
remote sensing  

Article

Optimizing Top Dressing Nitrogen Fertilization Using VENµS
and Sentinel-2 L1 Data

David J. Bonfil 1, Yaron Michael 2, Shilo Shiff 2 and Itamar M. Lensky 2,*

����������
�������

Citation: Bonfil, D.J.; Michael, Y.;

Shiff, S.; Lensky, I.M. Optimizing Top

Dressing Nitrogen Fertilization Using

VENµS and Sentinel-2 L1 Data.

Remote Sens. 2021, 13, 3934. https://

doi.org/10.3390/rs13193934

Academic Editors: Arnon Karnieli

and David M. Johnson

Received: 3 August 2021

Accepted: 24 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Vegetable and Field Crop Research, Agricultural Research Organization, Gilat Research Center,
Gilat 8531100, Israel; bonfil@volcani.agri.gov.il

2 Department of Geography and Environment, Bar-Ilan University, Ramat-Gan 5290002, Israel;
yaron.michael@live.biu.ac.il (Y.M.); Shilo.Shiff@biu.ac.il (S.S.)

* Correspondence: itamar.lensky@biu.ac.il

Abstract: Environmental and economic constraints are forcing farmers to be more precise in the rates
and timing of nitrogen (N) fertilizer application to wheat. In practice, N is frequently applied without
knowledge of the precise amount needed or the likelihood of significant protein enhancement. The
objective of this study was to help farmers optimize top dress N application by adopting the use of
within-field reference N strips. We developed an assisting app on the Google Earth Engine (GEE)
platform to map the spatial variability of four different vegetation indices (VIs) in each field by
calculating the mean VI, masking extreme values (three standard deviations, 3σ) of each field, and
presenting the anomaly as a deviation of ±σ and ±2σ or deviation of percentage. VIs based on
red-edge bands (REIP, NDRE, ICCI) were very useful for the detection of wheat above ground N
uptake and in-field anomalies. VENµS high temporal and spatial resolutions provide advantages
over Sentinel-2 in monitoring agricultural fields during the growing season, representing the within-
field variations and for decision making, but the spatial coverage and accessibility of Sentinel-2 data
are much better. Sentinel-2 data is already available on the GEE platform and was found to be of
much help for the farmers in optimizing topdressing N application to wheat, applying it only where
it will increase grain yield and/or grain quality. Therefore, the GEE anomaly app can be used for
top-N dressing application decisions. Nevertheless, there are some issues that must be tested, and
more research is required. To conclude, satellite images can be used in the GEE platform for anomaly
detection, rendering results within a few seconds. The ability to use L1 VENµS or Sentinel-2 data
without atmospheric correction through GEE opens the opportunity to use these data for several
applications by farmers and others.
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1. Introduction

Wheat is one of the key cereal crops grown worldwide, providing the primary caloric
and nutritional source for millions of people. The climatic conditions of the Israeli fields,
typical of Mediterranean regions, are highly variable. These conditions cause substantial
variability in wheat (Triticum aestivum L.) grain production and quality, a matter of great
concern for both producers and bakers. Hard spring wheat (HSW) is the most important
crop in Israel. HSW has a high protein concentration (>11.5%), which is also associated with
greater gluten content thus making HSW superior for milling and bread-making purposes.
In Mediterranean rain-fed conditions, the amount of rainfall and its distribution during
the growing season have a marked influence on wheat yield and quality [1–6]. Drought
restricts yields and test weight but can increase grain protein, a result of shriveled kernels.
In years with good moisture, wheat yields are less restricted, but this can lead to low grain
protein. In conditions of abundant moisture, low grain quality has been attributed to a
dilution of grain protein by larger grain biomass [1,7]. Temperature, rainfall, moisture
stress before anthesis, solar radiation during grain filling, soil nitrogen (N), and rate and
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timing of supplemental N application can influence wheat protein composition through
sink/source effects on N during early growth stages [1,5,7–10].

