreased in spatial dimensions
by strided convolution filters without any pooling layer and are increased in channel
dimensions to extract useful features. The units of lReLU (Leaky ReLU) are used in the
discriminator according to the guidelines of DCGAN [29]. The last two layers of the
discriminator, denoted as FC1024 and FC1 in Figure 2, are the fully connected layers with
the output channel sizes of 1024 and 1, respectively. Both FC1024 and FC1 are implemented
by 8 × 8 and 1 × 1 convolution filters, respectively. At the last layer of the discriminator
(after “FC1” denoted as in Figure 2), a sigmoid function yields a scalar output value in the
range [0, 1], which is used in the adversarial losses, denoted as “LD” and “LG” in Figure 2,
that will be described in Section 3.2 in detail.

For the purpose of SAR target image generation by jointly learning both pose angles
and target classes of SAR target images, we adopted two additional structures: a pose
estimator and an auxiliary classifier, both of which are located at the side of the discrim-
inator as shown in Figure 2. The pose estimator and auxiliary classifier allow for the
discriminator not only to distinguish whether the input SAR target images are real or fake,
but also to classify the target classes and to estimate pose angles simultaneously via the
hard parameter sharing [36] of an MTL framework.

(a) Pose Estimator (PE). As shown in Figure 2, the pose estimator takes as input a 1024-
dimensional feature vector (FV1024), which is the output of the FC1024 layer of
the discriminator. The FV1024 input is passed to the FC256 layer followed by the
FC1 layer, which yields a scalar output, called Tpe, with the value range of [−1, 1]
after Tanh. For a pose estimator loss (denoted as Lpe in Figure 2), we first calculate
θpe = (Tpe + 1)× 180, which can be viewed as an appropriate pose angle value if the
network is well trained with an adequate loss. Then, θpe can be converted into the
cosine and sine values, each of which is denoted as “Cos” and “Sin”, respectively, at
the last part (bottom) of the pose estimator in Figure 2. Lpe is described in Section 3.2
in detail. The newly introduced pose estimator for SAR target image generation
encourages both the discriminator and the generator to learn the pose-angle features
of SAR target images.

(b) Auxiliary Classifier (AC). Similar to the pose estimator, the auxiliary classifier passes
the FV1024 as an input to the FC256 layer followed by the FC Nc layer, yielding an
Nc-dimensional output, denoted as Sac, after a softmax activation function [62] for
Nc classes of SAR target images. For an auxiliary classifier loss, denoted as Lac in
Figure 2, we use the cross-entropy loss that calculates the difference between the true
class probability and the estimated output probability stochastically. Lac is described
in Section 3.2 in detail. The auxiliary classifier for SAR target image generation guides
both the discriminator and the generator to learn the scattering characteristics of
target-class features of SAR target images.

(c) Spectral Normalization (SN). Miyato et al. [18] originally applied the spectral normal-
ization (SN) to the discriminator only for stable training of GAN. After that, Zhang
et al. [17] argued that applying the SN to the generator also benefits from the GAN
training with more stable learning. However, in our SAR target image generation,
applying the SN only to the discriminator is almost the same as applying it to both the
discriminator and the generator. Therefore, for simplicity, the SN is only applied in
the discriminator, including both the pose estimator and the auxiliary classifier with
one round of the power iteration method that is known for a sufficient approximation
of SN [18].
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3.2. Combined MTL Loss for PeaceGAN

The PeaceGAN uses the combined loss of the adversarial losses (LD and LG), the pose
estimator loss (Lpe), and the auxiliary classifier loss (Lac) for training. Here, we describe
these three kinds of losses in detail in the following subsections.

3.2.1. Adversarial Loss

In the standard GAN [15], the input of the generator G is generally a random noise
vector z with a probability distribution Pz(z), and G generates a fake image G(z), attempting
to follow the target data distribution Pdata as closely as possible. The discriminator D
alternatively takes two kinds of images: one is a real image x(=Xreal) from Pdata(x) and the
other is a fake image G(z)(=Xfake). D is trained to distinguish between them well. Finally,
both G and D try to solve an adversarial minmax optimization problem with a value
function V(G, D) as follows:

min
G

max
D

V(G, D) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))]. (1)

It is known that if both G and D have a sufficient learning capacity, they finally reach
the point where neither can improve anymore because Pdata = PG(z) [15], which is called
the Nash equilibrium where D cannot make a distinction between real images and fake
images. It means that we have D(x) = D(G(z)) = 0.5 [15]. In addition, Equation (1) can be
solved in the form of a non-saturating (NS) loss as follows [15]:

LD = −Ex∼Pdata(x)[log D(x)]− Ez∼Pz(z)[log(1− D(G(z)))], (2)

LG = −Ez∼Pz(z)[log D(G(z))]. (3)

The final output of D is usually a sigmoid function value so that a sigmoid cross-entropy
loss is generally utilized.

