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Abstract: This study evaluated evapotranspiration (ET) estimated using the Earth Engine Evapotran-
spiration Flux (EEFlux), an automated version of the widely used Mapping Evapotranspiration at
High Spatial Resolution with Internalized Calibration (METRIC) model, via comparison with ET
measured using eddy covariance flux towers at two U.S. sites (St. John, WA, USA and Genesee,
ID, USA) and for two years (2018 and 2019). Crops included spring wheat, winter pea, and winter
wheat, all grown under rainfed conditions. The performance indices for daily EEFlux ET estimations
combined for all sites and years dramatically improved when the cold pixel alfalfa reference ET
fraction (ETrF) in METRIC was reduced from 1.05 (typically used for irrigated crops) to 0.85, with
further improvement when the periods of early growth and canopy senescence were excluded. Large
EEFlux ET overestimation during crop senescence was consistent in all sites and years. The seasonal
absolute departure error was 51% (cold pixel ETrF = 1.05) and 23% (cold pixel ETrF = 0.85), the latter
reduced to 12% when the early growth and canopy senescence periods were excluded. Departures of
10% are a reasonable expectation for methods of ET estimation, which EEFlux could achieve with
more frequent satellite images, better daily weather data sources, automated adjustment of daily
ETrF values during crop senescence, and a better understanding of the selection of adequate cold
pixel ETrF values for rainfed crops.

Keywords: actual evapotranspiration; EEFlux; eddy covariance; Landsat; rainfed

1. Introduction

The estimation of actual evapotranspiration (ET) is important in both irrigated and
rainfed agriculture. Experimentally, ET can be estimated with lysimeters, Bowen ratio, eddy
covariance, and scintillometer systems [1–4]. These methods measure ET over relatively
small areas and are difficult to extrapolate in time and space given heterogeneous land
surfaces [5] and crop, soil and weather variations [1]. These limitations can be overcome by
using methods based on remote sensing data.

Several remote sensing-based models and algorithms have been developed and used
to estimate crop ET (e.g., [6–10]). Most of them are based on the surface energy balance [11],
including the Two-Source Energy Balance (TSEB) [7], the Atmosphere-Land Exchange
Inverse (ALEXI) [12], Surface Energy Balance Algorithm for Land (SEBAL) [8,9], Simplified
Surface Energy Balance Index (S-SEBI) [13], Surface Energy Balance System (SEBS) [14],
the North American Land and Data Assimilation System (NLDAS) [15], the disaggregated
ALEXI model (DisALEXI) [16], and Mapping Evapotranspiration at High Spatial Resolution
with Internalized Calibration (METRIC) [17].

Due to its internalized calibration, METRIC is widely used in the US to estimate re-
gional and field crop ET, although it requires a significant amount of time for preprocessing
satellite images and manual calibration of the model [18]. With mixed results, previous
studies have evaluated the performance of the METRIC model compared to weighing
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lysimeters [19], soil water balance [20], Bowen Ratio Energy Balance Systems [21–24], and
Eddy Covariance Flux Towers [25–28], mostly for irrigated crops, e.g., [10,20,29,30] and a
few rainfed crops, e.g., [31,32]. Estimation errors typically arise from current technology
limitations including low frequency of satellite passes (Landsat: 16 days, reduced to 8 days
when Landsat 7 and 8 images are combined), cloud interference rendering images useless,
insufficient spatial resolution (Landsat: 30 × 30 m) affecting situations of sparse canopies
and high soil exposure, and daily weather data availability.

More recently, EEFlux, a fully automated evapotranspiration mapping tool that op-
erates on the Google Earth Engine (GEE) platform (http://eeflux-level1.appspot.com/,
accessed on 26 July 2020), was developed. Because of its automated nature and reliance on
cloud data, EEFlux has the potential to assess water use and improve irrigation manage-
ment in farm fields as well as large regions at extremely low cost. However, while METRIC
results are influenced by users and their choices during manual calibration for specific
applications [18], EEFlux automated processes reduce these choices to some adjustments at
the time of products download. Thus, although many evaluations of METRIC have been
performed, the automated ETa estimation process of EEFlux should be carefully evaluated
on its own. Foolad et al. compared EEFlux with standard manually calibrated METRIC
for agricultural and non-agricultural areas in the western and central United States and
found that EEFlux ET estimates were comparable to METRIC for agricultural areas, but
substantially underestimated ET in non-agricultural areas [18]; Duijndam reported 4%
to 176% errors in cumulative ET from EEFlux compared to flux tower measurements at
eighteen different flux tower sites (USA, NLD, ZAF, AUS, BRA, and TUN) and land covers
(corn, wheat, onion, alfalfa, maize, soybean, scot pine, pasture, grapes, sugarcane, tropical
rain forest, mango, and caatinga) in semi-arid regions [33].