Efficient use of N fertilizer is important for economical wheat production. Environ-
mental and economic constraints are forcing farmers to be precise in the rates and timing
of N fertilizer applications to wheat. Insufficient N reduces wheat yield and profit, while
excessive N results in wheat that is susceptible to water deficiency, disease, and lodging,
with consequently reduced quantity and quality of yield. N fertilizer is typically applied
in Israel in one of the following options: (i) All N fertilizer is applied in the fall before
sowing; (ii) the same process but followed by possible N topdressing application according
to growing conditions; (iii) Some N fertilizer is applied in the fall, followed by a mid-winter
or early spring top dressing. Although pre-sowing N fertilizer applications decrease the
potential for N deficiencies in the early stages of growth, the presence of plant-available
residual soil N from the previous season is at risk of being exported to the environment
(leaching or denitrification) and/or the creation of growth problems. Excessive pre-sowing
applications of N encourage vegetative growth and, therefore, the crop can utilize too much
soil water during that growth stage [11], leaving insufficient water during the grain filling
stage [2,12]. Late-season N applications, combined with a better temporal distribution of
N during the wheat cycle, significantly improved grain protein over yield and enhanced
the bread-making quality of the flour [7,8,13,14]. In contrast, late-season moisture stress
is essential for increasing protein up to acceptable levels, as moisture stress was found to
increase protein content and reduce grain weight [9,15–18].

Acquiring information about crops from remote platforms, such as unmanned aerial
vehicles, aircraft, or satellites, has great potential for decision-making facilitation in sea-
son fertilizer management practices [19]. At present, most application algorithms use
within-field reference N strips, regardless of the sensor [20–24]. Bonfil [25] showed that
the use of a proximal-sensing technique allows for rapid and accurate crop monitoring
and yield estimation but limits future use of remote sensing techniques as well. Agri-
cultural monitoring is conducted typically with vegetation indices (VIs) [26–29]. Remote
and proximal sensing were previously used to forecast crop grain yield and protein con-
tent [30–36]. Spatial resolution is an important factor determining the accuracy of crop
yield and quality assessments, with satellites having sensors that range from high to coarse
spatial resolutions.

Google Earth Engine (GEE) is a planetary-scale geospatial analysis cloud-based plat-
form that processes a large number of freely available scientific datasets such as Sentinel-2
(L1 and L2). GEE leverages its cloud computing service for analysis capabilities of time
series data, which are otherwise heavy consumers of time and computation resources, and
it provides predefined processes and functions in two APIs (JavaScript and Python). GEE
also helps researchers to easily disseminate their products to other users and researchers,
which enabled us to provide code and a web application, for the benefit of farmers and the
science community. GEE apps are designed to provide non-expert stakeholders (farmers)
with different tools, e.g., for optimizing crop management [37,38]. These may be used for
different agricultural purposes. For example, while the coarse-resolution advanced very
high-resolution radiometer (AVHRR; ~1 km) enables a stable and accurate yield estimation
at the county-to-regional levels [39], high spatial resolution data from sensors on satellites
such as IKONOS, VENµS, and Sentinel-2 (~4–10 m) may be used for precision farming
applications [40–44]. Even though wheat is the main field crop sown globally, there is still
a lack of knowledge regarding the optimal practice that should be exerted to properly
manage this crop. VENµS and Sentinel-2 satellites with their special features (high resolu-
tions: spatial, super-spectral, and temporal) will hopefully create new abilities in detecting
within-field reference N strips and improve wheat crop management through continuous
monitoring (in terms of time and space) of wheat fields.

The objectives of this study are (i) to develop algorithms for within-field variation
calculation (SD or percentage) on the GEE platform using Sentinel-2 and VENµS data; (ii)
display the variations with respect to the reference strips by GEE apps; (iii) to evaluate the
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outcomes of farmers practice in using these algorithms. In the following, we describe the
wheat fields, reference strips (Section 2.1), ground observations (i.e, biophysical properties
of crop, Section 2.2), Sentinel-2- and VENµS-based Vegetation Indices (Section 2.3), and the
GEE platform (Section 2.4). In the Results Section, we explore the correlations between VIs
and biophysical properties of crops (Section 3.1) and use them to interpret the relationship
between the VI anomaly maps (presented in the GEE app, Section 3.2), and the grain yield
and quality maps (presented in Section 3.3). Finally, we discuss the potential, limitations,
and existing knowledge gaps in Section 4.