For our proposed PeaceGAN, since we adopted an MTL framework for GAN training
with the auxiliary classifier and the pose estimator, it has two additional components: pose
angle value θreal and target class c, concatenated to the noise vector z at the input part
of the generator that generates a fake SAR target image G(z|c, θreal ). The real images x
from Pdata(x) and fake images G(z|c, θreal ) are alternatively fed into the discriminator D.
Additionally, we adopted the WGAN-GP loss [38] as the adversarial loss for the PeaceGAN
for good training, which can be expressed in our case as:

LD = −Ex∼Pdata(x)[D(x|c, θreal )] + Ez∼Pz(z)[D(G(z|c, θreal ))] + λgpEx̂∼Px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2], (4)

LG = −Ez∼Pz(z)[D(G(z|c, θreal ))], (5)

where x̂ is defined as x̂ = εx + (1− ε)G(z|c, θreal ); ε is randomly sampled from the uniform
distribution, i.e., ε ∼ U[0, 1]; and λgp is a weight parameter for WGAN-GP [39]. The
gradient norm Ex̂∼Px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2] for the penalty is calculated on a linear interpo-
lation between the pairs of real data points Pdata(x) and those of the generator distribution
G(z|c, θreal ) [38]. It should be noted that WGAN-GP utilizes the critic directly for losses
rather than using the sigmoid cross-entropy loss [28]. The adversarial loss guides the
generator of the PeaceGAN to generate fake SAR target images that are not distinguishable
from the real ones by the discriminator of the PeaceGAN. Note that we directly use FC1
output (i.e., critic), not “Sigmoid” of Figure 2, for Equation (4).

3.2.2. Pose Estimator Loss

The loss Lpe of the pose estimator has two components of Lpe,real and Lpe,fake for the
input data of two types into the discriminator. The two losses are calculated by

Lpe,real = Ex∼Pdata(x)[(cos θreal − cos θpe)
2 + (sin θreal − sin θpe)

2
∣∣∣x], (6)
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Lpe, f ake = Ez∼Pz(z)[(cos θreal − cos θpe)
2 + (sin θreal − sin θpe)

2
∣∣∣G(z|c, θreal )]. (7)

Lpe,real in Equation (6) guides the discriminator to identify the pose angles of SAR target
images as correctly as possible, and Lpe,fake in Equation (7) allows for the generator to have
an ability to generate SAR target images at the intended pose angles.

3.2.3. Auxiliary Classifier Loss

The loss Lac of the auxiliary classifier is calculated by a cross-entropy measure to
calculate the difference between estimated target class probabilities Sac and true target-class
probabilities Pc(c), which is calculated as

Lac,real = Ex∼Pdata(x)[log P(Sac = c
∣∣∣x)], (8)

Lac, f ake = Ez∼Pz(z)[log P(Sac = c
∣∣∣G(z|c, θreal ))]. (9)

Lac,real in Equation (8) forces the discriminator to classify the input SAR target images
as accurately as possible, while Lac,fake in Equation (9) has the generator to produce the SAR
target images of the desired classes as precisely as possible.

3.2.4. Total Combined Losses

The total combined losses for the PeaceGAN are denoted as LPeaceGAN,D for its discrim-
inator and LPeaceGAN,G for its generator, respectively, which are given by

LPeaceGAN,D = λadvLD + λmtl(λpeLpe,real + λacLac,real), (10)

LPeaceGAN,G = λadvLG + λmtl(λpeLpe, f ake + λacLac, f ake), (11)

where λadv, λpe, λac, and λmtl are weight parameters. These two total combined losses are
used to train the proposed PeaceGAN in an MTL framework, which allows for effective
GAN learning. As a result, if the training of the PeaceGAN is successfully finished, the
generator can produce abundant SAR target images of desired classes at any pose angle.

4. Introduced Indirect Evaluation Methods for Adequacy and Quality of Generated
SAR Target Images

In order to inspect the effectiveness of the PeaceGAN, we introduced new indirect
evaluation methods as standard metrics in a perspective of GAN-based SAR target image
generation. It is important to evaluate both the adequacy of the generated SAR target
images by the generator as training data and their fidelities of pose-angle features and
target-class features. Nevertheless, none of the methods has addressed this issue in a
quantitative manner. In this paper, we propose three ways of evaluating the generated SAR
target images: (i) the adequacy as training data for SAR target recognition using a simple
classifier, called the SC method; (ii) the quality of generated SAR target images using an
over-fitted deep classifier for real SAR target images of specific target classes, called the
DC method; and (iii) the quality of generated SAR target images using an over-fitted deep
pose-estimator for real SAR target images at specific pose angles, called the DP method.
Figure 3 shows the three types of network structures used for the indirect evaluation
methods. From here onwards, we assume that GAN’s generators have finished learning
the distribution of real SAR target images with a depression angle of 17◦, called D17.
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Figure 3. The three types of network structures used for proposed indirect evaluation methods for SAR target image
generation: (a) simple classifier (SC-Net), (b) deep classifier (DC-Net), and (c) deep pose-estimator (DP-Net).

4.1. Indirect Evaluation Using the SC Method

Figure 3a shows a simple classifier for the SC method, called SC-Net, that has a
softmax activation function in the softmax cross-entropy loss as for SAR target recognition
cases [11]. In addition, the SC-Net is designed to have a small number of convolution
layers where each convolution layer consists of a small number of feature channels to
yield a relatively lower target recognition performance because it should not memorize the
generated SAR target images during training. Then, the SC-Net trained with the generated
SAR target images can be tested for real SAR target images. By doing so, one can make two
comparisons: (i) training the SC-Net with generated SAR target images of a depression
angle of 17◦ by a GAN-based “X” method, called DX

17,GAN , and testing the trained SC-Net
for real SAR target images with a depression angle of 15◦, called D15, and (ii) training
the SC-Net with real SAR target images with a depression angle of 17◦ (D17), and testing
the trained SC-Net for D15. Note that by using the trained PeaceGAN, we can generate
DPeace

17,GAN with the same number of SAR target images per class at the same pose angles
corresponding to each real SAR image in D17 because PeaceGAN’s generator can produce
the SAR target images of an intended class at any desired pose angle by feeding into
the generator the combined input vector of the corresponding cosine and sine values of
a given pose angle and the one-hot vector for a target class, as shown in Figure 4. In
addition, D15 is generally used as test data for SAR target recognition when D17 is used as
training data [11]. More information on the D17 and D15 for our experiments are described in
Section 5.1 in detail.



