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Abstract: Leaf mass per area (LMA) is a key plant functional trait closely related to leaf biomass.
Estimating LMA in fresh leaves remains challenging due to its masked absorption by leaf water in
the short-wave infrared region of reflectance. Vegetation indices (VIs) are popular variables used
to estimate LMA. However, their physical foundations are not clear and the generalization ability
is limited by the training data. In this study, we proposed a hybrid approach by establishing a
three-dimensional (3D) VI matrix for LMA estimation. The relationship between LMA and VIs was
constructed using PROSPECT-D model simulations. The three-VI space constituting a 3D matrix was
divided into cubical cells and LMA values were assigned to each cell. Then, the 3D matrix retrieves
LMA through the three VIs calculated from observations. Two 3D matrices with different VIs were
established and validated using a second synthetic dataset, and two comprehensive experimental
datasets containing more than 1400 samples of 49 plant species. We found that both 3D matrices
allowed good assessments of LMA (R2 = 0.76 and 0.78, RMSE = 0.0016 g/cm2 and 0.0017 g/cm2,
respectively for the pooled datasets), and their results were superior to the corresponding single Vis,
2D matrices, and two machine learning methods established with the same VI combinations.

Keywords: leaf mass per area; vegetation index; PROSPECT-D model; 3D matrix

1. Introduction

Leaf biochemical properties are important indicators of changes in ecosystem functions
and environment, and are necessary components in dynamic vegetation models [1–3]. Leaf
mass per area (LMA), defined as the ratio of dry mass of a leaf to its one-sided surface
area, is one of these key plant traits. Closely related to plant growth, LMA is often used in
characterizing leaf biomass [4–7]. It also affects plant adaptation, including plant growth
strategy and leaf lifespans, and the lower part of the canopy and longer-lived plants
usually contain higher LMA [8–11]. At a broader scale, LMA can explain the differences in
functional groups and is closely related to environmental stress [12]. Therefore, accurate
LMA prediction is of great significance to improve our understanding of the functioning of
the biosphere.

Remote sensing methods have been widely used in predicting plant traits for nonde-
structive and large-scale measurements [3,13–15]. Foliar spectroscopy-based approaches
for estimating leaf biochemistry include physical and empirical methods [16–18]. Though
LMA is reported to have obvious absorption peaks in shortwave infrared (SWIR) region,
its retrieval remains difficult due to the lower absorption coefficient compared with leaf
water content (Cw) [19–21]. This can lead to serious ill-posed problems in physics-based
LMA inversion [22–24]. To improve its LMA estimation, Féret et al. [25] determined the
range of 1700 to 2400 nm for LMA retrieval through the PROSPECT model. Qiu et al. [4]
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developed a new version of PROSPECT-g to consider the anisotropic scattering within
leaves. The physical method has a rigorous mathematical foundation, yet its inversion can
be complicated and time-consuming because of the numerous amounts of parameters [26].
Among the empirical methods, fitting relationships to vegetation indices (VIs) are one of
the most popular. Several VIs have been developed for LMA estimation [27–29]. They
require observations of only a few spectral bands and are very convenient to use. Con-
structing regression models between vegetation indices (VIs) and leaf physiological traits
with machine learning (ML) algorithms have also achieved success [30,31]. Partial least
squares regression (PLSR) was used by Serbin et al. [32] to establish a widely applicable
LMA prediction model. However, a substantial amount of prior information is needed to
train the regression equations, and their quality is found to be restricted by the training
data, especially when the model is to be applied on a dataset independent from the training
set [25].

In order to combine the benefits of physical methods and VIs, this study proposes a
hybrid VI-combination approach for optimizing LMA estimation from leaf reflectance. The
relationship between LMA and three VIs constituting a three-dimensional (3D) matrix was
established using PROSPECT-D simulations. Six different VIs were used in the construction
of two 3D matrices for LMA estimation. Their performance was tested using a second
synthetic dataset and two comprehensive experimental datasets against the corresponding
single VIs and 2D matrices. This method is expected to precisely retrieve LMA without
prior information and has the potential to aid the estimation of other leaf components.