2. Materials and Methods
2.1. Wheat Fields and Reference Strips

The data for this study were collected during three growing seasons 2018–2020 at
individual producers’ fields across Israel, one or more fields in each farm (Figure 1).
Farmers (with their extension advisers) established reference strips in many ways in the
first season. At the second and third seasons, farmers were asked to perform the following
tasks: (1) keeping a minimum strip size of 30 × 30 m (to include few pure VENµS pixels),
preferably 60 × 60 m or larger; (2) keeping a buffer of at least 10 m from the field edge (to
avoid edge problems, e.g., double stand, weeds, roads) if the strip does not cross the whole
field; (3) applying higher and/or lower amount (±50 kg N ha−1) base and/or top N vs. the
commercial (standard) application; (4) maintaining a north–south or west–east positioning,
which are preferred, as the satellite data are disseminated in UTM grid; (5) marking clearly
the strip edges (to ease identification).

Figure 1. Location of fields that were included in this study (blue) and those that are mentioned in
the manuscript (red).

2.2. Ground Observations

Ground observations including extensive field observations of crop progress were
conducted along the growing season. Samples of biomass, N uptake, and leaf area index
(LAI) were collected from commercial and experimental fields along the main development
stages of active vegetative growth, spanning from two leaves (Zadoks 12) up to heading
(Zadoks 59), reflecting large differences in canopy height and vegetation cover. Four
subsamples (0.3 m2) were taken from an area of 10 × 10 m in each sampled location
(treatment*field*day). A total of 121 mean values of biophysical variables (biomass, N
content) were calculated based on 960 subsamples, and 53 mean LAI were calculated based
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on 229 records. The samples were dried for 48 h at 70 ◦C and weighted (dry weight, DW),
and the above-ground plant was ground and mixed. N concentration was obtained using
NIRS (FOSS 6500) following the micro-Kjeldahl method [45]. N content was calculated by
multiplying the DW by N concentration. These data were used to assess the relationship
between VIs (see Section 2.2) and biophysical properties of crops in Section 3.1.

Yield samples were collected from fields that were not harvested for hay or silage
production. In total, 685 yield samples were collected from Gilat experiments and 187 from
commercial fields. Yield maps were available for most fields, and data were cleaned up
prior to analysis. Saad fields were harvested by a combine equipped with a grain protein
sensor (CropScan 3300H, Next Instruments, Condell Park, NSW, Australia). More than
300 samples (each season) from few fields were manually sampled during harvest to test
the accuracy of the grain protein sensor.

2.3. Sentinel-2- and VENµS-Based Vegetation Indices

Sentinel-2 (A and B) level 1C and VENµS level 1 (L1) top-of-atmosphere (TOA) re-
flectance were processed to assess variation in wheat biomass, grain yield, and grain quality.
No atmospheric correction was used, enabling to run the algorithm as an application in the
GEE platform. VENµS Super Spectral Camera and Sentinel-2 MultiSpectral Instrument
have many overlapping spectral bands with small differences [46]. Overall, 42 VIs (Supple-
mentary Materials) were computed, as a potential tool for monitoring the crop’s nutritional
contents by quantitatively retrieving the nutrient content in the crop. The bands that were
used for the four selected VIs (NDVI, REIP, NDRE, ICCI) and the equations are listed in
Tables 1 and 2. The spatial resolution for all VENµS VIs is 5 m, while for the Sentinel-2
Vis, it is 20 m except for NDVI, which is 10 m. The temporal resolution of VENµS (revisit
interval of two days) is also better than that of Sentinel-2 (five days). The tradeoff is the
global coverage of Sentinel-2 vs. local coverage of VENµS. The higher temporal resolution
of VENµS is translated into much more data along the season, and (more important) more
“clear sky” images. Figure 2 shows the NDVI phenology of one field, emphasizing less
high cloud mask conditions by VENµS (red circles).

