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Abstract: Polarimetric synthetic aperture radar (PolSAR) can obtain fully polarimetric information,
which provides chances to better understand target scattering mechanisms. Ship detection is an
important application of PolSAR and a number of scattering mechanism-based ship detection
approaches have been established. However, the backscattering of manmade targets including ships
is sensitive to the relative geometry between target orientation and radar line of sight, which makes
ship detection still challenging. This work aims at mitigating this issue by target scattering diversity
mining and utilization in polarimetric rotation domain with the interpretation tools of polarimetric
coherence and correlation pattern techniques. The core idea is to find an optimal combination of
polarimetric rotation domain features which shows the best potential to discriminate ship target
and sea clutter pixel candidates. With the Relief method, six polarimetric rotation domain features
derived from the polarimetric coherence and correlation patterns are selected. Then, a novel ship
detection method is developed thereafter with these optimal features and the support vector machine
(SVM) classifier. The underlying physics is that ship detection is equivalent to ship and sea clutter
classification after the ocean and land partition. Four kinds of spaceborne PolSAR datasets from
Radarsat-2 and GF-3 are used for comparison experiments. The superiority of the proposed detection
methodology is clearly demonstrated. The proposed method achieves the highest figure of merit
(FoM) of 99.26% and 100% for two Radarsat-2 datasets, and of 95.45% and 99.96% for two GF-3
datasets. Specially, the proposed method shows better performance to detect inshore dense ships
and reserve the ship structure.

Keywords: polarimetric synthetic aperture radar; rotation domain; ship detection; support vector
machine; scattering mechanism

1. Introduction

Ship detection is one of the most important applications of synthetic aperture radar
(SAR) images. With the development of radar technology and the implementation of
polarimetric synthetic aperture radar (PolSAR) system, ship detection in PolSAR image
receives plenty of research [1–3]. Compared with SAR, PolSAR can provide a complete
polarization scattering matrix of the target and fully polarimetric information. Currently,
many ship detection schemes have been established.

The constant false alarm rate (CFAR) detection is the most common method for ship
target detection in PolSAR images [4–6]. Because ship target has strong scattering echo
compared with sea clutter, the CFAR detection method can achieve better detection effect
when the target prior information is unknown. A variety of statistical models are used to
model sea clutter in CFAR detection, including Gamma distribution, generalized Gaussian
distribution, K distribution, and Weibull distribution [7]. In addition, the polarimetric
whitening filter (PWF) [8], the reflection symmetry-based filter (RSF) [9], and the polari-
metric notch filter (PNF) [10] are also proposed to enhance the contrast between the target
and sea clutter.
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Considering the different polarimetric scattering characteristics of ship and sea clutter,
a lot of scattering mechanism-based ship detection schemes have been developed [11–13].
Polarimetric target decomposition is one of the important tools for PolSAR image inter-
pretation [14,15]. The polarimetric parameters obtained by decomposition can be used
to distinguish potential targets from their local clutter. Ringrose et al. [11] first applied
Cameron decomposition to ship target detection. Touzi et al. [12] applied the Cloude–
Pottier decomposition to detect ships and achieved good ship detection results through
polarization entropy, eigenvalue, and alpha angle. Sugimoto et al. [13] utilized the decom-
position of the four-component model proposed by Yamaguchi for ship target detection.
The advantage of these algorithms lies in the simplicity of interpretation and calculation.
In addition, based on the difference of reflection symmetry between ship and sea clutter,
a polarimetric SAR ship detection method with the correlation of co-polarization and
cross-polarization channels is proposed [16]. Furthermore, based on the similarity test of
the polarimetric coherence matrix, the saliency feature that can effectively distinguish ship
and sea clutter can be extracted. In this vein, a saliency detector for PolSAR ship detection
is proposed [17].

Apart from the above-mentioned methods, many successful techniques in the field
of optical image processing such as the superpixel method are also applied to ship target
detection in PolSAR images and have achieved good results [18,19]. The superpixel
method can segment ship target and sea clutter into different superpixels and select pure
background pixels. Besides, there are many hyperspectral image processing algorithms
that can be applied if one formulates the ship detection as a hyperspectral image processing
problem [20,21]. With the development and application of machine learning theories
and methods, the support vector machine (SVM) classifier [22–24] and deep learning
detector [25–27] driven by data samples are used for ship target detection, which obtains
good detection performance.