2. Materials and Methods
2.1. Data Description
2.1.1. PROSPECT Model

Based on the plate model [33], the PROSPECT model was developed in 1990 [34] and
has been widely used in modeling of radiative transfer in a leaf. PROSPECT-D is the version
developed in 2017 and was reported to perform better than previous versions [35]. The
input parameters of PROSPECT-D include leaf structure index (N), leaf chlorophyll content
(Cab), carotenoid content (Car), anthocyanin content (Cant), brown pigment content (Cbrown),
leaf water content (Cw), and leaf mass per area (LMA). The forward running of the model
can generate accurate simulations of leaf hemispherical reflectance and transmittance from
400 nm to 2500 nm at a resolution of 1 nm. Leaf chemical traits can be inverted using
PROSPECT-D by assigning the component content of the most similar spectrum to the
measured electromagnetic spectrum.

2.1.2. Description of the Synthetic Datasets

By running the PROSPECT-D model in the forward mode, two synthetic datasets
were generated. The model parameters were assumed to have a Gaussian distribution, and
their statistical characteristics were listed in Table 1 based on previous studies [20,32]. The
model parameters of Canth and Cbrown were not considered here as they are insensitive
to leaf reflectance in the SWIR domain based on sensitivity analysis and therefore set at
0 µg/cm2 [36].

Table 1. Distribution characteristics of the leaf parameters used in the PROSPECT-D simulations for
generating the synthetic datasets (STD: standard deviation).

Title 1 Min Max Mean STD

N 1 3.5 1.6 0.3
Cab (µg/cm2) 0 110 32.81 18.87
Car (µg/cm2) 0 30 8.51 3.92
EWT (g/cm2) 0 0.07 0.0115 0.007
LMA (g/cm2) 0.001 0.04 0.01 0.07
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The first synthetic dataset was composed of 200,000 simulations (hereinafter dataset
T) for training the 3D matrices. The second synthetic dataset (hereinafter dataset E) with
1000 simulations was generated for evaluating the 3D matrices. Given that synthetic data
have a stable distribution feature, further enlarging the size of validation datasets would
not greatly affect the quantification of the accuracy of the simulated LMA.

2.1.3. Description of the Experimental Datasets

Since both the synthetic training and validation data sets were generated with the
same settings in the PROSPECT-D model, they cannot be considered independent. Hence,
in order to do a truly independent evaluation, we compiled two experimental datasets.
These also take the various realistic factors in actual measurements into account, and
validate the inversion results of LMA based on the synthetic T dataset. The first dataset
was the Leaf Optical Properties Experiment (LOPEX) dataset [37], which was released
by the Joint Research Center of the European Commission in 1993. This dataset consists
of 330 leaves from 45 plant species. Leaf reflectance spectra within 400–2500 nm were
measured with a spectrophotometer equipped with an integrating sphere. Five corn dry
leaves were excluded because the PROSPECT-D model is intended for fresh leaves [35].

The second dataset was collected at Madison, Wisconsin (hereinafter called MA) in
the summer of 2016 by the University of Wisconsin Environmental Spectroscopy Labo-
ratory [38]. Leaf reflectance spectra within 350–2500 nm were measured using an ASD
FieldSpec 3 instrument with a leaf clip. This dataset contains 1143 leaves of four plant
types: grasses, trees, vines, and forbs. The two experimental datasets contain a total of
1468 leaves, representing different leaf internal structures, leaf spectra, and biochemical
components. The spectral resolution of the measured leaf reflectance in both datasets was
1 nm.

2.2. 3D Matrix Approach for Estimating LMA
2.2.1. VIs for Building the 3D Matrices

As the absorption characteristics of LMA are weak even at its sensitive wavelengths [20,36],
LMA estimation using a single VI or physically-based method is often inaccurate [39]. Thus,
in the current study, six VIs correlated with LMA were combined in two different 3D ma-
trices using PROSPECT-D simulations to enhance the retrieval of LMA. The VIs selected
have been demonstrated to have comparatively good performance by previous studies.

The first 3D matrix is composed of modified simple ratio (MSR), normalized difference
(ND), and simple reflectivity (R2300) indices. The MSR index was developed to compensate
for leaf surface reflectance [28,40]. The ND index was a commonly used indicator for
predicting LMA [27]. As to the R2300 index, leaf reflectance at 2300 nm is reported to be
sensitive to LMA [28]. The expressions of MSR, ND, and R2300 are presented in Table 2.

Table 2. Spectral indices constructing the first 3D matrix.