Out of a few EEFlux evaluation studies conducted, only one compared EEFlux with
EC for satellite overpass days, mostly for irrigated crops except for 2 of the 13 crop sites
reported [33]. The aim of this study was to evaluate the quality of daily EEFlux ET estimates
throughout the growing season via comparison with measurements obtained using eddy
covariance (EC) flux towers in rainfed crops at two sites of the dryland region of the
Pacific Northwest.

2. Data and Methods
2.1. Study Sites

ET measurements were conducted at two dry farming sites, one in St. John, WA, USA
and another in Genesee, ID, USA (Figure 1) during 2018 and 2019. Each site contains three
EC flux towers on the same field. The fields were managed for fertilizer, herbicide, and
pesticide using the common practices in this region. The cropping details at St. John and
Genesee are presented in Table 1.

Table 1. Cropping details at St. John and Genesee during the 2017–2018 and 2018–2019 growing seasons.

Site

2017–2018 2018–2019

Crop Planting Date Harvest Date Period
(Days)

Images
(Counts) Crop Planting

Date
Harvest

Date
Period
(Days)

Images
(Counts)

SZ1 SW 26 April 2018 21 August 2018 118 9 — — — — —

SZ2 SW 26 April 2018 21 August 2018 118 9 WP
12

October
2018

31 July
2019 293 9

SZ3 SW 26 April 2018 21 August 2018 118 9 — — — — —

GZ1 WW 30 September 2017 21 July 2018 295 14 SW 25 April
2019

19 August
2019 117 15

GZ2 WW 30 September 2017 21 July 2018 295 14 SW 25 April
2019

19 August
2019 117 15

GZ3 WW 30 September 2017 21 July 2018 295 14 — — — — —

(SZ: St. John, WA, USA; GZ: Genesee, ID, USA; SW: Spring wheat, WP: Winter pea, WW: Winter wheat).

http://eeflux-level1.appspot.com/
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Figure 1. Study area and locations of the eddy covariance flux towers (black circles) at St. John and
Genesee (The background is USDA Crop Data Layer (CDL) in 2018, https://www.nass.usda.gov/
Research_and_Science/Cropland/docs/US_2018_CDL_legend.jpg, accessed on 26 July 2020). The
white lines around the tower locations represent the mean footprint climatology (90% contour lines).

2.2. Satellite Data

Eighteen clear-sky images (9 images in both 2018 and 2019) were available for St. John
and twenty-nine images (14 in 2018 and 15 in 2019) were available for Genesee. These
images were selected based on the acquisition dates and cloud-free conditions and they
were processed on the EEFlux platform.

2.3. Field Data Collection
2.3.1. Eddy Covariance ET (EC ET)

The locations of eddy covariance flux towers are: SZ1: N47◦7′28′′/W117◦31′50′′,
SZ2: N47◦7′21′′/W117◦31′38′′, SZ3: N47◦7′34′′/W117◦31′34′′ at St. John; and GZ1:
N46◦30′3′′/W116◦48′24′′, GZ2: N46◦29′52′′/W116◦48′17′′, GZ3: N46◦29′42′′/W116◦48′8′′

at Genesee (Figure 1).
Each EC tower consisted of an integrated system of open-path CO2/H2O gas analyzer

and three-dimensional sonic anemometer (IRGASON, Campbell Scientific, Logan, UT,
USA) except the GZ1 tower, which was equipped with a CO2/H2O open-path gas analyzer
(EC150, Campbell Scientific, Logan, UT, USA) and a three-dimensional sonic anemometer
(CSAT3A, Campbell Scientific, Logan, UT, USA). The EC systems were mounted at a height
of 2 m above the ground level (a.g.l.), and data were collected at 10 Hz by a datalogger
(CR3000, Campbell Scientific, Logan, UT, USA). Other measurements included net radia-
tion (Rn, NR-Lite2, Kipp and Zonen, Delft, The Netherlands), air temperature and relative
humidity (HMP155A, Vaisala, Finland), soil heat flux (HFP01SC, Hukseflux, The Nether-

https://www.nass.usda.gov/Research_and_Science/Cropland/docs/US_2018_CDL_legend.jpg
https://www.nass.usda.gov/Research_and_Science/Cropland/docs/US_2018_CDL_legend.jpg
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lands), and soil temperature and volumetric water content (TDR310, Acclima, Merifian, ID,
USA). These data were sampled at 0.5 Hz and logged by the CR3000 datalogger.

