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Abstract: Global Navigation Satellite System (GNSS) water vapor tomography provides a four-
dimensional (4-D) distribution of water vapor in the atmosphere for weather monitoring. It has
developed into a widely used technique in numerical weather prediction (NWP). Vertical stratification
is essential in discretizing the tomographic region. Traditional discretization methods divide the
tomographic area into regular voxels with an equal height interval, which ignores the dynamic
exponential distribution of water vapor. In recent years, non-uniform stratification methods have
been widely validated by tomographic experiments. However, such experiments have not proposed
a specific calculation method for stratification thickness. Therefore, in this paper, we introduced an
adaptive non-uniform stratification method that follows the exponential distribution of water vapor
in the tomographic region and presented the process of iterative calculation to acquire the optimal
stratification interval. The proposed approach was applied based on the exponential decreasing
trend in water vapor with increasing altitude. Moreover, it could adaptively calculate the interval of
stratification height according to water vapor content. The tomographic experiments were performed
using Global Positioning System (GPS) data from 19 ground-based stations in the Hong Kong Satellite
Positioning Reference Station Network (SatRef) from 1 to 31 August 2019. The results indicated
that, compared to the traditional stratification method, the root mean square error derived from the
proposed approach was reduced by 0.26 g/m3. Additionally, severe weather can negatively affect the
accuracy of the tomographic results. The results also showed that the accuracy of the tomographic
results was reduced with increasing altitude. Moreover, the performance of the tomographic water
vapor fields below 3000 m was improved by the proposed approach.

Keywords: Global Navigation Satellite System (GNSS); water vapor tomography; radiosonde; verti-
cal stratification

1. Introduction

Water vapor is one of the most important components in the troposphere. It plays
an important role in the transport of atmospheric energy and the evolution of convective
weather. The real-time and high precision monitoring of the spatiotemporal variation of
atmospheric water vapor is of great significance to improve the forecasting of mesoscale
severe weather. The concept of global positioning system (GPS) meteorology was first
developed by Bevis et al. [1] and has since been utilized by a large number of experiments.
These experiments successfully retrieved the integrated water vapor (IWV) with accuracy
up to 1–2 mm, which is comparable to water vapor radiometer (WVR) and radiosonde
(RS), showing that GPS is a cost-effective, convenient and reliable tool for continuous
monitoring of water vapor [2–7]. Unfortunately, IWV only represents the total amount
of water vapor above a certain station, and it cannot provide the vertical distribution of
water vapor [8]. Due to the influence of the troposphere, the satellite signals are refracted
along the travel path from the GPS satellite to the GPS ground station [9]. Consequently,
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the four-dimensional (4-D) distribution of water vapor can be reconstructed from the slant
wet delays (SWD) using the water vapor tomography technique [10]. Global Navigation
Satellite System (GNSS) tropospheric water vapor tomography therefore has become an
essential method for monitoring water vapor.

In the last two decades, many of the experiments have successfully confirmed the fea-
sibility of GNSS tomography in reconstructing high spatiotemporal resolution water vapor
fields. Flores et al. [10] carried out the first GNSS water vapor tomographic experiment.
They discretized the tomographic region into 4×4×40 voxels and used the Kalman filter
to perform the reconstruction of the 4-D water vapor refractive fields. They successfully
described the 4-D structure of water vapor in the atmosphere and investigated the effect of
vertical stratification on the accuracy of tomographic results by comparing the tomographic
retrieval with the European Centre for Medium-Range Weather Forecasts (ECMWF). Since
then, numerous researchers have proposed different methods of vertical stratification
modeling. Hirahara [11] proposed the division method of horizontal and vertical grids
and solved the tomography equations using the damped least-squares method, revealing
the spatial and temporal variation of refractivity corresponding to the passage of a cold
front. In the same year, the uniform stratification model with a vertical resolution of 1 km
was used by Seko et al. [12] to determine the three-dimensional distribution of water vapor
in the Baiu front. Tomographic approaches with non-uniform vertical resolution have
been pursued by Troller et al. [13] to develop the software package Atmospheric WAter
vapor TOmography Software (AWATOS). Bender et al. [14] designed a tomographic system
with a uniform vertical resolution of 500 m or better to investigate the convergence and
numerical parameters of different iterative algebraic reconstruction techniques (ARTs). A
stratification method that can identify the appropriate vertical resolution has been devel-
oped by Chen et al. [15] based on the water vapor profiles derived from radiosonde data.
Following the principle that the value of water vapor density decreases exponentially with
altitude, a vertical stratification scheme with non-uniform thicknesses was developed by
Yao et al. [16]. The stratification scheme increased the number of voxels crossed by satellite
signals and improved the utilization of existing GNSS observation data.

Presently, it is common to divide the vertical stratification methods utilized in most
studies into two categories: uniform stratification with constant vertical resolution [14,17–19]
and non-uniform stratification with different vertical resolutions [15,16,20–23]. As an equal
height interval is adopted in the vertical direction, uniform stratification can conveniently
discretize the tomographic area into regular voxels. Unfortunately, a certain error will be
introduced due to the incongruence between the same stratification interval and dynamic
water vapor distribution. In contrast to uniform stratification, non-uniform stratification
generates uneven height intervals, which can reduce the mentioned errors. Although non-
uniform stratification has been widely used in water vapor tomographic experiments and
studies, determination of the height interval is based on prior knowledge or experience, and
there is no specific calculation method. The applicability of vertical stratification is reduced
when the tomographic region is changed. Hence, the adaptive vertical stratification for the
tomographic region is still unable to be realized.