Index Index ID Formula Reference

Modified simple ratio-type index MSR (R2265 − R2400)
(R1620 − R2400)

[28,40]

Normalized difference-type index ND (R1368 − R1722)
(R1368 + R1722)

[27,39]

Single reflectivity-type index R2300 R2300 [28]

The second 3D matrix consisted of single reflectivity-type (R1800), modified ND
(MND) and difference-type (D) indices. R1800 is based on the SWIR band, being one of the
most relevant bands indicating LMA variability [32]. The MND is a more sophisticated
index than ND, which has a similar capability of MSR to compensate for leaf surface
reflectance [28,40]. Previous studies showed that the use of spectral information from 1700
nm to 2400 nm was more conducive, improving the accuracy of LMA estimation, and the
D index was particularly consistent with this conclusion [25]. The R1800, MND, and D
indices are defined in Table 3.
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Table 3. Spectral indices constructing the second 3D matrix.

Index Index ID Formula Reference

Difference-type index D R2395 − R2295 [28]
Modified normalized
difference-type index MND (R2285 − R1335)

(R2285+R1335 − R2400 × 2)
[28,41]

Single reflectivity-type index R1800 R1800 [32]

The two 3D matrices contained VIs of similar forms and wavelengths. For instance,
wavelengths around 1300 nm, 1700 nm, and 2300 nm were found to be effective for
extracting LMA [20].

2.2.2. Establishment of the 3D Matrices

To construct the LMA 3D matrices, we first divided the VI1-VI2-VI3 space into several
small cells of the same size (Figure 1). Each cell was linked to an LMA value, which
corresponded to a small range of the three VI values. Thus, the smaller the size of the cells
in the 3D matrix, the more simulations are needed for building up the whole 3D matrix.
In the present study, the 3-VI space was partitioned into 100 × 100 × 100 combining both
accuracy and efficiency. In this way, two LMA 3D matrices were generated by using the
two VI combinations in Section 2.2.1.
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The training process of an LMA 3D matrix is as follows. First, for all samples in
synthetic dataset T, the three VIs adopted by the 3D matrix were calculated. Second, the
3D domain of each cell in the 3D matrix was determined by dividing the full variation
range of each VI by 100. Finally, the corresponding LMA of each sample in synthetic
dataset T was assigned to a specific cell in the 3D matrix, directed by the coordinates of
calculated VIs. In cases that different LMA values were mapped to the same cell, their
average was considered the final cell value. The process of establishing a 2D matrix follows
a similar procedure. The linear regression model of each VI was generated using the
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synthetic dataset T. Furthermore, the standard deviation of each cell in the 3D matrices
were established to indicate the uncertainty of the 3D matrices.

2.2.3. Estimation of the LMA

After the establishment of a 3D matrix, LMA can be estimated through referring to
the three VIs calculated from observations of a sample. The working mode of a 3D matrix
includes two cases:

Case 1. Direct retrieval: The three VI values calculated from leaf reflectance are traced
back to one cell in the matrix. If the cell has a non-null value, the matrix returns it directly
as the LMA value retrieved by the 3D matrix.

Case 2. Indirect retrieval (nearest neighbor retrieval): In some rare cases, the cell
directly searched by the matrix is not a number (NaN), and a second retrieval is required.
All cells with LMA values nearest to the current cell are identified, and their average is
retrieved as the LMA by the 3D matrix.

2.3. Estimation of LMA through ML Algorithms

Support vector machine (SVM) is a supervised learning model that is widely used
for regression of high-dimensional samples [42]. When it fits linear model in a high-
dimensional space, it limits the complexity of the model by minimizing the risk of over-
fitting [43]. PLSR is often used in spectroscopy to handle high predictive collinearity and
insufficient observed variables. PLSR can reduce the impact of these circumstances by
orthogonalizing the predictor variables [32,44]. In this study, we utilized SVM with linear
kernel function and PLSR methods as comparison to estimate LMA. The ML models were
parameterized using the VI combinations and the LMA simulations of the synthetic dataset
T (described in Section 2.2.1).

2.4. Accuracy Evaluation

Each of the three VIs constituting the 3D matrix can also constitute three 2D matrices.
For the evaluation of their performance, both 3D matrices were compared with their
2D versions and single Vis, and the ML methods in terms of estimating LMA using the
independent experimental datasets and synthetic E dataset. The following statistical
parameters were used: coefficient of determination (R2), root mean square error (RMSE),
and normalized root mean square error (NRMSE) [45,46]:

R2 = 1− ∑n
i=1(y

′
i − yi)

2

∑n
i=1(y′ i − y)2 (1)

RMSE =

√
∑n

i=1(y′ i − yi)
2

n
(2)

NRMSE (%) =
RMSE

ymax − ymin
·100 (3)

where y′ i and yi is the estimated and measured LMA values, respectively; ymax and ymin are
the maximum and minimum values of yi, respectively; n is the number of measurements,
and i is the serial number of the measured LMA.