Remote Sens. 2021, 13, 3939 11 of 25

Figure 4. An example of how to generate the intended class of the SAR image with the desired pose
angle by PeaceGAN: the “BMP2”-class SAR image (first class) with pose angle 346.49◦ of D17.

4.2. Indirect Evaluation Using the DC Method

Figure 3b shows a deep classifier for the DC method, called DC-Net. Unlike the SC
method, the DC-Net is pre-trained to indirectly evaluate (inspect) the quality of DX

17,GAN
in the perspectives of target-class features, which are inspired from [30,50]. First, the
DC-Net is intentionally trained with a training set of 10,000 samples augmented from
D17 to yield 100% target recognition performance for D17. Here, the DC-Net has a deep
structure with a large number of convolution layers, each of which has a large number
of feature channels, to be over-fitted for D17. Therefore, in a testing phase, a higher
target recognition performance of the pre-trained DC-Net for DX

17,GAN implies that the
better quality of DX

17,GAN is generated by the GAN’s generator, and the generator is well
trained in the perspective of target-class features. We pre-trained the DC-Net five times
with a random weight initialization each time to have the 100% classification rates for
all experiments. Thus, the quality of DX

17,GAN is measured as the average of the resulting
five target classification rates tested by the five pre-trained DC-Nets in the perspective of
target-class features.

4.3. Indirect Evaluation Using the DP Method

Figure 3c shows a deep pose-estimator for the DP method, called DP-Net. Moreover,
the DP-Net is designed almost in the same manner as the DC-Net. The only difference is the
usage of Tanh at the output where the DP-Net is trained by the same square difference loss
in Equation (6). Further, using the same training set of 10,000 samples augmented from D17,
we pre-trained the DP-Net five times with a random weight initialization each time for pose
angle estimation where the DP-Net is trained to be over-fitted to the pose-angle features of
D17 each time. It should be noted that, unlike the DC-Net, it is hard to train the DP-Net to
be over-fitted to perfectly predict the pose angles of the samples in D17. This is because
the pose angles of the SAR target images have continuous values in the range of [0◦, 360◦).
From the five-times training of over-fitting, the DP-Net yielded the pose angle estimation
performance in terms of the two averages of the resulting five MAD and STD values with
2.22◦ and 3.28◦, respectively, for D17, where the MAD and STD indicate the mean absolute
difference and the standard deviation difference between the true pose angles (θreal) and
their estimated ones (θpe), respectively. Therefore, when the quality of DX

17,GAN in the
perspective of pose-angle features is measured, smaller MAD and STD values measured by
the pre-trained DP-Net for DX

17,GAN imply that a better quality of DX
17,GAN is generated and

the corresponding generator is also trained well in the perspective of pose-angle features.
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The SC-Net, DC-Net, and DP-Net in Figure 3 are trained with the same hyper-
parameters. All weights of the convolution filters are initialized by Xavier initializer [63].
The mini-batch size is set to 100; the weight decay coefficient for L2 loss is 0.004; the total
epoch is 50; and the initial learning rate is set to 0.01 and is multiplied by 0.1 cumulatively
at the 10th, 25th, and 40th epochs. In addition, the mini-batch stochastic gradient descent
method is utilized with a momentum parameter value of 0.9.

5. Experiments Results
5.1. Experiments Settings
5.1.1. MSTAR Dataset

The Moving and Stationary Target Acquisition and Recognition (MSTAR) public
dataset was utilized for experiments of the SAR target image generation. The MSTAR
was gathered by the Sandia National Laboratory (SNL) SAR sensor platform that was sup-
ported by Defense Advanced Research Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL) [64]. Each piece of MSTAR data includes information about azimuth
angles, depression angles, versions, configurations, and target classes, among others. The
MSTAR dataset is a benchmark for experiments related to various problems handling SAR
images [8–11,30,31] and is composed of 0.3 × 0.3 m resolution of target images captured by
X-band SAR sensor. Figure 5 shows some SAR target images of four classes with different
pose angles of two different depression angles taken from the MSTAR data. As shown in
Figure 5, it is hard to infer either the exact target classes or the corresponding pose angles
of the SAR target images due to both their speckle noise and low spatial resolutions. For
experiments, we used a data set of the central-cropped 64 × 64-sized 2747 SAR target
images with a depression angle of 17◦ for D17 from MSTAR data to train GANs. The size of
64 × 64 is known to be sufficient to contain both the clutters and the targets adequately for
SAR target image generation [30]. D15 also consists of the 64 × 64-sized 2425 SAR target
images of MSTAR data obtained under a depression angle of 15◦. Table 1 summarizes the
data set used for our experiments. There were 10 target classes that are composed of one
bulldozer (D7), one truck (ZIL131), one air defense unit (ZSU234), one rocket launcher
(2S1), two tanks (T62, T72), and four armored personnel carriers (BMP2, BTR60, BTR70,
BRDM2).