The backscattering of manmade targets, including ships, is sensitive to the relative
geometry between target orientation and radar line of sight, which can affect the perfor-
mance of ship detection. However, rich information is also contained within this target
scattering diversity [28]. Recently, the uniform polarimetric matrix rotation theory [28],
polarimetric coherence, and correlation pattern techniques [29,30] were developed to ex-
plore the hidden information in the polarimetric rotation domain. These techniques have
achieved many successful applications [30–32]. This work focuses on the hidden feature
exploration of polarimetric coherence and correlation pattern and the optimal combination
of these features for ship detection. In addition, ship detection is equivalent to ship and
sea clutter classification after the ocean and land partition. Therefore, a novel PolSAR ship
detection scheme is established with the optimal polarimetric rotation domain features and
the SVM classifier.

This paper is organized as follows: Section 2 introduces and demonstrates the polari-
metric coherence and correlation pattern techniques. Section 3 describes the proposed ship
detection method. Section 4 quantitatively analyses the detection results with different
PolSAR datasets and demonstrates the performance of the proposed method. Finally,
discussion and conclusions are given in Sections 5 and 6.

2. Polarimetric Rotation Domain Investigation
2.1. Polarimetric Matrix

For polarimetric imaging radar, on a horizontal and vertical polarization basis, the
polarimetric scattering matrix is represented as:

S =

[
SHH SHV
SVH SVV

]
(1)

where SVH is the backscattered coefficient from horizontal polarization transmission and
vertical polarization reception. Other terms are similarly defined.
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By rotating the polarimetric scattering matrix around the radar line of sight, the
polarimetric scattering matrix in the rotation domain can be obtained [29]:

S(θ) =
[

cos θ sin θ
− sin θ cos θ

][
SHH SHV
SVH SVV

][
cos θ − sin θ
sin θ cos θ

]
(2)

where θ is the rotation angle, and θ ∈ [−π, π).
With the reciprocity condition, the polarimetric coherency matrix of the target can be

expressed as:

T =
〈

kpkH
p

〉
=

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 (3)

where kp is the Pauli vector, kH
p is the conjugate transpose of kp, 〈·〉 indicates sample

average.

2.2. Polarimetric Coherence Pattern

The coherence values between different polarization channels in polarimetric imaging
radar data contain rich target information [33]. Based on the polarimetric matrix rotation
processing, for arbitrary two polarization channels s1 and s2, the polarimetric coherence
pattern [29] can be written as:

|γ1-2(θ)| =
|〈s1(θ)s∗2(θ)〉|√〈
|s1(θ)|2

〉〈
|s2(θ)|2

〉 (4)

where s∗2 is the conjugate of s2. The value of |γ1-2(θ)| is within [0, 1).
The visualization pattern in the polarimetric rotation domain can be obtained by

representing the polarimetric coherence pattern in polar coordinates with the rotation
angle θ.

Then, 10 polarimetric features are derived to characterize the polarimetric coher-
ence pattern, including the original coherence γ-org = |γ1-2(0)|, the standard deviation
of coherence γ-std = std{|γ1-2(θ)|}, the coherence contrast γ-contrast = γ-max − γ-min, the
coherence anisotropy γ-A = (γ-max − γ-min)/(γ-max + γ-min), the mean value of coherence
γ-mean = mean{|γ1-2(θ)|}, the maximum coherence γ-max = max{|γ1-2(θ)|}, the mini-
mum coherence γ-min = min{|γ1-2(θ)|}, the maximum rotation angle
θγ−max = argmax{|γ1-2(θ)|}, the minimum rotation angle θγ−min = argmin{|γ1-2(θ)|

}
,

and the coherence beamwidth γ-bw0.95 (angle range less than 0.95× γ-max).

Based on the lexicographic vector kL =
[
SHH
√

2SHVSVV

]T
and the Pauli vector kp =

1/
√

2[SHH + SVVSHH − SVV 2SHV]
T, six kinds of typical polarimetric coherence patterns

can be obtained, including |γHH-VV(θ)|, |γHH-HV(θ)|, |γVV-HV(θ)|,
∣∣∣γ(HH+VV)-(HH-VV)(θ)

∣∣∣,∣∣∣γ(HH+VV)-(HV)(θ)
∣∣∣ and

∣∣∣γ(HH-VV)-(HV)(θ)
∣∣∣.