Table 1. Vegetation indices used in the study: normalized difference vegetation index (NDVI),
Normalized difference red-edge (NDRE), red-edge inflection point (REIP), and red-edge canopy
chlorophyll index (ICCI). Band numbers are indicated in Table 2.

Vegetation Indices Equation Reference

NDVI (NIR − Red)/(NIR + Red) [47]
NDRE (NIR − RE2)/(NIR + RE2) [48]
REIP 702 + 40· (Red+RE3)/2−RE1

RE2−RE1
[49]

ICCI (RE3/RE2)− 1 [29]

Table 2. VENµS and Sentinel-2 bands (used in the equations in Table 1): band number (Band), central
wavelength (WL, nm), and spatial resolution (Resolution, m).

VENµS Sentinel-2

Band WL Resolution Band WL Resolution

Red B7 667 5 B4 664.6 10
RE1 B8 702 5 B5 704.1 20
RE2 B9 742 5 B6 740.5 20
RE3 B10 782 5 B7 782.8 20
NIR B11 865 5 B8/B8A 833/865 10/20
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Figure 2. NDVI phenology of a field, as retrieved by VENµS and Sentinel-2. CloudMask data are for
the whole tile.

2.4. Google Earth Engine (GEE)

The present study provides a GEE web app that enables optimization of yield by
providing the farmer with the ability to monitor the spatial heterogeneity of VIs anomaly
(with respect to the mean) while using a reference strip with known N application to
interpret the retrieved anomaly and apply N based on this information. VENµS images
and selected polygons of wheat fields in Israel were uploaded to the GEE platform. Figure 3
describes in orange the users’ inputs before calculating the anomalies and, in green, the
anomaly calculations performed (in the background) on each polygon (field). Figure 4
presents the results (i.e., the NDVI anomaly) for 15 Jan 2019, displayed in a browser as a
deviation of ±σ and ±2σ (or percentage) from the mean using predefined symbology. Five
wheat fields in Saad and references strips polygons are displayed, while 3σ extreme values
are masked.

Figure 3. Anomaly Explorer app algorithm.



Remote Sens. 2021, 13, 3934 6 of 15Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 4. Anomaly Explorer app running in chrome browser with Sentinel-2 data presenting NDVI 
anomalies in five wheat fields in Saad on 15 January 2019. 

3. Results 
3.1. Correlation between VIs and Biophysical Properties of Crop 

Non-linear equations provided higher correlations (r) between the wheat parameters 
and VIs (Figure 5). Wheat biophysical variables (biomass, nitrogen content, and LAI) were 
regressed against the best three VIs (REIP, NDRE, ICCI) and NDVI from the pixel of the 
sampling location (samples cannot represent spatial distribution) (Table 3). 

 
Figure 5. Correlation between wheat above ground N uptake and REIP, retrieved by VENµS and 
Sentinel-2 (L1), based on sampling average (per field*day). 

Table 3. Correlation between Sentinel-2- (blue) and VENµS-based vegetation indices (VI) and wheat 
biomass (dry weight, DW), N content, N concentration, and LAI based on sampling average (per 
field*day). 

 DW (g m−2) N (g m−2) N (%) LAI 
VI r RMSE r RMSE r RMSE r RMSE 

NDVI 0.519 155 0.632 3.61 0.271 0.82 0.495 1.54 
 0.586 148 0.694 3.37 0.422 0.77 0.489 1.55 

NDRE 0.702 129 0.794 2.83 0.464 0.75 0.820 1.01 
 0.730 125 0.796 2.83 0.538 0.71 0.813 1.03 

ICCI 0.749 120 0.826 2.62 0.391 0.78 0.805 1.05 
 0.729 125 0.807 2.76 0.499 0.73 0.783 1.10 

REIP 0.821 103 0.869 2.31 0.421 0.77 0.829 0.99 
 0.797 110 0.807 2.76 0.506 0.73 0.831 0.99 

The correlations for the averaged (per field*day) samples were higher than those for 
the individual sampling points for both VENµS and Sentinel-2. REIP, ICCI, and NDRE 
exhibit a high correlation with the biophysical variables. For these parameters, the VENµS 
higher resolution (5 m pixel) does not exhibit significant improvement over Sentinel-2. 