In this paper, we introduce an adaptive non-uniform stratification approach that
can adaptively discretize the tomographic region in an exponential trend based on the
actual characteristics of atmospheric water vapor density, which compensates for the
limited applicability of traditional vertical stratification. This paper is organized as follows.
Section 2 presents the fundamental principle of the tomographic algorithm. The method
for determining the vertical distribution characteristics of atmospheric water vapor over
the tomographic region, as well as the process of establishing an adaptive non-uniform
stratification model, are described in Section 3. In Section 4, tomographic experiments
using data from the Satellite Positioning Reference Station Network (SatRef) and the
analysis of the new approach are performed. By comparing the new approach with other
developments, Section 5 discusses the advantages of the proposed approach and the
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specifics to be further investigated in the future. The conclusions are presented in the
last section.

2. Principle of GNSS Tomography

GNSS water vapor tomography is a method to obtain the 4-D distribution of atmo-
spheric water vapor by constructing functioning relationships among water vapor density,
satellite signal propagation distance, and slant wet delays. The delay of satellite signals
when they pass through the earth’s atmosphere includes the ionospheric delay, which can
be corrected by using dual-frequency linear combinations and the neutral atmospheric de-
lay, which can be used for observations of GNSS tomography. In this paper, we use the slant
water vapor (SWV) as the input observation data for the tomographic model to retrieve
water vapor density, which can be calculated from SWD; its formula is as follows [1]:

SWV =
105

( k3
Tm

+ k′2) · Rv
· SWD, (1)

where k3 and k’2 are the atmospheric refractive index constants with the value of 3.776 ×
105 K2/hPa and 16.52 K/hPa, respectively; Rv is the specific gas constant of water vapor
with a value of 461.495 J/K/kg; Tm is the weighted mean tropospheric temperature,
calculated from the numerical integration using the meteorological measurements [24];
SWD refers to the slant wet delay (SWD), which can be expressed with the following
Equation [10]:

SWD = fw(e) · (ZWD + (Gw
EW · sin(φ) + Gw

NS · cos(φ)) · cot(e)) + R, (2)

where fw is the wet mapping function, and the global mapping function (GMF) is as
proposed by Böhm et al. [25]; e and φ are the satellite elevation angle and the azimuth
angle, respectively; Gw

EW and Gw
NS refer to the wet delay gradients in the east-west and

north-south directions, respectively; R refers to the residual unmodeled delay between the
satellite and the receiver; and ZWD represents the zenith wet delay (ZWD), which is the
portion of the zenith tropospheric delay (ZTD) except the zenith hydrostatic delay (ZHD),
as follows:

ZWD = ZTD− ZHD. (3)

The ZHD in Equation (3) can be accurately calculated using the surface station pressure
according to the empirical model proposed by Saastamoinen [26], with the following
formula:

ZHD =
0.002277

1− 0.00266 · cos(2ϕS)− 0.00028 · hS
· PS, (4)

where PS refers to the surface station pressure in hPa; ϕS is the station latitude; and hS is
the station geodetic height in km.

The SWV calculated by Equations (1)–(4) is inputted as the observation of the tomo-
graphic observation equation for the retrieval of water vapor density, and the formula is as
follows [10]:

SWV = 10−6 ·
∫

ρ(S)ds, (5)

where ρ(S) refers to the water vapor density in g/m3; and s represents the distance of satel-
lite signal traveled in the troposphere in m. As atmospheric water vapor is continuously
distributed in the atmosphere, it is necessary to discretize the research area in most cases.
Under the assumption that the water vapor density in each discrete voxel is a constant
during a tomographic period, the small influence of geometric delay in signal propagation
is neglected. In discrete form, Equation (5) becomes:

SWVi =
n

∑
j=1

lij · ρj, (6)
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where n is the number of discrete voxels in the research area; SWVi refers to the slant water
vapor of the i th satellite signal in the research area; lij represents the distance traveled by
the i th satellite signal in the j th voxel, which can be calculated based on two adjacent
intersections between the signal and grid faces; and ρj represents the water vapor density
of the j th voxel.

The matrix form of the tomographic observation equation according to the SWV
observation of multiple satellite signals can be written as follows:

Am×n · xn×1 = bm×1, (7)

where Am×n and bm×1 represent the coefficient matrix consisting of distance values and
the column vector made up of SWV observations, respectively; xn×1 represents the column
vector of unknown water vapor density values; and m and n are the number of SWV
observations and number of discrete voxels subdividing the research area, respectively.