The raw 10-Hz EC data were processed using the EddyPro® software (version 7.06,
LI-COR Biosciences, Lincoln, NE, USA) to calculate the 30-min average fluxes of sensi-
ble and latent heat (H and LE). The data processing procedures include: (1) removing
physically impossible values and spikes; (2) double rotation applied to sonic anemometer
data [34]; (3) block averaging to determine the turbulent fluctuations for each 30-min
interval; (4) corrections for the effects of high- and low-pass filtering [35–37] and air density
fluctuations [38], respectively; and (5) quality check [39]. The 30-min flux data with low
quality were removed for further analysis, and the gaps in the 30-min data of LE were filled
using the “REddyProc” R package [40]. The gap-filled 30-min LE data were averaged to
compute ET at daily intervals. The footprints of EC measurements were determined using
the two-dimensional parameterization footprint model [41].

The ground heat flux (G) was estimated using the calorimetric method [42,43], which
combines the measured soil heat flux at 10 cm depth and the change in heat storage in the
layer above the heat flux plate (0–10 cm) at all six flux tower sites.

2.3.2. Weather Data

Daily weather data were obtained from gridMet [44] for the nearest grid cells in
the tower locations for St. John and Genesee. The gridMet grids correspond to the
centroid of the 1/24th degree (~4 km × 4 km) pixel. The data include daily maximum
and minimum temperature, maximum and minimum relative humidity, wind speed,
shortwave solar radiation, and precipitation. These data were used to calculate alfalfa-
reference evapotranspiration (ETr) with the ASCE Penman-Monteith method [45]. The
average meteorological conditions over the study area during the growing seasons of 2018
and 2019 at St. John and Genesee are presented in Table 2.

Table 2. Average temperature, relative humidity, solar radiation, wind speed (at 10 m height), and ETr during the growing
seasons of 2018 and 2019. Annual precipitation is also included for reference.

Location Crop Year Tmax
(◦C)

Tmin
(◦C)

RHmax
(%)

RHmin
(%)

Rs
(W/m2)

Uz
(m/s)

ETr
(mm/Day)

Annual
Rainfall

(mm)

St. John SW 2018 26.2 9.9 81.4 31.5 293.9 3.2 6.78 404.9

WP 2019 21.9 7.9 81.9 36.5 285.1 3.5 5.94 395.6

Genesee
WW 2018 23.8 10.8 69.1 35.3 287.4 2.9 6.32 499.7

SW 2019 25.3 10.7 64.1 29.0 292.8 3.0 6.87 510.5

(SW: Spring wheat, WP: Winter pea, WW: Winter wheat).

2.4. Methods

2.4.1. EEFlux

EEFlux is a fully automated version of METRIC that operates on the Google Earth
Engine (METRIC-EEFlux (https://eeflux-level1.appspot.com, accessed on 26 July 2020))
using a variety of sources for weather, soil, and land use data, and digital elevation
models. It uses NLDAS hourly data and gridMET daily gridded weather data to estimate
alfalfa reference evapotranspiration, STASGO soil data to produce time series of bare soil
evaporation, and the NCLD database for land use for the continental United States [46].

The actual ET is estimated as a residual of the surface energy balance [10,47], according
to Equation (1).

LE = Rn−H−G (1)

where LE is latent heat flux (W/m2), Rn is net radiation (W/m2), H is sensible heat flux
(W/m2), and G is ground heat flux (W/m2)

https://eeflux-level1.appspot.com
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ET at the instant of the satellite image (ETinst) is calculated by EEFlux for each pixel
according to Equation (2).