R2 = 0.65
SEP = 2.2
RMSE = 2.8

R2 = 0.75
SEP = 2.0
RMSE = 2.3

Mean REIP

VENµSSentinel-2

M
ea

n 
N 

(g
 m

-2
)

715     720    725    730    735 715     720    725    730    735

0 
   

  5
   

  1
0 

   
15

   
 2

0

Figure 4. Anomaly Explorer app running in chrome browser with Sentinel-2 data presenting NDVI
anomalies in five wheat fields in Saad on 15 January 2019.

3. Results
3.1. Correlation between VIs and Biophysical Properties of Crop

Non-linear equations provided higher correlations (r) between the wheat parameters
and VIs (Figure 5). Wheat biophysical variables (biomass, nitrogen content, and LAI) were
regressed against the best three VIs (REIP, NDRE, ICCI) and NDVI from the pixel of the
sampling location (samples cannot represent spatial distribution) (Table 3).

Figure 5. Correlation between wheat above ground N uptake and REIP, retrieved by VENµS and
Sentinel-2 (L1), based on sampling average (per field*day).

Table 3. Correlation between Sentinel-2- (blue) and VENµS-based vegetation indices (VI) and wheat
biomass (dry weight, DW), N content, N concentration, and LAI based on sampling average (per
field*day).

DW (g m−2) N (g m−2) N (%) LAI

VI r RMSE r RMSE r RMSE r RMSE

NDVI 0.519 155 0.632 3.61 0.271 0.82 0.495 1.54
0.586 148 0.694 3.37 0.422 0.77 0.489 1.55

NDRE 0.702 129 0.794 2.83 0.464 0.75 0.820 1.01
0.730 125 0.796 2.83 0.538 0.71 0.813 1.03

ICCI 0.749 120 0.826 2.62 0.391 0.78 0.805 1.05
0.729 125 0.807 2.76 0.499 0.73 0.783 1.10

REIP 0.821 103 0.869 2.31 0.421 0.77 0.829 0.99
0.797 110 0.807 2.76 0.506 0.73 0.831 0.99

The correlations for the averaged (per field*day) samples were higher than those for
the individual sampling points for both VENµS and Sentinel-2. REIP, ICCI, and NDRE
exhibit a high correlation with the biophysical variables. For these parameters, the VENµS
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higher resolution (5 m pixel) does not exhibit significant improvement over Sentinel-2. The
correlations with canopy N concentration were low for most indices. The correlations were
much higher for canopy N content, similar to those for biomass, as was also observed over
rice [50]. The correlations were highest for REIP, r = 0.81 (VENµS) and 0.87 (Sentinel-2),
and steady along the three growing seasons (Figure 5). VENµS VI’s values were in high
correlation with Sentinel-2 VI’s (Figure 6), although several sampling fields/dates can be
considered outliers probably because of abnormal atmospheric conditions.

Figure 6. Correlation between VENµS and Sentinel-2 vegetation indices, as retrieved from wheat
fields during 2018–2020. Symbols represent season and colors represent the difference in the number
of days between VENµS and Sentinel-2 images.

3.2. GEE Anomaly App

Figure 7 shows VENµS and Sentinel-2 NDVI and REIP anomalies for five fields in
Saad on 15 January 2019, as seen in the GEE anomaly app. The NDVI within field patterns
for VENµS and Sentinel-2 were similar. VENµS-based REIP exhibited much more variation
than Sentinel-2, probably due to the coarser spatial resolution of Sentinel-2.
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Figure 7. Anomaly Explorer app using a standard deviation of NDVI and REIP calculated from L1
VENµS (15/1/2019) and Sentinel-2 (16/1/2019) data in five wheat fields in Saad. Spatial resolution:
VENµS 5 m; Sentinel-2 10 m (NDVI) and 20 m (REIP).