The following rotation domain equivalence can be verified:

|γHH-VV(θ)| = |γVV-HV(θ + π/2)| (5)∣∣∣γ(HH+VV)−(HH-VV)(θ)
∣∣∣ = ∣∣∣γ(HH+VV)-(HV)(θ + π/4)

∣∣∣ (6)

Therefore, there are four kinds of independent polarimetric coherence patterns, in-
cluding |γHH-VV(θ)|, |γHH-HV(θ)|,

∣∣∣γ(HH+VV)-(HH-VV)(θ)
∣∣∣ and

∣∣∣γ(HH-VV)-(HV)(θ)
∣∣∣, which

are considered thereinafter.
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2.3. Polarimetric Correlation Pattern

The correlation values of the two polarization channels also contain potential infor-
mation [9]. Based on the polarimetric coherence pattern, Cui et al. [30] proposed the
polarimetric correlation pattern for ship detection, which achieved good ship detection
results. For arbitrary two polarization channels s1 and s2, the polarimetric correlation
pattern can be written as:

|γ̂1-2(θ)| = |〈s1(θ)s∗2(θ)〉| (7)

where, s∗2 is the conjugate of s2. The value of |γ̂1-2(θ)| is within [0, ∞).
Similar to polarimetric coherence pattern, the original correlation γ̂-org, the standard

deviation of correlation γ̂-std, the correlation contrast γ̂-contrast, the correlation anisotropy
γ̂-A, the mean value of correlation γ̂-mean, the maximum correlation γ̂-max, the minimum
correlation γ̂-min, the maximum rotation angle θγ̂−max, the minimum rotation angle θγ̂−min
and the correlation beamwidth γ̂-bw0.95 are derived accordingly.

2.4. Demonstration and Investigation

PolSAR datasets from Radarsat-2 and GF-3 covering the Hong Kong area, China,
are utilized for polarimetric coherence and correlation patterns demonstration and in-
vestigation, shown in Figures 1 and 2. Two areas contain various types of ships. The
ground-truth images are annotated by experts combined with professional knowledge,
shown in Figures 1b and 2b. Four ship slices with different orientations are selected from
the two datasets, respectively, shown in Figures 1c and 2c. The sizes of slices are all 25 × 25
(pixel × pixel). Note that the area marked with green rectangle contains a large number of
inshore dense ship targets, which is challenging for ship detection. In this work, this area
is chosen for further ship detection validation.

Figure 1. Radarsat-2 PolSAR dataset. (a) Pauli RGB image. (b) Ground-truth image. (c) Ground-truth images of selected
ship slices.
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Figure 2. GF-3 PolSAR dataset. (a) Pauli RGB image. (b) Ground-truth image. (c) Ground-truth images of selected ship
slices.

The polarimetric coherence pattern and polarimetric correlation pattern of each pixel
are calculated. The polarimetric coherence pattern |γHH-VV(θ)| as an example is utilized
for investigation, shown in Figure 3. With the ground-truth, the ship target areas are
marked with red and the sea clutter areas are marked with blue. For middle and low
sea state, the sea clutter is surface-scattering dominant. The ship target is double-bounce
scattering dominant, which also includes surface-scattering, helix-scattering, and mixture
scattering mechanisms. The difference of the scattering mechanism between the sea clutter
and the ship target leads to different variation trend of their polarimetric coherence and
correlation values in rotation domain. The polarimetric coherence pattern |γHH-VV(θ)| of
sea clutter is close to a circle, which indicates the roll-invariant property. The polarimetric
coherence pattern |γHH-VV(θ)| of ship target shows a multi-lobe shape, which exhibits
obvious scattering directivity effect. The polarimetric coherence patterns |γHH-VV(θ)| of
sea clutter and ship pixels are significantly different. Similar phenomenon can also be
observed from other kinds of polarimetric coherence and correlation patterns. Therefore,
the polarimetric coherence and correlation pattern have the potential to distinguish ship
target from sea clutter. In this vein, the key lies in how to find an optimal polarimetric
rotation domain feature set, which will be investigated in the following section.

Figure 3. Cont.
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Figure 3. The polarimetric coherence patterns |γHH-VV(θ)| of ship slices from (a1–a4) Radarsat-2 PolSAR dataset, (b1–b4)
GF-3 PolSAR dataset.