3. Results
3.1. 3D Matrices of VIs for LMA

The distribution of samples in the synthetic dataset T in the 3D matrix shows a
trend, where most points formed a curved face, with the rest distributed below the surface
(Figures 2 and 3). Several LMA iso-surfaces can be observed in both 3D matrices, indicating
a progressive trend from the minimum to the maximum. Notably, a converging point ex-
isted in both matrices, in which almost all the LMA iso-surfaces converged. The coordinate
values of this point were theoretically close to the extreme values of VIs calculated based
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on synthetic dataset T (approximately MSR of 0.4353, ND of 0.0321, and R2300 of 0.0201
for MSR-ND-R2300; R1800 of 0.0896, MND of −1, and D of 0.0078 for R1800-MND-D).
The farther away from the converging point, the more obvious the differences between
different LMA values were, thereby facilitating LMA inversion.
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Figure 3. 3D matrix composed of leaf reflectance at 1800 nm (R1800), the modified normalized
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(the converging point locates around R1800 of 0.0896, MND of −1, and D of 0.0078).

Representing the uncertainty of the two 3D matrices in LMA estimation, two 3D
matrices of standard deviation (STD) were calculated (Figures 4 and 5). In these 3D
matrices, the farther away from the converging point, the smaller the standard deviation.
This indicated that the sensitivity of the 3D matrix to LMA increases from the converging
point to the extended direction. Cells with high LMA values in both 3D matrices usually
have high STD. Besides, the overall STD of MSR-ND-R2300 was lower than that of R1800-
MND-D. The average STD of R1800-MND-D (0.003 g/cm2) was approximately three times
that of MSR-ND-R2300 (0.001 g/cm2). These results showed that MSR-ND-R2300 had a
lower uncertainty than R1800-MND-D for LMA estimation.
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3.2. Evaluation of the LMA Matrices
3.2.1. Evaluation against Synthetic Data

Both 3D matrices provided substantially higher accuracy estimating LMA for the
synthetic dataset E compared to the corresponding estimates of the 2D matrices and the
single VIs (Tables 4 and 5). In most cases, 3D matrices performed better than the 2D
matrices, and the 2D matrices performed better than the single VIs. Of all combinations,
the matrix MSR-ND-R2300 had the highest accuracy (R2 = 0.99, RMSE = 0.0005 g/cm2,
NRMSE = 1.7%). The NRMSE of LMA retrieved by either of the two 3D matrices was less
than 2%, indicating that the 3D matrices significantly optimized LMA estimation, and the
effects of involving more than three VIs may not be obvious.
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Table 4. Retrieval performances of LMA using MSR-ND-R2300, corresponding 2D matrices and
single VIs (the optimal results are indicated in bold).

VI or Matrix
Synthetic Dataset E

R2 RMSE (g/cm2) NRMSE (%)

MSR 0.71 0.0040 13.2
ND 0.85 0.0022 7.3

R2300 0.39 0.0044 14.6

MSR-ND 0.91 0.0017 5.6
MSR-R2300 0.93 0.0015 5.0
ND-R2300 0.98 0.0008 2.6

MSR-ND-R2300 0.99 0.0005 1.7

Table 5. Retrieval performances of LMA using R1800-MND-D, corresponding 2D matrices, and
single VIs (the optimal results are indicated in bold).