Unfortunately, owing to the geometric distribution of existing satellites and ground-
based receivers, some voxels may not be crossed by any satellite signal. Consequently,
this will result in an inverse problem that turns out to be ill-posed, i.e., the solutions
of unknown water vapor density values are in general not unique and not stable. The
constraint conditions or prior information would therefore be introduced to solve the
severe rank deficiency issue of the tomographic equations [23,27–29]. In this study, we
introduced the common horizontal constraints and vertical constraints. The horizontal
constraint is based on the hypothetical relation that the water vapor density in each voxel
is a weighted mean of water vapor densities in other voxels in the same layer. The vertical
constraint is based on an exponential relation that can be used to represent the average
water vapor profile:

ρj − ρk · e
−(hj−hk)

H = 0, (8)

where ρj and ρk represent the water vapor density of the j th layer and the k th layer,
respectively; hj and hk are the height of the j th layer and the k th layer, respectively; and H
refers to the water vapor scale height, which can be calculated by the following formula:

H =
10W

ρS
, (9)

where W represents the total vertical water vapor content in g/m2 that can be obtained
from PWV; and ρS represents the surface station humidity in g/m3.

After combining all of the SWV observation equations and constraint equations, the
established solution model of GNSS tomography in the matrix form is given as follow: Am×n

Hn×n
Vv×n

 · x
n×1

=

 bm×n
0n×n
0v×n

, (10)

where Hn×n and Vv×n are the coefficient matrices of horizontal constraints and vertical
constraints, respectively; and v refers to the number of vertical constraints.

To reconstruct the water vapor density field based on the matrix shown in Equation (10),
the algebraic reconstruction technique (ART) is utilized in this study. ART has the ad-
vantage of avoiding the inversion of the coefficient matrix and strong noise resistance.
Moreover, it has high numerical stability even under adverse conditions of fewer observa-
tion equations, uneven signal distribution, or noise. The common ART for computing the
approximation of the tomographic solution is as follows:

xk+1 = xk + λ
ai,j

n
∑

j=1
a2

i,j

(bi −
n

∑
j=1

ai,jxk
j ), (11)
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where xk is the k th iterative solution; n is the total number of voxels; λ is the relaxation
factor, which gives the weight of the correction term computed for each voxel with respect
to the initial value; ai,j represents the element in i th row and j th column of the coefficient
matrix of the tomographic equation; and bi refers to the i th row element in the column
vector of the observed value.

3. Adaptive Non-Uniform Exponential Stratification Method

The process of the adaptive non-uniform exponential stratification (ANES) method in
this paper include two main steps: (1) modeling the vertical distribution of atmospheric
water vapor in the tomographic region and obtaining the function that can represent the
average water vapor profile based on prior water vapor profile information; (2) calculating
the height interval of each layer in an iterative way to realize the adaptive stratification of a
predetermined number of stratifications according to the obtained vertical characteristic
function of atmospheric water vapor. These two steps are introduced and described in
detail in Sections 3.1 and 3.2.

3.1. Modeling of Vertical Distribution Characteristics of Atmospheric Water Vapor

Before carrying out the adaptive non-uniform exponential stratification, the specific
functional relationship between water vapor density and height in the tomographic region
should be determined, which can be modeled based on the relation that water vapor
density decreases exponentially with increasing altitude, in general. The water vapor
density at height h can therefore be expressed as follows:

ρh = ρ0 · eDv ·(− h
H ), (12)

where ρh refers to the water vapor density at height h in g/m3; ρ0 refers to the water
vapor density parameter at the surface; Dv represents the parameter of vertical distribution
characteristic of water vapor; and H stands for the water vapor scale height in m.

Equation (12) raises the problem of solving the unknown parameters of the exponential
function, including the water vapor density parameter at the surface and the vertical
distribution characteristic parameter of water vapor. The mentioned unknown parameters
can be obtained by fitting the prior water vapor density in the study area. The prior water
vapor density can be calculated based on radiosonde data as follow:

ρrs =
Pw

Rv · T
, (13)

where Rv is the specific gas constant of water vapor with a value of 461.495 J/K/kg; T
refers to the temperature in K; and Pw represents the vapor pressure in hPa, which can be
calculated according to the Goff–Gratch formula, as follows [30]:

lgPw = 10.79586× (1− T1
Td
)− 5.02808× lg(Td

T1
) + 1.50475× 10−4 × [1− 10−8.2969×( Td

T1
−1)

]

+0.42873× 10−3 × [104.76955×(1− T1
Td

)
] + 0.78614

, (14)

where Td refers to the dew-point temperature in K; and T1 is a constant with a value of
273.16 K.

Figure 1 reveals the fitting schematic diagram of the average radiosonde water vapor
profile in the study area, in which the blue scatter points represent the calculated water
vapor density, and the red curve represents the fitting function where the formula can be
expressed as follows:

y = a · eb·(− x
H ), (15)

where x represents the height in m; y represents the water vapor density in g/m3; a and b
are the concrete values of ρ0 and Dv after fitting, respectively; and H represents the water
vapor scale height in m.
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Figure 1. Fitting schematic diagram of the average radiosonde water vapor profile in the study area.

Equation (15) represents the general distribution characteristics of atmospheric water
vapor in the vertical direction in the study region and provides a specific functional rela-
tionship between the height and water vapor density for subsequent adaptive stratification.