3. Methods
3.1. Polarimetric Rotation Domain Feature Selection

Ten polarimetric features can be derived from each polarimetric coherence pattern
and polarimetric correlation pattern. Among them, polarimetric coherence pattern features
such as θγ−min, θγ−max and γ-bw0.95, and polarimetric correlation pattern features such as
θγ̂−min, θγ̂−max and γ̂-bw0.95 represent the statistical characteristics of angles in the rotation
domain. The other features represent the statistical properties of the polarimetric coherence
and correlation values in rotation domain. These two kinds of features have different
dimensions, so they cannot be compared quantitatively and uniformly. Therefore, only
seven polarimetric rotation domain features, which represent the value variation, are
considered in this work.

Therefore, totally 28 polarimetric rotation domain features from polarimetric coherence
patterns, including |γHH-VV(θ)|, |γHH-HV(θ)|,

∣∣∣γ(HH+VV)-(HH-VV)(θ)
∣∣∣ and

∣∣∣γ(HH-VV)-(HV)(θ)
∣∣∣,

and 28 features from polarimetric correlation patterns including |γ̂HH-VV(θ)|, |γ̂HH-HV(θ)|,∣∣∣γ̂(HH+VV)-(HH-VV)(θ)
∣∣∣ and

∣∣∣γ̂(HH-VV)-(HV)(θ)
∣∣∣ are used for further study. Besides, the

scattering power SPAN and T diagonal elements such as T11, T22 and T33 are also analyzed.
Normally, these polarimetric features can contain redundant information, and each

polarimetric feature has different classification power. Therefore, a scheme for optimal fea-
tures selection is proposed. The relief method [34] is a feature weight calculation algorithm,
which can estimate the weight of each feature based on its ability to classify between differ-
ent categories of samples. The larger the weight value, the stronger the feature classification
ability is. Following this rationale, the weight of each feature is calculated. Totally 3000 ship
pixels and 3000 sea clutter pixels are randomly selected from Radarsat-2 dataset for weight
estimation. Figure 4 shows the weight of 56 polarimetric rotation domain features and
traditional features. Each column represents a polarimetric feature. It can be seen that
different polarimetric features have different abilities to distinguish ship clutter from sea
clutter. Especially, the weight values of polarimetric coherence features |γHH-VV(θ)|max,∣∣∣γ(HH-VV)-(HV)(θ)

∣∣∣
max

and
∣∣∣γ(HH-VV)-(HV)(θ)

∣∣∣
mean

, and polarimetric correlation features∣∣∣γ̂(HH-VV)-(HV)(θ)
∣∣∣
org

, |γ̂HH-HV(θ)|org and
∣∣∣γ̂(HH-VV)-(HV)(θ)

∣∣∣
min

are higher than those of

other features, which are 0.98, 0.81, 0.71, 1.01, 0.89, and 0.73, respectively. In this case, these
six polarimetric rotation domain features have the best potential to discriminate ship target
and sea clutter, which can be used for ship detection.



Remote Sens. 2021, 13, 3932 7 of 19

Figure 4. The weight of each feature from Radarsat-2 PolSAR dataset. From left to right are the weight of the original
value, the standard deviation value, the contrast value, the anisotropy value, the mean value, the maximum value, and the
minimum value in each group, respectively.

In order to prove the robustness of the selected feature, similar experiments are per-
formed on the GF-3 PolSAR dataset. Similarly, 3000 ship pixels and 3000 sea clutter pixels
are randomly selected from the GF-3 dataset for weight estimation. Figure 5 shows the
weight of 56 polarimetric rotation domain features and traditional features. It can be
seen that the weight of the polarimetric coherence features, including |γHH-VV(θ)|max,∣∣∣γ(HH-VV)-(HV)(θ)

∣∣∣
max

and
∣∣∣γ(HH-VV)-(HV)(θ)

∣∣∣
mean

, and polarimetric correlation features in-

cluding
∣∣∣γ̂(HH-VV)-(HV)(θ)

∣∣∣
org

, |γ̂HH-HV(θ)|org and
∣∣∣γ̂(HH-VV)-(HV)(θ)

∣∣∣
min

are also the high-

est, which are 0.83, 0.78, 0.72, 0.97, 0.92, and 0.82, respectively. Therefore, these six optimal
polarimetric rotation domain features are selected to construct a feature vector for PolSAR
ship detection:

v = [|γHH-VV(θ)|max

∣∣∣γ(HH-VV)-(HV)(θ)
∣∣∣
max

∣∣∣γ(HH-VV)-(HV)(θ)
∣∣∣
mean∣∣∣γ̂(HH-VV)-(HV)(θ)

∣∣∣
org
|γ̂HH-HV(θ)|org

∣∣∣γ̂(HH-VV)-(HV)(θ)
∣∣∣
min

]
(8)
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Figure 5. The weight of each feature from the GF-3 PolSAR dataset. From left to right are the weight of the original value, the
standard deviation value, the contrast value, the anisotropy value, the mean value, the maximum value, and the minimum
value in each group, respectively.