3.3. Evaluation of Grain Yield and Quality

Reference strips should be used for topdressing nitrogen application (i.e., if a signifi-
cant difference is identified between the reference strip and the whole field, a topdressing is
recommended such as that performed with proximal sensing) and evaluated with respect
to the grain quantity and quality. Figure 8 shows row data of grain yield and grain protein
from the five fields that are presented in Figure 7. In field 101N, herbicide drift from the
nearby field (west to east) decreased grain yield and increased grain protein; this effect is
shown nicely by the NDVI-based anomaly app from 3 weeks after herbicide application.
In field 105S, the anomaly app (Figure 7) shows a significant difference between the west
and east parts regarding soil management (previous crop), which is reflected in the yield
map (Figure 8a). Field 105N exhibits a higher yield in the west south area, similar to the
NDVI-based anomaly app (Figure 7). Yield reduction is seen at two small areas, in the east
and in the south of field 106S (probably weeds and water, respectively). Yield production
is more uniform than grain protein in field 106N (Figure 8a). The variation shown by the
anomaly app (Figure 7) for this field can be attributed to the lower grain protein content
in the south of field 106N with respect to the north of that field (Figure 8b, control and
reference, respectively), which is negatively correlated to yield and NDVI.

Farmers and extension advisors used the first version of the GEE app during the 2020
season. Time series (along the growing season) of red-edge-based VIs were very useful for
the detection of infield anomalies. Figure 9 shows time series from one field in Beit Guvrin
(Field 109) to demonstrate the anomaly detection by the reference strips. N treatments
(base and top) are described in Table 4. On average, during tillering, the values of the
high-reference strip (refH) were similar to the commercial (comm) management but were
higher than the neighboring area. The values of the VIs in the lower-reference strip (refL)
were significantly lower, starting about 30 days after emergence, thus forcing the farmer
to decide whether to apply topdressed nitrogen. In this example, the eastern part of the
field received the topdressed fertilization (topN), while the areas near the reference strips
(and the strips) were left without this topN application (comm). The topdressed N indeed
had a positive effect on the crop, reaching higher values of VIs (since application) and
grain yield (Figures 9 and 10, Table 4). More important, grain quality was improved by
the topN application, showing an increase in protein and gluten content, reaching the
quality standard (protein >11% and wet gluten > 25%, Table 4). Split nitrogen application
(commercial + topN) yielded the same grain quantity as the base application (refH) but
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with higher quality, emphasizing the importance of splitting nitrogen application in this
growing region (Table 4). This advantage of the split application is significantly shown by
all VIs, both VENµS, and Sentinel-2.

Figure 8. (a) Wheat grain yield (t ha−1) and (b) grain protein content (%) maps of five fields in Saad (in Figure 7) for the
2019 season.

Figure 9. VENµS and Sentinel-2 based NDVI, NDRE, REIP, and ICCI along the growing season
November 2019–April 2020 in Beit Guvrin (Field 109, Figure 10). Average VI values are plotted for
commercial (comm), reference strips (refH, refL), and topdressed N (topN) managements. VENµS
operation caused missing period January–February data.
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Table 4. N management: Grain yield and grain-quality parameters as affected by N treatment, in
Beit Guvrin, field #109, 2020 season.

N Treatment (Base + Top) Yield Test Weight Protein Wet Gluten

kg N ha−1 t ha−1 kg 100 L−1 % %

Reference low (0 + 0) 2.69 82.9 10.3 22.5
Commercial (50 + 0) 3.85 82.3 10.3 23.5
Reference high (100 + 0) 4.49 82.1 10.9 24.0
Commercial + topN (50 + 50) 4.46 80.6 11.4 26.0

Figure 10. Wheat grain yield (raw data, t ha−1) map of Beit Guvrin, field 109, 2020 season. N
management is described in Table 4.