3.2. Adaptive Non-Uniform Exponential Stratification Method

After determining the average vertical distribution characteristics of atmospheric
water vapor in the tomographic region, an iterative algorithm is adopted to calculate the
height interval of two adjacent stratifications: Three parameters are introduced, where L
refers to the number of the stratification; D refers to the minimum height interval between
adjacent stratifications in m; ρb refers to the water vapor density at the top boundary of
the tomographic region in g/m3, and it can usually be determined according to the prior
information or radiosonde data. Therefore, the height interval of the first stratification
is [0, D] under this model, and the numerical interval of water vapor density in the first
stratification can be represented as [a, a·eb·(-D/H)]. After dividing the first stratification, the
remaining stratifications are equally divided according to the water vapor density, and the
numerical interval of the water vapor density of each remaining stratification can hence be
expressed as:

[a · eb·(− D
H ) − (n− 2)

a · e
b·(− D

H )
− ρb

L− 1
, a · eb·(− D

H ) − (n− 1)
a · e

b·(− D
H )
− ρb

L− 1
], (16)

where a, b and H represent the same meanings as Equation (15); and n represents the
number of each stratification (2 ≤ n ≤ L).

After obtaining the expected interval of water vapor density at each stratification as
shown in Equation (16), the height of the height interval of the second stratification can be
inferred through the water vapor density in combination with Equation (15), as follows:

[D,−b · ln(
a · eb·(− D

H ) − a·eb·(− D
H )−ρb

L−1
a

)], (17)

where a, b, H, D, L and ρb represent the same meanings as in Equation (16).
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If the height interval of the second stratification as shown in Equation (17) is greater
than D m, the expected height interval calculated by the expected water vapor density in
combination with Equation (15) is taken as the stratification result to complete the non-
uniform exponential stratification; otherwise, the height interval of the second stratification
is set to the minimum height interval D m to continue iterating.

In each iteration, the remaining stratifications are evenly divided according to the
water vapor density. After dividing the bottom stratifications m times with D m as the
minimum height interval, the water vapor density interval of the remaining stratifications
can be expressed as the following:

[a · eb·(−m·D
H ) − (n−m− 1)

a · eb·(−m·D
H ) − ρb

L−m
, a · eb·(−m·D

H ) − (n−m)
a · e

b·(−m·D
H )
− ρb

L−m
], (18)

where a, b, H, D, L and ρb represent the same meanings as in Equation (17); and m refers to
the number of iterations that divide the bottom stratifications with D m as the minimum
height interval.

In the m th iteration, after obtaining the expected water vapor density interval of
remaining stratifications as shown in Equation (18), the height interval can be inferred in
combination with Equation (15), and the bottom height interval can be calculated as:

Hi = −b · ln(
a · eb·(−m·D

H ) − a·e
b·(−m·D

H )
−ρb

L−m
a

)−m · D, (19)

where a, b, H, D, L, ρb and m represent the same meanings as in Equation (18); and Hi
refers to the height interval of the lowest stratification in the remaining (L-m) stratifications
in m. If Hi is greater than D m, terminate the iteration and the non-uniform exponential
stratification is completed; otherwise, the lowest stratification in the remaining (L-m)
stratifications will be divided unceasingly with D m as the height interval and continue
to iterate.

4. Results and Validations
4.1. Processing Strategy

The GPS observation data of 19 ground-based receivers obtained from the SatRef in
Hong Kong were selected during the tomographic period of the entire August of 2019. The
top boundary of the tomographic region was calculated based on radiosonde water vapor
profile data in August of each year from 2010 to 2018. The investigated tomographic area
was therefore from 22.204◦ N to 22.564◦ N in latitude and from 113.844◦ E to 114.384◦ E in
longitude, with a height range from 0 m to 10,560 m. The number of spatial voxels used
for tomography was 6×4×13 with a horizontal resolution in the latitude and longitude
directions of 0.090◦, and the vertical resolution was set according to different stratification
schemes. Figure 2 shows the geographical distribution of the GNSS receivers and the
radiosonde in the tomographic area, in which the red points represent the locations of
19 GNSS receivers and the green point represents the location of the radiosonde.

The time interval in which the water vapor density of each voxel is assumed to be a
constant was 30 min. The GPS-observed data was processed using GAMIT/GLOBK (v10.7)
based on the double-differenced combined observation, and the processing strategies
are shown in Table 1. As mentioned in Section 2, ART was used to retrieve the water
vapor density. The accuracy of the initial iteration value has an important influence on
the accuracy of the tomographic results. In this paper, the average vertical water vapor
profile calculated from the radiosonde data of Hong Kong from 2010 to 2018 was used as
the initial iteration value.
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Figure 2. Geographical distribution of Global Navigation Satellite System (GNSS) receivers and
radiosonde station in the tomographic area.

Table 1. Processing strategies of GAMIT/GLOBK (v10.7).

Name of the Strategy Setting of the Strategy

Cut-off elevation angle 15◦

Auxiliary IGS stations BJFS, CHAN, USUD
Sampling interval for the GPS data 30 s

Tropospheric delay correction model Saastamoinen
Mapping function VMF1
Ocean tidal model FES2004
Solid tide model IERS2003

Interval of gradient parameters 2 h

4.2. Vertical Stratification Strategy

The minimum height interval is an important parameter that directly affects the height
of each voxel. If the value of the minimum height interval is adjusted by a long step length,
the optimal value will be missed. Therefore, the vertical stratification strategy based on
the ANES was divided into five different schemes with a step length of 25 m. Introducing
the traditional uniform stratification scheme for comparison, six vertical stratification
schemes were used for water vapor tomographic experiments to verify the feasibility
of the adaptive non-uniform exponential stratification method. Among the six vertical
stratification schemes mentioned above, scheme (a) equally divides the tomographic region
into 13 stratifications in the vertical direction based on the traditional uniform stratification;
in schemes (b) to (f), ANES with minimum height intervals of 350, 375, 400, 425 and 450 m,
respectively, were adopted to divide the tomographic region into 13 stratifications unevenly.
Figure 3 displays the vertical resolution of the six stratification schemes.