3.2. Ship Detection Scheme

With the Relief method, six optimal polarimetric rotation domain features are selected.
It is known that ship detection is equivalent to ship and sea clutter classification after
the ocean and land partition. SVM is a kind of common classifier based on the structural
risk minimization principle, which can reduce the generalization error upper bound and
has good generalization ability [35]. In this work, a novel ship detection scheme is estab-
lished with the optimal polarimetric rotation domain features and the SVM classifier. The
flowchart of the proposed ship detection scheme is shown in Figure 6. Firstly, based on
the PolSAR data after speckle filtering, the coherence values and the correlation values
between polarization channels are extended to the polarimetric rotation domain, and four
independent polarimetric coherence and correlation patterns are constructed. Secondly,
six optimal polarimetric rotation domain features from the polarimetric coherence and
correlation patterns with high weight are selected, and these polarimetric features are
normalized, respectively. Lastly, the ship candidates are available with the SVM classifier.
Morphological processing is carried out and the final result of PolSAR ship detection can
be obtained.
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Figure 6. Flowchart of the proposed ship detection scheme.

4. Experimental Results

The spaceborne PolSAR datasets from Radarsat-2 and GF-3 are used to verify the per-
formance of the proposed method. The SO-CFAR method [6] and superpixel method [18]
are selected for comparison. In addition, in order to verify the advantages of the opti-
mal polarimetric rotation domain features, T diagonal elements (T11, T22 and T33) and
three polarimetric correlation features (

∣∣∣γ̂(HH-VV)-(HV)(θ)
∣∣∣
min

,
∣∣∣γ̂(HH-VV)-(HV)(θ)

∣∣∣
org

and

|γ̂HH-HV(θ)|org) with high target-to-clutter ratio (TCR) [30] are also used for comparison.
These methods are named SO-CFAR, SP, T3 + SVM, and PCP + SVM in the following,
respectively.

4.1. Data Description

Totally four kinds of spaceborne PolSAR datasets from Radarsat-2 and GF-3 are used
to validate the ship detection performances. The data information in detail including
imaging area, acquisition date, data size, resolution, and ship number is shown in Table 1.
Figure 7 shows these PolSAR datasets. The Pauli RGB images are shown in Figure 7(a1–d1)
and the ground-truth images are shown in Figure 7(a2–d2). The ground-truth images are
annotated by experts combined with professional knowledge, where white represents the
ship target pixel, black represents the sea clutter pixel, and gray represents the land pixel.
The SimiTest method [36] is adopted for speckle filtering.

Figure 7. Cont.
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Figure 7. Experimental datasets. (a1,a2) Radarsat-2 area I data. (b1,b2) Radarsat-2 area II data. (c1,c2)
GF-3 area I data. (d1,d2) GF-3 area II data. The numbers 1 and 2 indicate the Pauli RGB images and
ground-truth images, respectively.
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Table 1. Experimental data information.

Sensor Imaging Area Acquisition Date Size
(range × azimth)

Resolution
(range × azimth) Ship Number

Radarsat-2 Hong Kong 16 December 2008 500 pixels × 300 pixels 12 m × 8 m 135
Radarsat-2 Strait of Gibraltar 1 January 2016 700 pixels × 1300 pixels 12 m × 8 m 36

GF-3 Hong Kong 30 March 2017 1000 pixels × 1000 pixels 8 m × 8 m 44
GF-3 Hong Kong 15 March 2017 3450 pixels × 2150 pixels 8 m × 8 m 242

4.2. Results Comparison

The figure of merit (FoM) is defined to quantitatively evaluate the detection perfor-
mance of different methods, as:

FoM =
FC

(FC + FFA + FM)
(9)

where FC indicates the number of correct detections, FFA indicates the number of false
alarms, and FM indicates the number of missed detections.