Figure 5. Examples of MSTAR dataset: (a) “BMP2”-class with 26.49 pose angles and 17 depression angles, (b) “2S1”-class
with 143.33 pose angles and 17 depression angles, (c) “T62”-class with 256.52 pose angles and 17 depression angles,
(d) “ZSU234”-class with 347.99 pose angles and 15 depression angles.
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Table 1. The information of MSTAR data for experiments.

Target Names
(Classes) Serial #

For GANs, DC and DP
(SAR Image Size: 64 × 64)

Only Used for SC
(SAR Image Size: 64 × 64)

Depression
Angles

# of Data
(Total: 2747)

Depression
Angles

# of Data
(Total: 2425)

BMP2 9563 17 233 15 195
BTR70 C71 17 233 15 196

T72 132 17 232 15 196
BTR60 K10 17 256 15 195

2S1 B01 17 299 15 274
BRDM2 E71 17 298 15 274

D7 92V 17 299 15 274
T62 A51 17 299 15 273

ZIL131 E12 17 299 15 274
ZSU234 D08 17 299 15 274

Since there were limited numbers of available MSTAR SAR target images for GAN
training, we utilized data augmentation methods of [10,11]: (i) rotation, (ii) pose synthesis,
and (iii) speckle noising to prevent from the mode collapse and a memorization problem of the
GAN generators, which are the severe issues of GAN training. Rotation data augmentation
randomly rotates SAR target images to produce new SAR target images within a small
15-degree angle to preserve the backscattering characteristics [10,11]. Pose synthesis data
augmentation combines two neighboring SAR images that have similar pose angles to
generate new SAR target images by a weighted sum [10]. Speckle noising data augmentation
generates new data SAR images by newly adding speckle noises sampled from an expo-
nential distribution [10]. To conduct experiments at sufficient performance levels for better
comparisons, we produced 5000 SAR target images for each of the 10 classes on the basis of
the above data augmentation methods. As a result, our training data set had 64 × 64-sized
50,000 SAR target images with the 17◦ depression angle for all 10 classes.

5.1.2. Implementation of PeaceGAN

We used two Adam optimizers [65] to minimize LPeaceGAN,G and LPeaceGAN,D with
learning rates of lrg and lrd, respectively. The initial value of lrd was set to 0.0005, which
started to decay linearly to zero from the 40th epoch to the last epoch, the 60th. In addition,
we found that a relationship of lrg = 5 × lrd was appropriate for stable training in our
experiments. The generator and the discriminator with the two additional structures were
trained alternatively by the two corresponding Adam optimizers. The momentum term β1
of Adam optimizers was set to 0.5, being widely known to make the GAN learning more
stable [29], and β2 was set to 0.999 as a default setting [65]. All weights of the convolution
filters were initialized by random normal distribution with a zero mean and a standard
deviation of 0.02. The mini-batch size was 25. The dimension of the input noise vector was
Nz = 64, the number of SAR target image classes was Nc = 10, and Np = 2 since the pose
angle input consisted of two sine and cosine angle components. For the weight parameters
for losses, we empirically set λgp = 5, λadv = 1, λpe = 0.2, λac = 0.8, and λmtl = 1. The size of
all SAR target images for experiments was 64 × 64.

5.2. Evaluations on Generated SAR Target Images by the Proposed PeaceGAN
5.2.1. Subjective Comparison between Generated and Real SAR Target Images

Figure 6 shows some generated SAR target images in DPeace
17,GAN generated by the

PeaceGAN and their corresponding real SAR target images of a same target class at the
same pose angles in D17. As shown in Figure 6, it can be noted that the PeaceGAN can
produce SAR target images visually very similar to the actual SAR target images. The
generated SAR target images contain similar speckle noises to those of the real ones and
similar shadows around the targets.
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Figure 6. The comparison between DPeace
17,GAN and D17: (a) first 100 “BMP2”-class SAR images generated by PeaceGAN

(DPeace
17,GAN) at pose angle increments with 5◦; (b) first original 100 “BMP2”-class SAR images from D17 at pose angle

increments with 5◦.

5.2.2. Analyses on PeaceGAN Variants Using SC and DC Performances

Table 2 shows the target recognition performance (%) for the several PeaceGAN
variants indirectly evaluated by the SC and DC. For this, each DPeace

17,GAN generated by
PeaceGAN variant was utilized to train the SC-Net three times with a random weight
initialization to obtain stable average results tested with D15, according to the SC described
in Section 4.1, and the each DPeace

17,GAN was tested by the five pre-trained DC-Nets to yield an
average target recognition performance, according to the DC described in Section 4.2.

Structural Variants. We first compared three PeaceGAN variants with respect to their
structures using the SC and DC (methods) from a structural point of view. In Table 2,
the “PeaceGAN with NNConv & CSg”, which is our baseline structure shown in Figure 2,
indicated that (i) its generator used the nearest neighborhood upsampling method as
described in Section 3.1.1, and (ii) the pose angle input to the generator consisted of
separate cosine and sine component values, called CSg, trained with Equations (6) and (7)
for the pose estimation losses. Instead of the NNConv, the “PeaceGAN with USConv &
CSg” utilized the fractionally-strided convolution filters for two-times upsampling, called
USConv, used in the DCGAN’s generator [29].