After completing the determination of the vertical resolution of the six stratification
strategies, we calculated the mean water vapor density of each stratification under different
schemes in the period of the tomographic experiment based on the radiosonde data of
HKKP. Figure 4 reveals the mean radiosonde-measured water vapor density of each strati-
fication derived from the six schemes, in which the red columns represent the difference
value of the mean water vapor density between two adjacent stratifications.
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Figure 3. Cont.
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Figure 3. Vertical resolution according to six stratification schemes: (a) uniform stratification with height interval of 812 m;
(b) ANES with minimum height interval of 350 m; (c) ANES with minimum height interval of 375 m; (d) ANES with
minimum height interval of 400 m; (e) ANES with minimum height interval of 425 m; (f) ANES with minimum height
interval of 450 m.

Figure 4. Cont.
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Figure 4. Mean water vapor density of each stratification and difference value between two adjacent stratifications derived
from six stratification schemes, where (a) derived from uniform stratification; (b–f) derived from ANES with minimum
height intervals of 350, 375, 400, 425 and 450 m, respectively.

As shown in Figure 4, scheme (a) adopts the uniform stratification strategy, resulting
in the phenomenon that the mean water vapor density of each stratification decreases
exponentially with increasing stratification number. Meanwhile, the difference value
of the mean water vapor density between two adjacent stratifications decreases with
increasing stratification number. The maximum value of the differences was 5.237 g/m3

(between stratification 1 and stratification 2), and the minimum value of the differences
was 0.111 g/m3 (between stratification 12 and stratification 13); the difference between
the maximum and the minimum was 5.126 g/m3. In schemes (b) to (f), in which the
vertical resolution was divided based on the ANES, the mean water vapor density of
each stratification decreased linearly with increasing stratification, and the differences
between the maximum and the minimum difference value derived from the six schemes
were 1.383 g/m3, 1.501 g/m3, 1.583 g/m3, 2.206 g/m3, 2.302 g/m3, respectively. The
above computations obtained from radiosonde data indicate that the traditional uniform
stratification leads to a large difference in the difference value of the mean water vapor
density between two adjacent stratifications, which is represented by a large difference
in the difference value between bottom stratifications compared with a small difference
between top stratifications, while the ANES can effectively avoid this problem.

The box-plot as shown in Figure 5 also illustrates the advantages of the ANES, in
which both standard deviation (STD) and interquartile range (IQR) are statistics used
to characterize the dispersion degree of a combination of data. As shown in the figure,
comparing the traditional uniform stratification and the ANES, the length of the box-plot
of scheme (a) is larger than that of the other schemes, and the STD and the IQR values of
scheme (a) are also much larger than those of the other five schemes, indicating that the
ANES can significantly reduce the difference of the difference value between two adjacent
stratifications. Furthermore, it can also be found in Figure 5 that scheme (f) has a relatively
higher STD and IQR among the schemes based on the ANES approach. The reason for this
phenomenon is that the minimum height interval of scheme (f) is larger than those of the
rest of the ANES schemes, which leads to the more drastic change in the difference of the
mean water vapor density between two adjacent stratifications. The same conclusion can
be deduced from Figure 4. As shown in the figure, in schemes (b) through (e), only three
values of the difference are greater than 2 g/m3, while in scheme (f), four values are greater
than 2 g/m3, and two of them are greater than 3 g/m3.

The above experiments and analyses based on the radiosonde water vapor profile
information of HKKP in August 2019 preliminarily proved the advantages of the ANES
over the traditional uniform stratification. This paper compared and analyzed the results of
the tomographic experiments derived from the six schemes to further verify the feasibility
and superiority of the ANES in Section 4.3.
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Figure 5. Box plots of the difference value of mean water vapor density between two adjacent stratifi-
cations derived from the six stratification schemes, where (a) derived from uniform stratification;
(b–f) derived from ANES with minimum height intervals of 350, 375, 400, 425 and 450 m, respectively.

4.3. Tomographic Experiments and Evaluation of the ANES Approach

To further validate the performance of the proposed method, the tomographic results
of scheme (b) to scheme (f) are compared with the tomographic results of scheme (a) in
this section while radiosonde data are regarded as the references. Radiosonde data were
often used as a reference to evaluate the quality of the water vapor density retrieved by
other tomographic approaches [15,16,21]. The reliability of using radiosonde data as a
reference has been verified, though the limitation of its low spatial resolution may cause
errors in terms of water vapor [31–33]. Radiosonde data have the advantage of high
vertical resolution, which can provide accurate vertical water vapor information at various
altitudes, so the water vapor density derived from radiosonde data was used to validate
the proposed approach in this paper.