Figure 11 shows that the refH (triangles) and refL (circles) values are only slightly
higher/lower (up to 5%) than the control (except ICCI—yellow), whereas topN (squares)
shows a much higher difference by all VIs. Since refL did not receive the topN (after 16
January), all VIs exhibit the deficiency (circles are always lowest). ICCI showed the highest
difference between managements (for both VENµS and Sentinel-2).

Figure 11. Reference strip or topdressed N managements: VENµS- and Sentinel-2-based NDVI, NDRE, REIP, and ICCI
difference from the commercial management along the growing season. Beit Guvrin 2020 (Field 109). REIP difference was
calculated based on REIP-700. VENµS operation caused missing period January–February data.

4. Discussion and Conclusions

Manivasagam et al. [46] developed transformation coefficients from VENµS to Sentinel-
2 surface reflectance for their overlapping spectral bands (i.e., visible, red edge, and near
infrared), enabling the images from Sentinel-2 and VENµS to be combined into one time
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series that facilitates continuous, temporally dense vegetation monitoring. However, the VI
values per se are not important for anomaly detection and/or the difference in the reference
strip identification. Although retrieving absolute values is preferable, the high correlation
between the sensors-based VIs (Figure 6) enabled using an algorithm that is based on VIs
regardless of the sensor and detecting anomalies even without atmospheric corrections.
The correlations with NDVI were lower than all red-edge-based VIs, for biomass canopy N
content (Table 3). The main advantage of using NDVI is the higher spatial resolution in
many satellites’ sensors (including Sentinel-2).

The potential to retrieve biophysical parameters using VENµS and Sentinel-2 L1
images was demonstrated. Although the correlations between satellite-based VIs and wheat
parameters were lower than those from proximal-sensing-based (multi- and hyperspectral)
VIs [49,51–55], only a small reduction is shown for VI correlations with nitrogen uptake.
Moreover, crop phenology (growth stage) affects these correlations [51,54,56], lowering
the correlations where samples cover many growth stages in different environments, as
was the case in this study. REIP exhibited the highest correlations with the biophysical
variables. WDRVI) [53] reached high correlations but lower than REIP (data not shown).
The fits based on proximal sensing [25] were better than those based on satellites data
(Table 3). This can be attributed to timing, as proximal sensing was taken at the same time
as the samples, while satellite remote sensing data were retrieved mostly not at the same
sampling day, even with a long period between them (Figure 6).

VENµS spatial, spectral, and temporal resolutions are higher than other available
satellites. The combination of 5 m pixels for the red-edge bands, and the two days revisit
time, provides an advantage over Sentinel-2 data. The tradeoff is the specific small regions
that are covered by VENµS versus the global coverage of Sentinel-2. The ability to use
L1 VENµS or Sentinel-2 data through GEE opens the opportunity to use these data for
several applications by farmers and others. An obvious opportunity is to use satellite
images through GEE for anomaly detection. Nowadays, most farmers have a polygon layer
containing the borders of all their fields. After uploading this layer to the GEE platform,
the farmer can look for anomalies within each field along the growing season. The only
limitation is a clear sky that enables acquiring a good image. An anomaly can be a result
of many abiotic or biotic factors such as water leakage/blockage from/in an irrigation
system, fertilization level, soil compaction, weed/disease/insect infestation/infection,
fallow, salinity, etc. Anomaly identification does not point to the cause of the anomaly, but
it can assist farmers to monitor the problematic points in the field.

We based the GEE algorithm on NDVI since it is sensitive to almost every biotic
and abiotic (significant) anomaly [36] and is provided at the highest spatial resolution.
Although Sentinel-2 red-edge VI (REIP) is provided at a lower resolution (20 m), it was
included in the GEE anomaly app, as it is sensitive to wheat crop conditions even in 24 m
wide reference strips (Figure 10). These traits emphasize the possibility to use the GEE
anomaly app in the “real world” immediately.