Finally, instead of using the CSg as a pose angle input, the “PeaceGAN with NNConv
& DNg” replaced the CSg with two same values, each of which was the directly normalized
pose angle by θnorm = (θreal − 180)/180 into the range of [−1, 1] to keep Np = 2 for a fair
comparison to CSg, denoted as DNg, with this variant being trained by Equations (12) and
(13) for the pose estimation losses instead of Equations (6) and (7) to keep a scale of losses
for the fair comparison:

Lpe,real = Ex∼Pdata(x)[2× (θnorm − θpe)
2
∣∣∣x], (12)

Lpe, f ake = Ez∼Pz(z)[2× (θnorm − θpe)
2
∣∣∣G(z|c, θnorm )], (13)

It is also should be noted that both Equations (12) and (13) directly calculate mean
squares error between θnorm and θpe, not utilizing both cosine and sine functions. From the



Remote Sens. 2021, 13, 3939 15 of 25

results in Table 2, we can see that NNConv was more effective than USConv, and the usage
of CSg in the form of separate cosine and sine components trained with Equations (6) and (7)
loss functions also helped the generator effectively learn the target-class features with re-
spect to the target’s pose angles better than the usage of DNg. It is also worthwhile to
mention that applying the spectral normalization (SN) to the discriminator of the Peace-
GAN was also effective for GAN-based SAR target image generation, as shown in Table 2.

GAN techniques. On the other hand, in terms of GAN techniques, we found that
the proposed PeaceGAN (“PeaceGAN with NNConv & CSg”) that is trained by WGAN-
GP yields superior results in comparison with PeaceGAN variants trained by any other
GAN techniques [66–69], as shown in Table 2. For these experiments, we set weight
parameters for gradient penalty to 5 for both WGAN-LP [66] and DRAGAN [67] including
RaDRAGAN [68], which means utilizing DRAGAN loss combined with RaGAN loss [68],
respectively. The other settings are the same for fair comparisons. It should be note that the
PeaceGAN variant trained with standard GAN losses of Equations (2) and (3) alone cannot
be trained by any combination of hyperparameters and the mode collapse has always
occurred. Therefore, the results in Table 2 indicate that it is important to select appropriate
GAN techniques applied to the given structure for better quality of SAR image generation.

Table 2. Target recognition performance (%) for PeaceGAN variants indirectly evaluated by the SC
and DC methods.

Variants
with SN without SN

SC DC SC DC

PeaceGAN with NNConv & CSg 81.20 99.42 78.93 98.46
PeaceGAN with USConv & CSg 77.61 98.04 76.25 98.01

PeaceGAN with NNConv & DNg 76.21 96.70 74.56 96.07
PeaceGAN by WGAN-LP [66] 79.59 99.20 77.11 97.31

PeaceGAN by RaDRAGAN [68] 62.60 92.25 58.60 87.94
PeaceGAN by DRAGAN [67] 58.47 90.16 56.37 89.63

PeaceGAN by LSGAN [69] 33.61 79.11 32.25 69.01
PeaceGAN with λpe = 0.05 75.34 98.67 67.18 94.12
PeaceGAN with λpe = 0.1 77.69 98.87 73.08 96.69
PeaceGAN with λpe = 0.4 77.90 98.90 76.87 98.05
PeaceGAN with λpe = 0.8 78.43 98.67 74.89 97.11

Pose Estimator Loss. It should also be noted that the influence of λpe to the quality
of PeaceGAN’s outputs is quite substantial for both the class-features’ point of view and
the adequacy as training data for SAR target recognition. Thus, λpe should be carefully
determined as shown in Table 2 (λpe = 0.2 for the final PeaceGAN).

Other Hyperparameters. Since the GAN framework is generally difficult to train
well, we conducted various experiments to search appropriate hyperparameters settings.
To empirically determine several hyperparameters, we first denoted (•, •) as (SC, DC)
performances, respectively. Note that our final PeaceGAN showed performances of (81.20,
99.42). All variants of PeaceGAN have the same setting for training with their own variant
values (e.g., hyperparameter values such as λmtl , lrd, λgp, lrg, and batch sizes), and are
trained separately from scratch. The PeaceGAN variants trained with the settings of
λmtl = 2.5, 5, 10 yielded (77.23, 98.90), (76.08, 98.03), and (61.81, 93.58), respectively
(λmtl = 1 for PeaceGAN). The PeaceGAN variants trained with the initial learning rates for
the discriminator as lrd = 0.0001, 0.001 showed (72.99, 91.97) and (70.47, 98.29), respectively
(lrd = 0.0005 for PeaceGAN). The PeaceGAN variants trained with λgp = 1, 10 performed as
(79.18, 97.38) and (76.12, 98.76), respectively (λgp = 5 for PeaceGAN). The variants trained
with the relationships of lrg =3 × lrd and 7 × lrd yielded (74.19, 98.98) and (79.18, 97.38),
respectively (lrg = 5× lrd for PeaceGAN). On the other hand, the variants trained with batch
sizes of 10 and 50 yielded (75.59, 94.61) and (77.00, 98.42), respectively (25 for PeaceGAN).
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In summary, our final PeaceGAN was empirically determined with the optimal setting that
yielded the best performance via all the above experiments.