The first part of this section is a comparison of the statistical results of the tomographic
reconstructions derived from the six schemes in the experimental period of 31 days. The
water vapor density value reconstructed by tomography was assessed using those derived
from radiosonde data; the root mean square error (RMSE), the bias, and the mean absolute
error (MAE) of the overall dataset are shown in Table 2. These statistical results of solutions
had their respective characteristics. In terms of RMSE, the results of scheme (d) had the
lowest RMSE value. In the bias comparison, both scheme (b) and scheme (f) had the closest
bias value from 0 g/m3, while in the comparison of the MAE, scheme (f) had the advantage
because of the lowest MAE value. Overall, in the comparison of the schemes based on
the ANES approach, the statistical results of scheme (d) exhibited a higher accuracy than
the other schemes. Further, it should be noted that the minimum height intervals of
scheme (b), (c), and (d) were 350 m, 375 m, and 400 m, respectively. However, scheme (d)
displayed a smaller RMSE than those of scheme (b) and (c). This phenomenon indicates
that smaller height intervals do not correspond to higher accuracy. A reason for this may
be that a smaller height interval reduces the height of voxels at the bottom boundary,
which decreases the number of voxels passed by GNSS signals under the condition that
the geometrical distribution of satellite rays is constant.

In terms of the contrast between the schemes using the ANES and that using the
traditional uniform stratification, the statistical results of the ANES were superior in
numerical comparisons of the RMSE, bias, and MAE. The maximum RMSE of the ANES
appeared in scheme (b) with a value of 1.104 g/m3, indicating that its accuracy was the
lowest in the ANES schemes, which was still lower than the RMSE of scheme (a) with a
value of 1.321 g/m3. Scheme (a) had a value of 0.167 g/m3 in the bias, while the worst
bias value of the ANES was −0.104 g/m3 appearing in scheme (b). The MAE value of
the uniform stratification was 0.022 g/m3 greater than that of scheme (b), which was
the maximum MAE value in the schemes using the ANES. Figure 6 further validates the
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advantages of the ANES approach by showing the correlation between the tomographic
reconstructions of the six schemes and the radiosonde data in the form of scatter plots.
Among the six schemes, the scatter plot of scheme (a) had both the largest RMSE and the
lowest R2, revealing that the correlation between the tomographic reconstructions of the
traditional stratification approach and the radiosonde data is lower than that of ANES.
Moreover, by observing the scatter plots, it can be seen that scheme (a) showed distinct
gaps in the water vapor density data retrieved by tomography, which demonstrates the
inadequacy of the traditional stratification approach mentioned in Section 4.2.

The comparison of statistical results and scatter plots between the traditional approach
and the ANES approach generally verified the feasibility of the new stratification approach.
Five schemes derived from the ANES approach were also compared with one another, with
different minimum height intervals adopted for non-uniform stratification. Among the five
schemes, scheme (d) with 400 m as the minimum height interval had the smallest RMSE
value in both statistical results and scatter plots, revealing that a smaller height interval
does not correspond to better tomographic results. This is probably because the smaller
thickness leads to more voxels that cannot be crossed by satellite paths, thus worsening the
ill-posedness of the tomographic equations mentioned in Section 2.

Table 2. Statistical results of the six schemes, with results derived from differences in water vapor density between
radiosonde data and tomography.

Statistics Scheme (a) Scheme (b) Scheme (c) Scheme (d) Scheme (e) Scheme (f)

RMSE (unit: g/m3) 1.321 1.104 1.075 1.066 1.070 1.074
Bias (unit: g/m3) 0.167 −0.07 −0.104 −0.09 −0.08 −0.07

MAE (unit: g/m3) 0.822 0.800 0.777 0.764 0.756 0.755

Figure 6. Cont.
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Figure 6. Scatter plots of water vapor density between radiosonde and tomography derived from the six stratification
schemes, where (a) derived from uniform stratification; (b–f) derived from ANES with minimum height intervals of 350,
375, 400, 425 and 450 m, respectively.

The next part of this section presents the time series of the statistical results derived
from the six schemes on the time scale of 31 days. Because only radiosonde data at
UTC 00:00 and UTC 12:00 could be obtained daily, two experiments were conducted
per day for a total of 61 experiments in each scheme. Figure 7 displays the RMSE time
series derived from the six stratification schemes. According to the time series of the
RMSE, the maximum RMSEs of schemes (a) to (f) were 2.692, 2.121, 1.969, 1.930, 2.035
and 2.039 g/m3, respectively, while the minimum RMSEs were 0.943, 0.680, 0.687, 0.558,
0.662 and 0.561 g/m3, respectively. Evidently, the corresponding RMSE of the proposed
method in this paper was smaller than the traditional method when the radiosonde data
were taken as a reference. In addition, by observing the RMSE time series, it can be seen
that higher RMSE values were generally present at UTC 12:00 of DOY 213 and UTC 12:00
of DOY 237. This was related to the strong winds and torrential rains caused by typhoons
in Hong Kong from DOY 213 to DOY 214 and DOY 237 to DOY 238.

Figure 7. Time series of the RMSE of the tomographic reconstructions derived from the six schemes
using radiosonde data as a reference for 31 days (DOY 213 to DOY 243).