ETinst = 3600
(

LEinst

λ ρw

)
(2)

ETinst is in mm/h, 3600 converts seconds to hours, LEinst is the calculated latent heat
flux at the time of the satellite pass, λ is the latent heat of vaporization (J/kg); and ρw is the
density of water (~1000 kg/m3).

The alfalfa-reference ET fraction (ETrF) in Equation (3) is calculated as the ratio of the
computed instantaneous ET (ETinst) for each pixel to hourly alfalfa-reference ET (ETrh) [47]
calculated using the standardized ASCE Penman–Monteith equation.

ETrF =

(
ETinst

ETrh

)
(3)

Values of ETrF for each pixel and dates of the available images were calculated by the
automated processing in EEFlux. Finally, the daily ET is calculated pixel by pixel based on
daily ETr as in Equation (4)

ET = ETrF× ETr (4)

where ETrF are daily values obtained by interpolation of the values for each day of satellite
pass. For a complete description of the calculations embedded in EEFlux ET estimation
from satellite data, readers are referred to reference [10].

The Landsat images in this study were processed with METRIC-EEFlux version
0.20.2 (https://eeflux-level1.appspot.com, accessed on 26 July 2020) and the standard
ETrF products were downloaded for further processing and analysis. In METRIC, the
cold pixel is usually selected from a well-irrigated and non-stressed cropped field, with
ETrFcold pixel = 1.05 representing maximum ET [10]. These standard values were termed
ETrF1.05. However, it was found that ETrFcold pixel = 1.05 may not be adequate for rainfed
conditions, leading to ET overestimation. In this study, we downloaded EEFlux adjusted
ETrF values using ETrFcold pixel = 0.85, which is considered more adequate for rainfed
conditions [31,48,49] and termed as ETrF0.85. The detailed flowchart of the methodology
adopted is presented in Figure 2.
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Downloaded ETrF values for days of satellite overpass were interpolated to obtain
daily ETrF values during the growing season. The linear interpolation and smoothening
were performed with Savitzky–Golay filtering based on Gram polynomials (window
size = 15 days and Polynomial Order = 2) (courtesy of Benjamin Navarro; https://gite.
lirmm.fr/rpc/signal-processing/gram-savitzky-golay, accessed on 26 July 2020).

An area matching the footprint area of the EC measurements was identified to cal-
culate the average EEFlux ET for each EC tower. These footprints were determined with
the mean footprint climatology (90% contour lines) estimated from a two-dimensional
parameterization footprint model [41] around the eddy covariance flux tower. Pixel ET
values in this footprint area were averaged to determine outputs of daily EEFlux ET and
compared graphically and statistically with EC ET values.

2.4.2. Evaluation of EEFlux Performance

The following statistical indices were used to evaluate the agreement between EEFlux,
and EC ET estimated values.

(a) The root mean square error (RMSE) calculated as:

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(5)

where n is the number of ET values, Oi is the measured ET values, and Pi is the estimated
ET value.

(b) The normalized root mean square error (NRMSE) is calculated as:

NRMSE =
RMSE

O
(6)

where O is the average measured ET value. The lower limit of RMSE and NRMSE is 0,
indicating perfect agreement between estimated and measured values.

(c) The Willmott (1982) index of agreement (d) [50] calculated as:

d = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(∣∣Pi −O

∣∣+ ∣∣Oi −O
∣∣)2 (7)

The index of agreement ranges between 0 and 1, where a value of 1 indicates perfect
agreement and 0 indicates no agreement at all.

(d) Departure error (DE)

DE =
(Oi − Pi)× 100

Oi
(8)

DE is expressed in percent.

3. Results
3.1. Eddy Covariance Flux Tower ET

Figure 3 displays the EC ET measured at St. John (WA, USA) and Genesee (ID, USA)
during the 2018 and 2019 growing seasons, and the statistics of the daily observations are
listed in Table 3.

https://gite.lirmm.fr/rpc/signal-processing/gram-savitzky-golay
https://gite.lirmm.fr/rpc/signal-processing/gram-savitzky-golay
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Table 3. Summary of daily EC ET measured during the 2018 and 2019 growing seasons at St. John, WA, USA and
Genesee, ID, USA.

Site Tower
2018 2019

Crop Min
(mm/Day)

Max
(mm/Day)

Avg.
(mm/Day)

Total
(mm) Crop Min

(mm/Day)
Max

(mm/Day)
Avg.