Finally, in order to see the adequacy of the generated SAR target image set (DPeace
17,GAN) as

a training dataset compared to its corresponding original SAR target dataset (D17), we also
trained the SC-Net with D17, which yielded 83.71% target recognition performance when it
was tested with D15. On the other hand, when the SC-Net was trained with DPeace

17,GAN and
tested with D15, the resulting target recognition rate turned out to be 81.20%, as shown in
Table 2, which was very close to 83.71%. From this, it can be noted that the PeaceGAN is
capable of generating adequate SAR target images as training data. As mentioned before,
the DC-Net was pre-trained in an intended over-fitted manner for D17, thus yielding 100%
target recognition performance for D17 itself. The intention of this over-fitting is that
the DC-Net is pre-trained to memorize the target-class features of D17. When DPeace

17,GAN
was tested by the five pre-trained DC-Nets, the averaged target recognition performance
turned out to be 99.42%, as shown in Table 2, which was very close to 100%. For the target
recognition performance of 99.42% in Table 2, we show in detail in Table 3 the averaged
per-class target recognition performance (confusion matrix) of the five pre-trained DC-Nets
for DPeace

17,GAN . As shown in Table 3, the generated SAR target images of “D7”, “ZIL131”,
and “ZSU234” classes were classified remarkably with 100% accuracy, and those of the
other classes were also classified nearly close to 100% accuracy. From this, it can also be
noted that the PeaceGAN is capable of generating the SAR target images with very similar
target-class features of D17.

Table 3. Confusion matrix for target recognition performance (%) on DPeace
17,GAN tested by five pre-trained DC-Nets.

Classes BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 Recognition
Rates (%)/Std.

BMP2 230.6 1 0 1.2 0.2 0 0 0 0 0 98.97/0.210
BTR70 1 229.4 0 2.6 0 0 0 0 0 0 98.45/0.210

T72 0 1 231 0 0 0 0 0 0 0 99.57/0.000
BTR60 0 4.2 0 251.8 0 0 0 0 0 0 98.36/0.156

2S1 0 1 0 0 296.6 0 0 1.4 0 0 99.20/0.164
BRDM2 0.2 0 0 1 0 296.8 0 0 0 0 99.60/0.134

D7 0 0 0 0 0 0 299 0 0 0 100.0/0.000
T62 0 0 1 0.2 0 0 0 297.8 0 0 99.60/0.134

ZIL131 0 0 0 0 0 0 0 0 299 0 100.0/0.000
ZSU234 0 0 0 0 0 0 0 0 0 299 100.0/0.000
Averages 99.42/0.025

5.2.3. Indirect Evaluation by DP for Pose-Angle Features of DPeace
17,GAN

One of the PeaceGAN’s advantages is a capability to generate SAR target images at
intended pose angles. Thus, it is necessary to evaluate whether or not the PeaceGAN can
appropriately generate SAR target images in a perspective of pose angles. For this, we used
an indirect evaluation method using the DP method as described in Section 4.3. Table 4
shows the pose estimation performance of the pre-trained DP-Net on D17 and DPeace

17,GAN .
The estimation accuracy values in Table 4 were measured in terms of MAD and STD as
their averages of the same tests five times by the DP-Net with five-times independent
training with random weight initialization each time. The DP-Net shows the average 2.22◦

MAD for D17 and the average 6.83◦ for DPeace
17,GAN . It can be noted in Figure 6b that the

generated SAR target images at neighboring pose angles with 5◦ differences were visually
very similar. Thus, the pose-angle features of DPeace

17,GAN were found to be sufficiently similar
to those of D17.
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Table 4. Pose estimation performance of the pre-trained DP-Net on D17 and DPeace
17,GAN .

Classes
D17 DPeace

17,GAN

MAD STD MAD STD

BMP2 2.14 3.00 7.03 11.49
BTR70 2.31 3.67 8.48 12.04

T72 2.61 3.89 6.71 10.44
BTR60 2.16 3.47 6.71 9.55

2S1 1.90 2.75 6.84 10.29
BRDM2 2.12 2.99 6.77 10.73

D7 2.37 3.83 7.45 10.38
T62 2.11 2.66 6.39 10.27

ZIL131 2.16 2.97 5.83 8.49
ZSU234 2.37 3.58 6.10 8.99

Averages 2.22 3.28 6.83 10.27

5.3. Comparison between PeaceGAN, Modified ACGAN, and Modified CGAN

To highlight the novelty of our PeaceGAN in a structural point of view, we compared
it with the most relevant GANs, ACGAN [70], and CGAN [32]. The ACGAN is based
on the standard GAN and has an additional component of a classifier, which is called
the auxiliary classifier [70]. The original ACGAN only utilizes class information that is
concatenated to the input vector of its generator and has the same forms of classification
losses in Equations (8) and (9) but is directly connected to the end of its discriminator,
not independently such as the structure of the auxiliary classifier of the PeaceGAN. We
compared the generation capabilities of SAR target images by the PeaceGAN that uti-
lizes both target class and pose angle information and the ACGAN that only uses target
class information. For a fair comparison, we modified the original ACGAN to have the
same generator, discriminator, and auxiliary classifier as the PeaceGAN, called ACGANm,
which became equivalent to a PeaceGAN variant without the pose estimator, as shown
in Figure 7a. For experiments, the parameters of the ACGANm were set with the same
values as the PeaceGAN, except for the two parameters with Nz = 66 (= 64 + 2), Nc = 10,
and Np = 0 to keep the original 76-dimensional combined input vector, and with λpe = 0
and λac = 1.0 (= 0.8 + 0.2) to keep the same scales of gradients. Since the ACGANm cannot
incorporate the pose angle information directly into SAR target image generation, we were
only able to constitute the input vector with a one-hot vector of target classes and a random
noise vector, where the resulting generated SAR target images were denoted as DAC

17,GAN for
the depression angle of 17◦. Thus, DAC

17,GAN generated SAR target images at random pose
angles with the same number of SAR target images per each class corresponding to D17.