In the experiment, a fixed training set size is used to train the learning machine.
3000 ship pixels and 3000 sea clutter pixels are randomly selected from GF-3 area I as
the training set. In the test stage, four kinds of PolSAR datasets are classified and the
detection is implemented. Besides, this work is based on the pixel-level detection method,
and there can be false alarms caused by independent connected regions in the detection
results. These false alarms can come from strong points in the sea clutter region and
strong scattering region around the ship target. In the target-level evaluation system,
this false alarm can seriously affect the evaluation of detection performance. Therefore,
the morphological filtering is used to eliminate the false alarms in small isolated areas.
Note that the morphological filtering is used for all methods. According to the number of
minimum ship target pixels, less than 10, 30, 15, and 50 pixels are deleted in Radarsat-2
area I, Radarsat-2 area II, GF-3 area I, and GF-3 area II, respectively. The detection results
are shown in Figures 8–11, where correct detection is marked by a green rectangle, missed
detection by a yellow rectangle, and false alarm by a red rectangle. Quantitative results
comparison is summarized in Table 2.

Figure 8. Detection results from Radarsat-2 area I. (a) Ground-truth image. (b) SO-CFAR. (c) SP. (d) T3 + SVM. (e) PCP +
SVM. (f) Proposed method. (Green: correct detection, yellow: missed detection, red: false alarm).
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Figure 9. Detection results from Radarsat-2 area II. (a) Ground-truth image. (b) SO-CFAR. (c) SP. (d) T3 + SVM. (e) PCP +
SVM. (f) Proposed method. (Green: correct detection, yellow: missed detection, red: false alarm).

Figure 10. Detection results from GF-3 area I. (a) Ground-truth image. (b) SO-CFAR. (c) SP. (d) T3 + SVM. (e) PCP + SVM.
(f) Proposed method. (Green: correct detection, yellow: missed detection, red: false alarm).
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Figure 11. Detection results from GF-3 area II. (a) Ground-truth image. (b) SO-CFAR. (c) SP. (d) T3 + SVM. (e) PCP + SVM.
(f) Proposed method. (Green: correct detection, yellow: missed detection, red: false alarm).
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Table 2. Quantitative results comparison with GF-3 area I training set.

Data Method NC NM NFA FoM Data Method NC NM NFA FoM

Radarsat-2
area I

SO-CAFAR 120 15 0 88.89%

Radarsat-2
area II

SO-CAFAR 34 2 0 94.44%

SP 123 12 0 91.11% SP 33 3 0 91.67%

T3 + SVM 133 2 7 93.66% T3 + SVM 36 0 16 69.23%

PCP + SVM 134 1 1 97.53% PCP + SVM 36 0 1 97.30%

Proposed 135 0 1 99.26% Proposed 36 0 0 100%

GF-3
area I

SO-CAFAR 37 6 1 84.09%

GF-3
area II

SO-CAFAR 182 60 0 75.21%

SP 31 13 0 70.45% SP 220 22 0 90.91%

T3 + SVM 39 5 1 86.67% T3 + SVM 233 9 2 95.49%

PCP + SVM 40 4 1 88.89% PCP + SVM 237 5 1 97.53%

Proposed 42 2 0 95.45% Proposed 240 2 3 97.96%

For Radarsat-2 area I, the traditional SO-CFAR method is affected by multi-target in-
terference in dense areas, which results in a lot of missed detections, as shown in Figure 8b.
The SO-CFAR method has 15 missed detections with FoM of 88.89%. The SP method can
protect the whole structure of the target and avoid missed detections caused by structural
fracture. However, there is a large number of target aliasing in the dense area, which
makes it impossible to distinguish ship targets effectively, as shown in Figure 8c. The SP
method produces 12 missed detections with FoM of 91.11%. Compared with the above two
methods, the SVM-based methods greatly reduce missed detections. The T3 + SVM method
has 2 missed detections, and the PCP + SVM method has 1 missed detection. However, the
SVM-based methods also produce some false alarms. The detection result of the proposed
method is shown in Figure 8f, which has zero missed detection and 1 false alarm with FoM
of 99.26%. Overall, the proposed method is better than the performance of the T3 + SVM
method and the PCP + SVM method, and far better than the SO-CFAR method and the
SP method.