VI or Matrix
Synthetic Dataset E

R2 RMSE (g/cm2) NRMSE (%)

R1800 0.20 0.0051 16.9
MND 0.69 0.0032 10.6

D 0.57 0.0037 12.3

R1800-MND 0.91 0.0017 5.6
R1800-D 0.82 0.0024 7.9
MND-D 0.95 0.0013 4.3

R1800-MND-D 0.99 0.0006 2.0

3.2.2. Evaluation against the Experimental Datasets

The retrieval performances of LMA using MSR-ND-R2300, corresponding 2D matrices,
single VIs, and ML models were compared against the experimental datasets (Table 6).
For both experimental datasets, the MSR-ND-R2300 matrix consistently performed best
in estimating LMA. The improvement of the LMA estimation by the MSR-ND-R2300 was
more significant on the dataset LOPEX (RMSE decreased by 36%) than on the MA dataset
(RMSE decreased by 5%). Given the superior performance of the MSR-ND-R2300 on
both datasets, it yielded the highest accuracy of LMA estimation on the pooled dataset
(R2 = 0.78, RMSE = 0.0017 g/cm2, NRMSE = 10.5%). Thus, the matrix of MSR-ND-R2300
was considered a more robust and high-precision method than the relevant 2D matrices,
single VIs, and ML algorithms.

The retrieval performances of LMA using R1800-MND-D and corresponding 2D
matrices, single VIs, and the two ML models were also compared against the experimental
datasets (Table 7). The R1800-MND-D performed best for estimating LMA using the
pooled experimental dataset (R2 = 0.76, RMSE = 0.0016 g/cm2, NRMSE = 9.9%). For both
experimental datasets, the retrieval of LMA using matrix of R1800-MND-D yielded the
highest accuracy (RMSE = 0.0016 g/cm2 for MA, RMSE = 0.0015 g/cm2 for LOPEX). To
conclude, the matrix of R1800-MND-D is also a superior method for estimating LMA
compared with the corresponding 2D matrices, single VIs, and the two ML models.
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Table 6. Corresponding to the MSR-ND-R2300 matrix, the coefficient of determination (R2), root
mean square error (RMSE, in g/cm2), and normalized RMSE (NRMSE, %) of the estimated LMA
from experimental datasets using the 3D matrix, corresponding 2D matrices, single VIs, support
vector machine (SVM), and partial least-squares regression (PLSR) (the optimal results are indicated
in bold).

VI or Matrix or ML
MA LOPEX POOLED

R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE

MSR 0.69 0.0030 20.1 0.45 0.0025 17.9 0.59 0.0029 17.9
ND 0.79 0.0019 12.8 0.56 0.0025 17.9 0.68 0.0020 12.3

R2300 0.36 0.0024 16.1 0.14 0.0040 28.6 0.26 0.0028 17.3

MSR-ND 0.49 0.0030 20.1 0.41 0.0024 17.1 0.45 0.0029 17.9
MSR-R2300 0.70 0.0021 14.1 0.48 0.0019 13.6 0.62 0.0021 13.0
ND-R2300 0.84 0.0023 15.4 0.73 0.0026 18.6 0.76 0.0024 14.8

MSR-ND-R2300 0.85 0.0018 12.1 0.74 0.0016 11.4 0.78 0.0017 10.5
SVM 0.81 0.0022 14.8 0.69 0.0023 16.4 0.73 0.0022 13.6
PLSR 0.82 0.0020 13.5 0.69 0.0022 15.7 0.74 0.0021 13.0

Table 7. Corresponding to R1800-MND-D matrix, the coefficient of determination (R2), root mean
square error (RMSE, in g/cm2), and normalized RMSE (NRMSE, %) of the estimated LMA from
experimental datasets using 3D matrix, corresponding 2D matrices, single VIs, support vector
machine (SVM), and partial least-squares regression (PLSR) (the optimal results are indicated in
bold).

VI or Matrix or ML
MA LOPEX POOLED

R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE

R1800 0.09 0.0041 27.5 0.03 0.0054 38.6 0.07 0.0044 27.2
MND 0.72 0.0021 14.1 0.47 0.0022 15.7 0.62 0.0021 13.0

D 0.40 0.0019 12.8 0.28 0.0024 17.1 0.36 0.0020 12.3

R1800-MND 0.81 0.0019 12.8 0.61 0.0017 12.1 0.73 0.0018 11.1
R1800-D 0.51 0.0017 11.4 0.41 0.0020 14.3 0.48 0.0018 11.1
MND-D 0.65 0.0022 14.8 0.46 0.0022 15.7 0.57 0.0022 13.6

R1800-MND-D 0.83 0.0016 10.7 0.67 0.0015 10.7 0.76 0.0016 9.9
SVM 0.68 0.0036 24.1 0.39 0.0038 27.1 0.57 0.0036 22.3
PLSR 0.66 0.0031 20.7 0.37 0.0036 25.7 0.55 0.0032 19.8