Reference fertilization strips are based on a lower or higher level of base/to- applied
nitrogen. Where the lower N level has a significant effect, the N deficiency symptom
should be shown by a decrease in biomass production and/or reduce N content in wheat
dry matter. Conversely, significant superfluous N levels should be shown by an increase
in biomass production and/or increase N content in wheat dry matter. In both cases,
wheat above ground N uptake (biomass multiplied by N concentration) represent the real
situation and can be best estimated by REIP (Figure 5). Therefore, the REIP GEE algorithm
is suggested for N reference strip estimations. The satellite-based correlations were in some
cases lower than proximal sensing data. Nevertheless, Figure 5 shows that the correlations
of the N uptake estimations are high enough to be used (with the S2 L1 REIP) for making
decisions based on reference strips. This is in agreement with the use of red-edge-based
VIs for reference strip or nitrogen uptake in wheat, rice, and corn [22,51,57,58].

Several algorithms have been developed for fertilization and yield estimation based on
proximal sensing sensors such as RapidScan, GreenSeaker, Yara, and other similar sensors
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based on NDVI and/or NDRE. When proximal and remote sensing occur within 4 days
difference, high correlations exist between RapidScan NDVI and NDRE, and L1 VENµS
and Sentinel-2 VIs (NDVI 0.62 and 0.7, NDRE 0.83 and 0.77 for VE and S2, respectively).
Hence, algorithms that have been developed for topdressing nitrogen application based
on proximal sensing should work well also with remote sensing data. There are two
main limitations: (1) image availability: the revisit time of Sentinel-2 is 5 days; hence,
real applications could face limiting cloudy conditions. In some cases, it can continue
for 2–3 or more image dates. Therefore, reducing the revisit time, such as the two days
VENµS revisit resolution, is very important; (2) reference strip: Since the reference strip
should be identified by the sensor, it should include pure pixels. Sentinel-2 NDVI and
REIP/NDRE/ICCI spatial resolution is 10 and 20 m, requiring larger reference strips.
VENµS spatial resolution is 5 m for both VIs, enabling the use of smaller reference strips.
Hence, the high temporal and spatial resolution of VENµS enables monitoring agricultural
fields during the growing season better than the lower resolution Sentinel-2.

It is important to stress that, in many cases, yield and or yield quality did not vary
between the reference area and the whole field. In some cases, other biotic/abiotic stress
canceled the effect of the reference nitrogen strip. For example, in field 101N (Figure 8), the
reference strip “effect” was canceled by herbicide drift from a nearby field that affected
grain yield and quality. In some cases, excessive N base application in the reference strip
encouraged vegetative growth, which was shown by the Anomaly Explorer app but the
crop utilized too much soil water during that growth stage, leaving insufficient water
during the grain filling stage and even causing grain yield reduction. Hence, many fields
exhibited lower correlations than field #109 (Figures 9–11). Therefore, the GEE anomaly app
can be used for decision making as regards topdressing N application, but there are some
major issues that must be addressed, and more research is required. the most important
points among them are highlighted as follows:

• Anomaly: Which calculation will best support decision making—deviation of vari-
ance/STD or deviation of percentage from the mean?

• Threshold: What kind of threshold will best support a decision to apply topdressed
N?Is it a fixed threshold or should it be affected by parameter(s), such as the VI used,
phenology stage, cultivar, fallow, precipitation?

• Reference strip: It is obvious that more pure pixels would enable better identification,
but the minimum strip size should be determined, as well as its shape (square/rectangle),
distance from the field edge, and orientation (facing north/ignore direction).

• Cloud/Shade: Clear sky provides optimal conditions, while complete cloud cover
prevents using the image. However, in many images, part cloudy condition prevails,
causing complications such as areas covered by clouds that cannot be used, and
areas shaded by clouds (or semitransparent clouds) that are questionable to be used
for reference strip decisions. There are some confusing preliminary data showing
that anomalies can or cannot be detected under these problematic conditions, which
requires further studies to determine the limits.

To conclude, satellite images can be used in the GEE platform for anomaly detection,
rendering results within a few seconds. The ability to use VENµS or Sentinel-2 data through
GEE opens the opportunity to use these data for several applications by farmers and others.
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