For the Radarsat-2 area II, the SO-CFAR method and the SP method produce 2 and 3
missed detections, respectively. The SVM-based methods do not have missed detections.
However, the T3 + SVM method produces 16 false alarms, and its FoM is only 69.23%,
which is the lowest among all methods. The PCP + SVM method produces 1 false alarm
with FoM of 97.30%. The detection result of the proposed method is shown in Figure 9f.
This proposed method effectively suppresses the false alarms in the detection results of the
T3 + SVM and the PCP + SVM methods. The FoM of the proposed method is the highest
among all methods, reaching 100%.

In GF-3 area I, the SP method has the most missed detections with the lowest FoM
among all methods. Most of the missed detection areas are small ship targets, and the
detection results of the SP method have the phenomenon of target mixing. The SO-CFAR
method produces 6 missed detections and 1 false alarm, and its FoM is 84.09%. Compared
with the SO-CFAR and the SP methods, the FoM of the SVM-based methods is more
than 85%. Among them, the T3 + SVM method produces 5 missed detections with FoM
of 86.67%. The PCP + SVM method produces 3 missed detections with FoM of 88.89%.
Specially, the detection result of the proposed method has only 2 missed detections, which
achieves the best detection performance.

For the GF-3 area II, due to the low contrast of ship and sea clutter, the traditional
SO-CFAR method produces 60 missed detections with FoM of 75.21%, shown in Figure 11b.
Similar to Radarsat-2 area I, the SP method produces the target aliasing in detection results,
shown in Figure 11c. There are 22 missed detections in the SP method. Compared with the
SO-CFAR method, the performance of the SP method is significantly improved with FoM
of 90.91%. The SVM-based method greatly reduces missed detections, while producing
few false alarms. The T3 + SVM method has 9 missed detections and 2 false alarms with
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FoM of 95.49%. The PCP + SVM method has 5 missed detections and 1 false alarm with
FoM of 97.53%. The detection result of the proposed method has only 2 missed detections
and 3 false alarms with the highest FoM of 97.96%, which further verifies the performance
advantages of the proposed method.

The proposed method has good detection performance in the target-level evaluation
system by the above comparative experiment. In addition, the proposed method also
has good effects in pixel-level systems. Ship detection results from Radarsat-2 area II are
illustrated as an example, which is shown in Figure 12. The main differences between each
method have been marked with red ellipses. Due to the influence of the target sidelobe
and sea clutter, the SO-CAFAR method has fracture phenomenon and the SP method
inflates the target structure. On the contrary, the SVM-based methods can detect ship target
correctly both in target-level and pixel-level. To analyze the performance of the SVM-based
methods, the detection results of six ship targets are selected from Radarsat-2 area II, shown
in Figure 13. The T3 + SVM method is affected by the pixels around the target, which
produces false alarms, shown in Figure 13(b4,c4). For the PCP + SVM method, some pixels
in the interior and edge of the ships are classified as sea clutter, shown in Figure 13(a5–b5).
Compared with the ground-truth images and comparison methods, the proposed method
can accurately detect ship target pixels, which provides the basis for subsequent geometric
feature extraction and ship recognition.

Figure 12. Detection results from Radarsat-2 area II. (a) The ground-truth images. (b) SO-CFAR. (c) SP. (d) T3 + SVM. (e)
PCP + SVM. (f) Proposed method.
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Figure 13. Detection results of ship targets. (a1–f1) Ground-truth images. (a2–f2) SO-CFAR. (a3–f3) SP. (a4–f4) T3 + SVM.
(a5–f5) PCP + SVM. (a6–f6) Proposed method.

Comparison of the SO-CFAR method, SP method, and SVM-based method with
other polarimetric features clearly demonstrates the superiority of the proposed detection
methodology. The proposed method has the best detection performance, especially for
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inshore dense ship discrimination, which benefits from the optimal combination of polari-
metric rotation domain features. Compared with the T3 and correlation parameters, the
optimal polarimetric rotation domain features have better robustness, and the proposed
detection methodology is suitable for cross-domain PolSAR images.

5. Discussion

To verify the robustness of the proposed method, the experiments are repeated using
different training sets. Since Radarsat-2 area I is an inshore dense ship area and crosstalk
exists between the ship and sea clutter, it is not considered the training set. The same
number of training sets (3000 ship pixels and 3000 sea clutter pixels) are selected from GF-3
area II and Radarsat-2 area II. In the test stage, four kinds of PolSAR datasets are classified
and the detection is implemented. Quantitative results’ comparison with the GF-3 area II
and Radarsat-2 area II training sets are shown in Tables 3 and 4, respectively.