(mm/Day)
Total
(mm)

St. John
SZ1 SW 0.20 5.14 2.57 292.7 — — — — —
SZ2 SW 0.09 4.86 2.42 276.1 WP 0.22 5.91 2.33 277.2
SZ3 SW 0.08 5.07 2.17 248.3 — — — — —

Genesee
GZ1 WW 0.54 6.69 4.12 369.5 SW 0.42 6.67 2.96 346.5
GZ2 WW 0.41 5.61 3.24 288.6 SW 0.37 5.40 2.34 274.1
GZ3 WW 0.52 5.96 3.52 314.3 — — — — —

(SW: Spring wheat, WP: Winter pea, WW: Winter wheat).

The three flux towers on the same field showed differences in daily ET patterns
during the growing seasons (Figure 3 and Table 3). These differences could be attributed
to variations of topography and soil depth, but also to the lack of energy balance closure
of the EC measurements. The ratios of the energy balance closure varied within a site
and from site to site (Figure 4). For the three flux towers at St. John, the ratios were
92%, 90%, and 83% for SZ1, SZ2, and SZ3, respectively, whereas for the three towers at
Genesee they were 93%, 84%, and 91% for GZ1, GZ2, and GZ3, respectively. Reasons for
the non-closure of the surface energy balance may include violations in the assumptions of
homogeneous landscapes for the EC method, measurement errors in each component of
the energy budget, mismatch of the sensor footprints, advection, and impacts of large-scale
turbulent eddies [39,43,51,52]. However, the EC ET values could not be adjusted without a
detailed analysis of the causes for the non-closure.
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3.2. Comparison of EEFlux and EC ET
3.2.1. Daily Patterns

Figure 5 presents the comparison between daily EEFlux and EC ET at St. John and
Genesee during the 2018 and 2019 growing seasons. The results show that EEFlux ET:
(a) tracked most of the daily variations of EC ET albeit with over and underestimations,
(b) the use of ETrFcold pixel = 1.05 resulted mostly in overestimations while ETrFcold pixel = 0.85
tended to agree better with EC ET, (c) departures early in the season were common for spring
wheat, (d) fluctuating periods of over and underprediction alternated for winter peas, and
(e) important and consistent overestimation with both cold pixel ETrF values were evident
towards the end of the season (canopy senescence) in all cases. Figure 6 presents NDVI values,
a close indicator of the fraction of canopy cover, showing spring wheat crops with low NDVI
at the start of the EC measurements, and a similar pattern for winter pea that additionally had
the lowest canopy development at midseason. Sparse canopies at the beginning of the EC
measurements or relatively smaller canopy development (winter peas) incorporate a mix of
soil and vegetation into the 30 m × 30 m pixels and the remotely sensed surface temperature,
a likely source of error. During canopy senescence greenness and crop transpiration are
reduced, becoming eventually zero, a dynamic not fully captured by EEFlux. The vegetation
index NDVI is used in EEFlux as part of the calculation of the energy balance but is possible
that EEFlux could be improved by using EVI, an index that showed a better correlation with
regional ET in a recent paper [53].

The statistical comparison of EEFlux and EC daily ET is presented in Figure 7. Overall,
the index of agreement (d) was greater (with two exceptions), and RMSE and NRMSE
were lower with ETrFcold pixel = 0.85. For towers with the lowest ratio of energy balance
closure (SZ3 and GZ2), NRMSE was higher than other flux towers for the same site and
year. Except for the GZ2 tower in 2019, EEFlux performance was also poor for these
towers as indicated by d and RMSE values (Figure 7). Given the large and consistent
EEFlux ET overestimation during senescence, and variable response during early growth
(sparse canopy with a mix of soil and vegetation), performance indices were also evaluated
excluding these two periods (Figure 8). All performance indices improved dramatically.
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3.2.2. Cumulative Measured and Estimated ET in the Growing Season

The cumulative value of daily ET estimates from EEFlux and EC are presented in
Figure 9. The cumulative values are the sum of daily ET over the days of EC measurements
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and cannot be treated as crop cumulative ET for the entire growing season.
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Figure 9. Cumulative EEFlux and EC ET comparison for each site-year (SW: Spring wheat, WW:
Winter wheat, WP: Winter pea): (a) during the entire period of EC measurements; and (b) excluding
early growth and senescence periods.