Figure 7. The conceptual architectures of (a) modified ACGAN [70] (ACGANm) and (b) modified
CGAN [32] (CGANm) [30,71].

On the other hand, we also designed a modified CGAN-based network, called
CGANm, as shown in Figure 7b. For a fair comparison, we firstly modified the origi-
nal CGAN [32] to have the same generator and discriminator of the PeaceGAN without
both pose estimator and auxiliary classifier. Secondly, to follow the definition of CGAN [32],
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we designed a discriminator of CGANm additionally having conditioned inputs that were
composed of the Xreal or Xfake concatenated with a stretched (filling same values in 64 × 64
spatial dimensions) one-hot target class, a cosine value, and a sine value of a pose angle. For
experiments, all parameters of the CGANm were set with the same values as the PeaceGAN,
except the input channel of the discriminator increased to 13 (=1 + 10 + 2) from 1 and
λmtl = 0.

Table 5 shows the target recognition performance evaluated by both the SC and DC
on DAC

17,GAN and DC
17,GAN in comparison with DPeace

17,GAN . As shown in Table 5, the target
recognition performances on DPeace

17,GAN by both SC and DC were always higher than those
on DAC

17,GAN and DC
17,GAN , which implies that the PeaceGAN can generate better SAR target

images than the ACGANm and CGANm in terms of both the “adequacy as training data”
and the fidelity of “target-class features”, respectively. Figure 8 shows some of generated
SAR target images by the ACGANm. As shown in Figure 8, the shapes of the targets
generally appeared dim, and sometimes speckle noises looked dissimilar to D17. From this
observation in Figure 8 and the results in Table 5, we noticed that the proposed PeaceGAN
can not only control pose angles to generate SAR target images but also can learn the joint
distributions of SAR target images more reliably for various target classes and pose angles.

Table 5. The comparison between DPeace
17,GAN , DAC

17,GAN , and DC
17,GAN : target recognition performance

(%) by SC and DC.

Structures SC DC

PeaceGAN 81.20 99.42
ACGANm 73.03 96.23
CGANm 77.53 95.63

Figure 8. The 16 “BMP2”-class SAR images generated by ACGANm. It should be noted that the
generator of ACGANm generated SAR target images at random pose angles with the same number
of SAR target images per each class corresponding to D17.

We also used 2D t-SNE [72] to visualize the distributions of generated SAR target
images of DPeace

17,GAN and DAC
17,GAN in a two-dimensional space. Figure 9 shows the distri-

bution visualizations of 10 kinds of feature points for 64 × 64-sized 2747 generated SAR
target images (data samples) using the 2D t-SNE, where the data samples in the same class
were represented by the same color. As shown in Figure 9, the data samples in DAC

17,GAN
were spread with larger overlaps across different classes, as indicated by red circles, in
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comparison with those of DPeace
17,GAN . In other words, the data samples of DPeace

17,GAN belonging
to the same classes exhibited higher concentrations than those of DAC

17,GAN . On the basis
of these observations, we are also able to conclude that taking advantage of pose angle
information for SAR target image generation can help generate SAR target images more
reliably with higher fidelities for various target classes.

Figure 9. The comparison between 2D t-SNE of (a) DPeace
17,GAN and (b) DAC

17,GAN by indicating overlapped points with red
circles. Best viewed in zoom.

On the other hand, Figure 10 shows the examples of DPeace
17,GAN generated by the Peace-

GAN and DC
17,GAN generated by the CGANm. As shown in Figure 10, it also can be easily

noted that the PeaceGAN can produce SAR target images visually better than CGANm. Fur-
thermore, the generated SAR target images of DC

17,GAN tend to contain unnatural speckle
noises and abnormal scattering characteristics. Furthermore, the DC result of CGANm
(95.63%) was slightly lower than that of ACGANm (96.23%), as shown in Table 5, which
implies that the fidelity of target-class features of ACGANm was better than that of CGANm.
On the other hand, note that CGANm can also control the pose angles to generate DC

17,GAN ,
and therefore it is reasonable that the DC

17,GAN has more diverse pose angles than DAC
17,GAN ,

and thus the SC result of CGANm (77.53%) is better than that of ACGANm (73.03%) from the
perspective of adequacy as training data (SC). Lastly, Table 6 shows the pose estimation per-
formance on DPeace

17,GAN and DC
17,GAN evaluated by DP to compare the fidelity of pose-angle

features. As shown in Table 6, the DP results of both MAD and STD of DPeace
17,GAN were much

better than those of DC
17,GAN . As a result, the proposed structure of PeaceGAN including

pose estimator and auxiliary classifier also outperformed the CGAN-based structure in
both quantitative and qualitative manners.