Table 3. Quantitative results’ comparison with the GF-3 area II training set.

Data Method FC FM FFA FoM Data Method FC FM FFA FoM

Radarsat-2
area I

T3 + SVM 65 70 39 37.36%
Radarsat-2

area II

T3 + SVM 36 0 16 69.23%

PCP + SVM 134 1 4 96.40% PCP + SVM 36 0 14 72.00%

Proposed 135 0 2 98.56% Proposed 36 0 2 94.74%

GF-3
area I

T3 + SVM 44 0 2 95.65%
GF-3

area II

SO-CAFAR 242 0 12 95.28%

PCP + SVM 43 1 1 95.56% SP 242 0 40 85.82%

Proposed 43 1 0 97.73% Proposed 242 0 3 98.78%

Table 4. Quantitative results’ comparison with the Radarsat-2 area II training set.

Data Method FC FM FFA FoM Data Method FC FM FFA FoM

Radarsat-2
area I

T3 + SVM 130 5 7 91.55%
Radarsat-2

area II

T3 + SVM 36 0 5 87.80%

PCP + SVM 132 3 0 97.78% PCP + SVM 36 0 1 97.30%

Proposed 134 1 0 99.26% Proposed 36 0 0 100%

GF-3
area I

T3 + SVM 30 14 1 66.67%
GF-3

area II

T3 + SVM 202 40 1 81.13%

PCP + SVM 30 14 0 68.18% PCP + SVM 207 35 0 85.54%

Proposed 42 2 0 95.45% Proposed 229 13 1 94.24%

When the training set is GF-3 area II, the performance of the T3 + SVM method and the
PCP + SVM method decrease significantly. The T3 + SVM method and PCP + SVM method
produce a lot of false alarms for the Radarsat-2 area. The proposed method, especially,
still maintains good detection performance with FoM of 98.56%, 94.74, 97.73, and 98.78 in
Radarsat-2 area I, Radarsat-2 area II, GF-3 area I, and GF-3 area II, respectively.

Similar results are observed when the training set is the Radarsat-2 area II. The T3 +
SVM method and the PCP + SVM method produce a lot of missed detections for GF-3 area
I with FoM of 66.67% and 68.18%, and for GF-3 area II with FoM of 81.13% and 85.54%,
respectively. The detection results of the proposed method have the highest FoM of 95.45%
and 94.24%, which achieves the best detection performance. This shows that the optimal
combination of polarimetric rotation domain features has better robustness compared with
the T3 and the correlation parameters. The superiority of the proposed method is further
verified.

Although the proposed method has obvious advantages and better robustness com-
pared with the comparison methods, future work is still needed to enhance the detection
performance. The core idea of this work is to mine the scattering diversity of the target.
Thus, the optimal feature set is selected within polarimetric rotation domain features, T3
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elements and SPAN. Other features derived from polarimetric target decomposition [11–13]
are not considered in this work. Proper combination of the above-mentioned features may
further promote detection performance, which will be explored in another work. Moreover,
the SVM classifier is adopted in this work, which has demonstrated the effectiveness of
the selected optimal feature set. Recently, deep-learning-based ship detectors, which have
more robustness, have been receiving great attention [25–27]. In this vein, rotation do-
main features could also derive deep-learning-based ship detectors to achieve even better
performance.

6. Conclusions

A novel PolSAR ship detection scheme with optimal combination of polarimetric
rotation domain features and SVM is established. The hidden information between arbi-
trary two polarization channels in rotation domain is explored by the interpretation tools
of polarimetric coherence and correlation pattern techniques. The optimal polarimetric
rotation domain features, which have strong ability to distinguish between ship and sea
clutter, are selected by the Relief method. The detection results are available by the SVM
classifier based on the selected polarimetric features. Comparison studies with four kinds
of spaceborne PolSAR datasets from Radarsat-2 and GF-3 clearly demonstrate the supe-
riority of the proposed detection method. The FoM index reaches 99.26%, 100%, 95.45%,
and 99.96%, respectively. Future work will focus on ship detection with low TCR and
exploration of polarimetric rotation domain features for other PolSAR applications.
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