The number of days included in the cumulative ET totals and the percent departure
((EEFlux-EC)/EC) × 100) are listed in Table 4. The highest departure was found for
towers SZ3 and GZ2 during both years, probably due to their lower ratios of the energy
balance closure. The towers with the highest ratio of the energy balance closure (GZ1 and
SZ1) showed the lowest departures in each site, and even negative departures (EEFlux
ET lower than EC ET). The cumulative percent departures were lower for EEFlux ET
(ETrF0.85) during both years and at all tower sites compared to EEFlux ET(ETrF1.05).
Again, excluding the period of early growth and crop senescence, the overall departures
were reduced substantially (Table 5).
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Table 4. Percent departures for cumulative ET.

Year Site Tower Crop Days
% Departure

EEFlux ET(ETrF0.85) EEFlux ET(ETRF1.05)

2018

St. John
SZ1 SW 118 33.2 66.5
SZ2 SW 118 39.1 73.9
SZ3 SW 118 51.7 89.7

Genesee
GZ1 WW 89 −2.3 (2.3) 23.1
GZ2 WW 89 28.9 62.3
GZ3 WW 89 15.1 43.7

2019
St. John SZ2 WP 119 8.2 35.2
Genesee GZ1 SW 117 −9.9 (9.9) 12.7

GZ2 SW 117 17.9 47.6

Overall average 20.2 (22.9) 50.5 (50.5)

(SZ: St. John, WA, USA; GZ: Genesee, ID, USA; SW: Spring wheat, WP: Winter pea, WW: Winter wheat, Numbers in parenthesis are
absolute departures in percent).

Table 5. Percent departures for cumulative ET excluding early growth and crop senescence period.

Year Site Tower Crop Days
% Departure

EEFlux ET(ETrF0.85) EEFlux ET(ETRF1.05)

2018

St. John
SZ1 SW 118 8.3 35.4
SZ2 SW 118 14.6 43.2
SZ3 SW 118 19.3 49.2

Genesee
GZ1 WW 89 −16.6 (16.6) 5.3
GZ2 WW 89 8.8 37.4
GZ3 WW 89 0.6 25.7

2019
St. John SZ2 WP 119 −14.7 (14.7) 6.7
Genesee GZ1 SW 117 −20.7 (20.7) −0.8 (0.8)

GZ2 SW 117 3.5 29.3

Overall average 0.35 (11.9) 25.7 (25.9)

(SZ: St. John, WA, USA; GZ: Genesee, ID, USA; SW: Spring wheat, WP: Winter pea, WW: Winter wheat, Numbers in parenthesis are
absolute departures in percent).

4. Discussion

EEFlux is a version of METRIC implemented on the GEE platform, automating all
the processing required to calculate pixel ET so that users can download ET, ETrF, ETr,
and other products for the available images. In this study, we evaluated the performance
of EEFlux in the estimation of daily ET of rainfed crops using EC ET as a reference, but
as shown in Figure 3, one difficulty is that EC ET is not a perfect reference due to lack of
closure of the energy balance (Figure 4) and uncertainties in the estimation of the footprint
or ground area represented by the measured water vapor exchange. The ratio of the energy
balance closure fluctuated between 83% and 93% and, for the purpose of this discussion,
we will focus on two towers in each site with a ratio of 90% or more. Although some ET
underprediction is likely, these towers offer reasonably low uncertainty to be helpful for
this evaluation.

ET overprediction during canopy senescence

The large and consistent overestimation of ET by EEFlux during crop senescence
(Figure 5) increased the magnitude of errors (Figures 7 and 8), indicating the need to
investigate possible corrections to this problem. Similar overpredictions can be gleaned
from figures presented in published METRIC evaluations [30,54], but the cause of this
problem has not been addressed. The greenness fraction of the senescing crop canopy starts
declining during senescence, eventually becoming zero, and the stomatal conductance
of green portions often decreases dramatically due to terminal water stress, both factors
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reducing transpiration (and therefore ET) and increasing canopy temperature. In principle,
this should be picked up by EEFlux, but it does only partially. Perhaps one issue is that
senescence starts with the oldest (lowest) leaves, so that the top greener portion of the
canopy may have a proportionally larger contribution to satellite-measured surface tem-
perature, making it cooler and overestimating ET. However, some overestimation persists
even when the entire canopy is senesced, perhaps implying that the bare and dry soil
temperature of the hot pixel, assumed to have ET~0, is likely greater than the temperature
of the non-transpiring senesced canopy that covers most of the pixel during senescence.