As the precision of the tomographic reconstructions is highly influenced by the vertical
structure of the humidity field, total statistical results cannot provide a comprehensive
analysis of the accuracy of tomographic reconstructions. Therefore, the following part of
this section analyzed the results of tomographic retrieval on a vertical space scale. As the
same tomographic error value in different layers has different qualities, in addition to using
RMSE for analysis, this paper also used the concept of relative error to reflect the quality of
tomographic reconstructions in each stratification. Following is the formula for calculating
the relative error:

RE =
|DT − DRS|

DRS
× 100%, (20)
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where RE refers to the relative error; DT represents the retrieval of water vapor density by
water vapor tomography in g/m3; and DRS represents the water vapor density calculated
from radiosonde data in g/m3.

Figure 8 presents the RMSE and relative error derived from different schemes in each
stratification. By observing the variation tendency between RMSE and relative error, oppo-
site tendencies emerged in these two statistics. Despite the RMSE of all schemes decreasing
with increasing height, the relative error tended to increase. It was due to the characteristic
that water vapor density decreases with increasing altitude, making it difficult for tomog-
raphy to accurately retrieve humidity at high altitudes. A comparison of the six schemes
in terms of RMSE and relative error shows that the tomographic reconstructions derived
from the ANES had relatively small values for these two parameters in the tomographic
region below 6000 m, while the values were comparable above 6000 m. In the region below
3000 m, the RMSE values of the five schemes derived from the ANES were stable within
the range of 1.5 to 2 g/m3, while that of scheme (a) was consistently greater than 2 g/m3.
In the region from 3000 to 6000 m, the RMSE and the relative error of the tomographic
reconstructions were significantly decreased by the new approach. Therefore, the above
comparison further demonstrates the marked superiority of the proposed method in the
lower boundary layer.

Figure 8. Comparison of the RMSE and relative error derived from six schemes in each stratification
using radiosonde data as a reference (DOY 213 to DOY 243): (a) comparison of the RMSE in each
stratification; (b) comparison of the relative error in each stratification.

Furthermore, the water vapor profiles reconstructed by the ANES approach were also
compared. This paper shows the comparison of the water vapor profiles during dry weather
(Figure 9) and rainy days (Figure 10). It can be clearly observed from Figures 9 and 10
that all of the water vapor profiles reconstructed by the tomography showed satisfactory
consistency with the radiosonde data. However, the water vapor profiles derived from
scheme (d) had relatively higher consistency with radiosonde data than those of the other
schemes in the case of rain or not. Moreover, by comparing the differences in water vapor
density between the radiosonde data and the tomographic results under different weather
conditions, it was found that the differences were slightly larger in rainstorm weather,
especially in the region below 3000 m. However, from the comparison of the six schemes in
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Figure 10, it can be seen that the water vapor profiles reconstructed by the ANES approach
exhibited fluctuating water vapor variations below 3000 m and higher conformity with
the radiosonde data than scheme (a) derived from the traditional approach. The above
comparisons highlight that due to the consistency of the non-uniform division with the
actual vertical distribution of water vapor, its performance to describe fluctuations in
water vapor density was improved. Additionally, its superiority in extreme weather was
also demonstrated.

Figure 9. Comparison of water vapor density profiles derived from six schemes on DOY 222 at UTC 00:00. (a) Derived from
uniform stratification; (b–f) derived from ANES with minimum height intervals of 350, 375, 400, 425 and 450 m, respectively.



Remote Sens. 2021, 13, 3818 17 of 21

Figure 10. Comparison of water vapor density profiles derived from six schemes on DOY 237 at UTC 12:00. (a) Derived from
uniform stratification; (b–f) derived from ANES with minimum height intervals of 350, 375, 400, 425 and 450 m, respectively.

5. Discussion

As mentioned above, the results verified the feasibility and performance of the ANES
method. Meanwhile, the problem that the height intervals of the uniform stratification
did not conform to the dynamic exponential distribution of water vapor was solved
by the proposed approach. The ANES approach implements the adaptive non-uniform
stratification of the tomographic region in the vertical direction. The height intervals of
the voxels discretized by the proposed approach follow the actual dynamic exponential
distribution of atmospheric water vapor. Thus, in the bottom boundary area where the
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water vapor varies sharply, the discretization will be more detailed, and the number of
retrieved parameters will increase. In contrast, the ANES approach no longer allocates
excess voxels to the top boundary area where the water vapor varies gently. Moreover, the
ANES approach is portable and adaptable. The specific calculation method for vertical
resolution is described in Section 3 and provides a standard for non-uniform stratification.
Meanwhile, taking radiosonde for example, this paper detailed the steps to obtain the
function that can represent average water vapor density. At present, the radiosonde is the
most accurate instrument to measure water vapor density with high vertical resolution.
However, radiosonde data have the limitation of sparse spatial distribution. In the case
where radiosonde data are not available, the vertical distribution of water vapor can also be
obtained by other means such as ECMWF ERA-Interim data. The advantage of ECMWF is
that it has a higher horizontal resolution than radiosonde. ECMWF grid points can provide
three-dimensional distribution information for water vapor in the tomographic region.