Comparing the two 3D matrices, MSR-ND-R2300 had higher R2 (0.85 for MA, 0.74
for LOPEX, and 0.78 for pooled dataset, Figure 6a,c,e in all experimental datasets, whereas
R1800-MND-D achieved lower RMSE (0.0016 g/cm2 for MA, 0.0015 g/cm2 for LOPEX,
and 0.0016 g/cm2 for pooled dataset, Figure 6b,d,f. Moreover, the estimation bias of R1800-
MND-D for a few samples with LMA around 0.005 g/cm2 was relatively large, which
may lead to the decrease of R2. Nevertheless, the RMSE of LMA estimation using the
matrix of R1800-MND-D was still lower than that using MSR-ND-R2300. Consequently,
the 3D matrix of R1800-MND-D was considered more promising than MSR-ND-R2300 for
estimating LMA.
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4. Discussion
4.1. Improvements over Traditional VIs

Traditional methods for estimating LMA with a single VI commonly use two or
several spectral bands related to LMA, and the regression is relatively simple to implement.
Nevertheless, as light absorption of LMA is relatively weak and often masked by Cw in its
sensitive bands, the detection of variations in LMA by VIs was limited [39]. The 3D matrix
proposed in this study can effectively strengthen the relationship between VIs and LMA,
and thus facilitate the retrieval of LMA. The range of LMA in the 3D matrices established in
this study was between 0.001 and 0.036 g/cm2 (Figures 2 and 3), which covered the range
of most vegetation species and growing stages according to the TRY database [47] and
previous researches [32,48]. In addition, these 3D matrices had achieved good accuracy
when estimating LMA on all the validation datasets (Tables 4–7). The especially high
accuracy obtained based on synthetic dataset was partly due to that the same Gaussian
distribution used in generating synthetic datasets G and T, and that random and systematic
noises were not considered. Yet it proved that the three dimensions were adequate for
LMA estimation. Using the 3D matrix improved LMA retrieval compared with any single
corresponding VI because inversion is based on similarity of the values of multiple VIs
rather than an inaccurate regression relationship susceptible to Cw absorption interference.

In addition, our results showed that the proposed method has superior performance
compared with the hybrid models based on SVM and PLSR approaches (Tables 6 and 7). We
suggested that this method can be applied to indicate LMA when no prior measurements
are available. The 3D matrix works very similarly to a lookup table (LUT). The minor
difference between the proposed method and the standard LUT with VIs is that the LUT is
generated by partitioning the ranges of LMA and other parameters, and then obtaining
the corresponding VIs. The 3D matrix, by contrast, is generated by partitioning the ranges
of the three VIs, and then the samples with different LMAs are distributed in the matrix.
Those samples in the same cell were averaged. Besides, the 3D matrix holds advantages in
manifesting a visible and clearer structure of the distribution of the VIs and LMA.

The estimation results of LMA through 3D matrix in this study were also compared
with previous reports. Féret et al. [25] used an optimal spectral domain to invert LMA
with the PROSPECT model with an RMSE of 0.002 g/cm2 using the LOPEX dataset. Wu
et al. [49] adopted the spectral invariants theory at the leaf level. The inversion accuracy of
LMA was 0.0018 g/cm2 (RMSE) using the same dataset. Validation using LOPEX showed
that our method had a slightly higher inversion accuracy (RMSE = 0.0015 g/cm2).

4.2. Impact of VI Selection in 3D Matrix Construction

Two factors that greatly affect the performance of a VI-based matrix are the sensitivity
and structure of the VIs. VIs that are sensitive to a parameter of interest or confounding
parameters can be combined in the form of a matrix for the improvement of the estimation
of this parameter. Selecting VIs sensitive to the parameter of interest is easy to understand,
whereas involving VIs sensitive to confounding factors can help alleviate the influence
of these factors. Given that the contribution of Cab and LAI is hard to differentiate on
the canopy scale, Xu et al. [50] proposed the use of two VIs sensitive to LAI and Cab in
generating a matrix to decrease the influence of LAI and were then able to improve the
accuracy of the model predictions. In the case of LMA, although Cw affects the detection
of the spectral signals of LMA in the SWIR domain, combining VIs related to LMA and
Cw would not result in the same degree of improvement in LMA estimation according to
our prior experiments (not shown here). This is due to that the correlation between Cab
and LAI is strong, while that between LMA and Cw is much poorer [27]. As a result, a
Cw-sensitive VI, while acting as an axis of the matrix, does not assist retrieval of LMA
because it has little contribution to LMA differentiation. The results in this study showed
that a 3D matrix based on VIs related to LMA yields a high accuracy for LMA estimation,
indirectly making up the absorption of LMA. This 3D matrix-based method can potentially
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be applied to invert other leaf parameters, particularly those with weak light absorption
features, such as leaf carotenoid content.