Choice of cold pixel ETrF

Another important factor affecting the agreement between EC and EEFlux ET is the
choice of cold pixel ETrF value. In addition to rainfed agriculture, the satellite images used
for this study include irrigated areas that produce many different crops (annual, perennial,
and fruit tree crops), with pixels in this area contributing the bulk and likely all the selected
cold pixels. However, the use of an ETrF value of 1.05 to estimate ET from cold pixels in
irrigated agriculture may not be adequate when applied in rainfed agriculture. Rainfed
crops may suffer episodes of water deficit and fluctuating diurnal and day-to-day stomatal
closure events as precipitation amount and distribution tend to limit crop transpiration,
thus changing the proportion of sensible to latent heat fluxes. Although the METRIC
energy balance has been shown to be able to estimate ET in response to water deficit [55],
the water deficit in these studies is imposed by varying applied water amounts within the
same experimental site in an irrigated region.

The fact remains that the use of a cold pixel ETrF of 1.05 led to significant ET over-
estimation in the rainfed conditions of this study (Figure 5), which has been previously
reported [31,48,49]. The empirical solution to this problem has been to reduce cold pixel
ETrF (from 1.05 to 0.85 in this and other studies), but this adjustment may be variable
depending on environmental conditions. Not including towers SZ3 and GZ2, the seasonal
average EEFlux ET departure was 26.5% and 1% with ETrF = 1.05 and 0.85 at Genesee, and
58.5% and 26.8% at St. John (Figure 8). This difference in overestimation between these two
sites persists if the period of crop senescence is excluded (Table 5): departure was 10.1%
and −12.2% (i.e., underestimation) with ETrF = 1.05 and 0.85 at Genesee, and 30.5% and
3.6% at St. John. The annual precipitation in St. John was 405 mm (2018) and 396 mm
(2019), and 500 mm (2018) and 511 mm (2019) at Genesee, which is 26% higher than St.
John over these two years. Differences in amount and distribution of precipitation and
their effect on crop development and plant–water relations (canopy cover, canopy conduc-
tance to water vapor transfer, root depth, distribution of fractional root density with root
depth, and others) are likely to impact the choice of cold pixel ETrF adjustment for rainfed
conditions. Considering the results excluding the early growth and canopy senescence
periods, agreement between EEFlux and EC ET would likely improve by choosing a cold
pixel ETrF somewhat higher than 0.85 at Genesee.

EEFlux performance

Considering cold pixel ETrF = 0.85, and not including the two towers with the lowest
ratio of energy balance closure, the average performance indicators for St. John and Genesee
were d = 0.76, RMSE = 1.36 mm/day, NRMSE = 0.56, average absolute daily departure = 161%,
and d = 0.7, RMSE = 1.39 mm/day, NRMSE = 0.43, average absolute daily departure = 62%,
respectively. When the early growth and crop senescence periods were excluded, the indica-
tors improved dramatically: d = 0.77, RMSE = 0.86 mm/day, NRMSE = 0.23, average absolute
daily departure = 19.6% (St. John) and d = 0.76, RMSE = 1.1 mm/day, NRMSE = 0.24, average
absolute daily departure = 20.5% (Genesee). Working in the same rainfed region of this study,
Khan et al. reported standard errors (SSE; similar to RMSE) of METRIC ET estimations of
0.34 mm/day for satellite overpass days at 4 sites (one EC tower per site) over three years,
fluctuating between 0.49 and 0.83 mm/day among sites during growing seasons [31]. These
METRIC estimates were obtained using manual calibration and weather stations located at
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each site, resulting in better agreement than the EEFlux estimates obtained in this study using
gridMet weather data.

Based on comparisons with lysimeter ET, which is expected to be a more reliable
measurement than EC, Allen et al. reported departures between lysimeter and METRIC ET
for a sugar crop at Kimberly, ID, USA for 8 days of available images ranging from −26%
to 34%, with one day of very low lysimeter ET (0.73 mm/day) resulting in a departure
of 139% [10]. Average absolute daily departures for alfalfa at Rocky Ford, CO, USA was
15% (range: −5.1% to −25%) [56], and 12% (range: −17% to 21%) for sorghum at Apodi,
Brazil [57], calculated for days of satellite pass only.