Figure 10. The comparison between examples of (a) 41th to 45th “BMP2”-class SAR images of DPeace
17,GAN and (b) 41th to 45th

“BMP2”-class SAR images of DC
17,GAN .
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Table 6. Pose estimation performance of the pre-trained DP-Net on DPeace
17,GAN and DC

17,GAN .

Classes
DPeace

17,GAN DC
17,GAN

MAD STD MAD STD

BMP2 7.03 11.49 11.59 19.28
BTR70 8.48 12.04 10.95 18.07

T72 6.71 10.44 11.59 19.67
BTR60 6.71 9.55 9.50 16.05

2S1 6.84 10.29 9.67 16.99
BRDM2 6.77 10.73 10.61 18.38

D7 7.45 10.38 10.61 16.41
T62 6.39 10.27 9.61 16.98

ZIL131 5.83 8.49 8.85 14.23
ZSU234 6.10 8.99 8.72 13.32

Averages 6.83 10.27 10.17 16.94

5.4. SAR Image Generation with Varying Target Classes and Pose Angles

Figure 11 shows the ability of PeaceGAN, as a generator, that can generate SAR
target images for given desired pose angles and target classes. The SAR target images
in Figure 11a were obtained by inputting into the PeaceGAN generator the target class
information from “BMP2” to “ZSU234” sequentially while fixing the pose angle at 151.2◦.
Figure 11b shows the generated SAR target images of “BTR70”-class for varying pose angles
from 0◦ to 324◦ uniformly by a pose angle increment of 36◦. As shown in Figure 11, it is
clear that the PeaceGAN can faithfully generate SAR target images with two controllable
variables such as pose angles and target classes.

Figure 11. The generated SAR images with varying two variables, target classes, and pose angles: (a) fixed pose angle
151.2◦ and varying 10 target classes; (b) fixed target class “BTR70” and varying 10 pose angles from 0◦ to 324◦ uniformly by
a pose angle increment of 36◦.

5.5. Discussion about Applications of PeaceGAN for Training SAR Target Recognition Network

Since the generator of the PeaceGAN can be trained to generate SAR target images
at intended pose angles for desired target classes, it can also be utilized to train a SAR
target recognition network by generating abundant SAR images at any intended pose
angle. For example, if we want to generate NTR numbers of SAR target images, let us
take them at uniformly spaced pose angles between 0◦ and 360◦ per target class by first
calculating both cosine and sine values of the NDA angles at equally spaced angles from 0◦,
(360◦/NTR) × 1, (360◦/NTR) × 2, · · · , (360◦/NTR) × (NTR − 1), without loss of generality.
Then, with the pre-calculated cosine and sine component values and an one-hot vector for
each target class as shown in Figure 4, we can generate DPeace

17,GAN with NTR-synthesized SAR
target images per target class at NTR pose angles, which is denoted as DPeaceTR

17,GAN . Figure 12
shows some examples of generated SAR target images with NTR = 100 for “ZIL131”-class.
The generated SAR target images in Figure 12 are displayed for various angles with each
incremented angle of 3.6◦ from 0◦ to 356.4◦.
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Figure 12. Examples of generated SAR target images at various pose angles with NTR = 100; “ZIL131”-
class SAR images of DPeaceTR

17,GAN to D17.

For a simple verification of the PeaceGAN’s ability for training SAR target recognition
network, we utilized the same structure of the DC-Net shown in Figure 3b with the same
implementation settings for training. For this experiment, the new DC-Net was trained
by DPeaceTR

17,GAN and then was tested by D15. Table 7 shows the target recognition performance
of the DC-Net trained by DPeaceTR

17,GAN and then tested by D15, and the total number of NTR
× Nc generated by PeaceGAN’s generator where Nc = 10 is the number of target classes.
It should be noted that, although the simple architecture of DC-Net is newly trained only
with DPeaceTR

17,GAN by setting NTR × Nc to 10,000 × 10, the DC-Net performed with similar
precision levels of 98.10% compared to the previous SAR target recognition methods that
are dedicatedly designed to yield high performances such as 93.66% of MSRC [73], 97.84%
of DCNN-SVM [74], and 98.81% of M-PMC [75]. From these observations, it can be noted
that the generated SAR target images by the PeaceGAN can be utilized to train the SAR
target recognition network, which would be useful for generating such SAR target images
that are often very costly for acquisition.

Table 7. Target recognition performance (%) of a DC-Net newly trained by DPeaceTR
17,GAN for testing with D15.

NTR × Nc Accuracy (%)

100 × 10 20.57
200 × 10 46.43
300 × 10 69.27
400 × 10 79.34
500 × 10 90.06
1000 × 10 95.55
1500 × 10 97.36
5000 × 10 97.81

10,000 × 10 98.10
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6. Conclusions

In this paper, we propose a novel GAN structure that can be jointly trained in an
end-to-end manner with multi-task learning of estimating both pose angle and target class
information of SAR target images, called PeaceGAN. As a result, the PeaceGAN explicitly
disentangles the pose angles and the target class, which leads to both the diversity and
the improved quality of the generated SAR target images that are visually very similar to
real SAR target images. We also introduce three indirect evaluation methods as standard
metrics to evaluate the adequacy of generated SAR target images as training data and
the fidelities of target-class features and pose-angle features of them generated by our
PeaceGAN. In intensive experiments, the PeaceGAN showed a high potential to generate
SAR target images with good fidelity at intended pose angles for desired target classes.
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