The results of the research also indicate that the ANES approach improves the ac-
curacy of tomographic reconstructions compared to the conventional approach. In addi-
tion to the approach proposed in this paper, many other influential developments have
also improved the accuracy of tomographic reconstruction compared to the conventional
approach [15,34–37]. Table 3 presents the tomographic strategies of the developments men-
tioned above and the optimal strategy in this paper. As shown in the table, the vertical
resolutions of the uniform stratification model proposed by Haji-Aghajany et al. [34,35]
were 0.5 km (below 5 km) and 1 km (above 5 km), respectively. This stratification strategy
considered the high spatiotemporal variations in water vapor at lower altitudes but did
not take into account the dynamic exponential distribution of water vapor. In contrast to
the research using the uniform stratification model, Chen et al. [15] and Zhang et al. [36,37]
adopted the non-uniform stratification model. A variety of strategies with different vertical
resolutions were used for comparative experiments in Chen et al. [15]. These experiments
investigated the non-uniform stratification model in detail, but did not propose a specific
calculation method for adaptive stratification. Zhang et al. [36] applied two comparative
schemes between the voxel tomography model and the node tomography model. These
two schemes adopted the same vertical resolutions as in Zhang et al. [37], which took into
account the non-linear decline characteristics of water vapor in the vertical direction, but
did not propose a detailed solution to the problem of adaptation. The standard of the adap-
tive non-uniform stratification adopted by the voxel tomography model was introduced
and demonstrated in detail in this paper, and the integration of the node tomography
model and ANES will be important topics of further investigation.

Table 3. Comparison of tomographic strategies used by developed approaches and their improvements to the accuracy of
tomographic reconstructions.

Approach Area Duration Number of
GPS Stations

Horizontal
Resolution

Vertical
Stratification

RMSE (Unit: g/m3)
Percentage

COMMON IMPROVED

ANES
(minimum

height interval:
400 m)

Hong Kong 31 days 19 0.09◦ × 0.09◦ ANES 1.32 1.07 18.94%

Tikh-LSQR Tehran 10 days 11 0.25◦ × 0.25◦
Uniform
(500 m;
1000 m)

0.82 0.40 51.22%

LB-Tikh Tehran 10 days 11 0.25◦ × 0.25◦
Uniform
(500 m;
1000 m)

0.82 0.49 40.24%

Function-
based

North
America 30 days 17 0.20◦ × 0.20◦

Uniform
(500 m;
1000 m)

0.89 0.61 31.46%

Integration of
MODIS

measurements
Xuzhou
(China) 31 days 5 0.13◦ × 0.14◦ Non-uniform 2.74 2.53 7.66%

HFM Hong Kong 31 days 9 0.09◦ × 0.08◦ Non-uniform 1.63 1.13 30.67%
Voxel-

optimized Hong Kong 20 days 12 0.09◦ × 0.09◦ Non-uniform 1.38 1.23 10.87%
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6. Conclusions

An adaptive non-uniform exponential stratification (ANES) approach was proposed
for tomography in this paper, and its feasibility and superiority were validated using
31 days of GNSS data in Hong Kong. The proposed approach firstly calculates the estimated
height interval of each stratification in terms of the vertical distribution characteristic
function. Then, the height interval of the lowest stratification obtained in each iteration
is compared with the parameter of minimum height interval to gradually correct the
estimated height interval starting from the bottom of the tomographic region. Therefore,
the ANES approach can adaptively divide vertical stratifications for the tomographic region
without the need to determine the height interval of vertical stratification according to
fixed experience. Furthermore, the non-uniform stratification was adopted to satisfy the
distribution characteristic that water vapor in the vertical direction decreases exponentially
with increasing altitude, and to reduce the difference in water vapor density between two
adjacent stratifications in the lower boundary layer.

By comparing the mean water vapor density calculated from the radiosonde data, we
found that the mean water vapor density of each stratification derived from the uniform
stratification decreases exponentially with increasing stratification. In this case, it creates a
phenomenon whereby the difference in water vapor density between adjacent stratifications
is relatively large in the lower boundary layer, which is not conducive to reconstruction
of the water vapor density field. Tomographic experiments using GPS data for Hong
Kong in the period of DOY 213 to 243, 2019 were conducted to validate the proposed
ANES approach. We applied five schemes derived from the ANES with minimum height
intervals of 350, 375, 400, 425, and 450 m and compared them with the traditional approach.
In terms of overall statistical results, the ANES approach showed superiority over the
traditional approach, where the minimum height interval of 400 m had the smallest root
mean square error of 1.07 g/m3. The statistical results were analyzed, and the results show
that severe weather, such as typhoons, will affect the accuracy of the tomographic results
to some extent. Moreover, by comparing the vertical water vapor profile reconstructed
by tomography with the radiosonde data, it was found that although all the schemes
could accurately reflect the vertical distribution of atmospheric water vapor, it is difficult
to use the water vapor density field reconstructed by tomography to compare with the
radiosonde data with a high vertical resolution, especially under severe weather conditions.
Statistical results for each stratification were studied, and the results showed that the
tendencies between the RMSE and the corresponding RE were opposite with increasing
altitude, which indicated that it became gradually difficult to realize the retrieval of water
vapor density using tomography, as the moisture content decreased exponentially with the
increasing altitude.

In future investigations, our primary focus will be on the integrated approach of the
node tomography model and the ANES approach. Moreover, determining the optimal
minimum height interval by analyzing the geometrical distribution of satellite rays will be
another research objective. Furthermore, the algebraic reconstruction techniques (ARTs)
will need to be further optimized, such as by applying the corresponding weight to the
observation equations with different levels of precision to enhance the reliability and
accuracy of water vapor tomography.
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