With random errors tending to cancel out with longer periods of comparison, Allen
et al. reported departures for weekly periods ranging from −14% to 28% and ranging from
−18% to 22% for monthly periods for forage crops near Montpellier, ID [10]. The same
authors reported a departure of −0.6% for the period April 1-Sept 30, 1989 compared to the
departure ranging from −26% to 34% for 8 individual satellite pass days. In this study, the
mean absolute departure for cumulative ET fluctuated from 8.2% to 39.1% at St. John and
2.3% to 15.1% at Genesee (ETrF = 0.85 and excluding towers SZ3 and GZ2), and 8.3% to
14.7% at St. John and 0.6% to 20.7% at Genesee when the early growth and crop senescence
periods were excluded. The overall cumulative ET average absolute departure with all
sites and towers included was 22.9%, reduced to 11.9% when the early growth and crop
senescence periods were excluded.

It is hard to reach definitive conclusions regarding EEFlux performance. Evaluations
of METRIC using lysimeters in irrigated areas are scarce, often limited to a few days of
the satellite overpass. A recent study evaluated hourly METRIC ET estimates on days of
satellite overpass using lysimeters at Bushland, TX for the period 2001–2010 obtaining
NRMSE of 0.5 for dryland lysimeters and 0.37 for irrigated lysimeters [58]. The authors
attributed the lower performance for dryland lysimeters to lower overall ET and greater
sensible heat flux, but how the figures of this study would translate to daily ET estimates
during entire seasons is unclear.

Comparisons of EEFlux ET with lysimeters are currently nonexistent to the best of
our knowledge. Foolad et al. compared METRIC and EEFlux in five locations in the US
and found similarity in the energy balance, with high agreement for ETrF values (R2 and
slope close to 1 and low RMSE of 0.03) but large departures for ET (~10% EEFlux ET
overestimation), attributed to differences in weather sources—gridded weather used in
automated EEFlux and ground-based weather in the manually calibrated METRIC estima-
tions – that affect the calculated ETr [18]. Overall, for agricultural sites, mostly irrigated,
EEFlux calculated ET values comparable to those obtained by trained METRIC users.

Applications for water management in irrigated agriculture and water productivity
for rainfed and irrigated cropping systems would benefit from ET estimations within 10%
of actual values, so improvements are needed. With improvements in technology, and
mitigation of known sources of error, EEFlux automated implementation of METRIC has
potential as a tool to greatly facilitate ET estimation, and eventually to offer near real-time
ET estimates with reasonable accuracy.

5. Conclusions

Although well-installed and maintained lysimeters are arguably the best reference to
evaluate the performance of ET estimation methods, EC flux towers are commonly used.
In this study, the use of three EC towers in each field revealed differences in energy balance
closure and ET values. At each site, two towers had closure ratios equal or greater than 90%,
and one 84% or less, with the latter towers showing lower values of ET compared to the
former. Although the towers with the larger ratios are still likely to under measure actual
ET values, the uncertainty was considered small enough to serve as adequate reference.

Although the cold pixel ETrF is typically set at a value of 1.05 in irrigated agricul-
ture, we found that a value of 0.85 resulted in better agreement and avoided large ET
overprediction, but this value may need to be adjusted for specific rainfed agriculture
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conditions. We also found a large and consistent EEFlux ET overprediction during the
period of crop senescence that greatly affected performance. The performance indices for
daily ET estimations combined for all sites and years (d = 0.67, RMSE = 1.96 mm/day,
NRMSE = 0.75, Absolute Departure Error = 181%) dramatically improved when cold pixel
ETrF was reduced from 1.05 to 0.85 and the periods of early growth and canopy senes-
cence were excluded (d = 0.76, RMSE = 0.97 mm/day, NRMSE = 0.24, Absolute Departure
Error = 21.6%).

The absolute departure error determined on a seasonal basis resulted in errors of
11.9% with cold pixel ETrF = 0.85 and excluding the early growth and canopy senescence
periods. Departures of 10% are a reasonable expectation for methods of ET estimation,
which EEFlux could achieve with more frequent satellite images and better daily weather
data sources. However, more work will be needed to develop adjustment methods of ETrF
values during crop senescence and better understanding of the selection of adequate cold
pixel ETrF for rainfed crops.
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