In this study, we made no specific restrictions on the types of VIs constituting the 3D
matrices, showing that a broad range of VI types can be used in generating a 3D matrix. In
future studies, the redundancy of spectral information in selected VIs may be a factor to
consider. The VIs of LMA containing bands with low correlations are expected to improve
LMA estimation.

4.3. Sources of Error and Further Development of the 3D Matrix Approach

Although the 3D matrix-based approach optimizes the LMA estimations, uncertainty
exists in three aspects: (1) inaccuracy of the PROSPECT model; (2) the included Vis, and (3)
NaN existed in the 3D matrix. The PROSPECT model assumes the specific absorption coef-
ficient of LMA as the integration of the optical influences of various organic constituents,
which may lead to inaccuracies [25]. Additionally, PROSPECT can be inaccurate in describ-
ing leaf surface features, such as surface roughness [34]. As a synthetic dataset simulated
by the PROSPECT model was used, these uncertainties were propagated when establishing
the 3D matrix. Given that here the range of biochemical parameters adopted to generate
the synthetic dataset was determined by integrating TRY database and other comprehen-
sive studies, the 3D matrices established in this study hold good generalization ability.
However, for specific vegetation types or growth phases, their performance may not be
optimal. Using prior information in adjusting the ranges and distributions of biochemical
parameters and the relationships between parameters during a 3D matrix establishment
can help reduce uncertainty.

Uncertainty also stems from the inherent limitations of VIs, for disparate LMA levels
may be misclassified to the same cell because they had similar spectral characteristics
within the three VIs. This error may be difficult to eliminate completely because VIs cannot
fully reflect variations in LMA. Still, in this respect, the 3D matrix has a lower degree of
uncertainty than a 2D one because the third VI corrects some misallocation of the LMA
into cells. However, the performance of some 2D matrices on the experimental datasets
was inferior to that of single VIs, which may be caused by the interaction between VIs.

Finally, the 3D matrices contained NaN (Figures 2 and 3). The main reason is that
some combinations of VI values represented by cells do not exist in real leaf samples, and
these cells are theoretically NaN. In addition, the possible inadequacy of PROSPECT model
simulations may result in NaN in some cells. In the inversion process, when the cells with
NaN were matched, the estimation was based on the average of the nearest cells with
non-values, which may result in errors.

The results in Section 3.1 showed that the average STD of cells in MSR-ND-R2300 was
lower than that in R1800-MND-D, which reflected a theoretically lower uncertainty of the
former 3D matrix. However, when estimating LMA from both experimental datasets, the
RMSE obtained by MSR-ND-R2300 was higher than that of R1800-MND-D (Section 3.2).
The synthetic dataset E with the same configuration can detect the training accuracy of the
3D matrix, with higher R2 often accompanied by smaller errors, thus the average STD of
MSR-ND-R2300 was relatively lower. The utilization of synthetic data set may introduce
bias to the 3D matrix when applied in experimental datasets. Therefore, the R2 of the two
3D matrices from experimental datasets was therefore consistent with the STD matrices,
while the RMSE was not.

This study proposed a novel method for LMA estimation at leaf scale, and the problem
of atmospheric absorption could thereby be ignored. However, this could be a serious
problem in airborne and satellite imagery applications [51], as it often leads to the weak-
ening or unavailability of some effective reflection features [52]. For instance, VIs with
bands covering the spectral region of high-water vapor absorption (such as 1800 nm and
2400 nm) should be avoided. Currently, several VIs for LMA inversion at the canopy scale
have been developed [28,53,54], providing a promising basis for the development of a 3D
LMA matrix at the canopy scale. The 3D matrix suitable for the canopy scale needs to
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be further investigated. Additionally, the PROSPECT model needs to be coupled with a
canopy reflectance model, and the signal-to-noise ratio of VIs at the canopy scale should be
considered.

5. Conclusions

The remote sensing of LMA is often challenging due to its lower light absorption
coefficient compared with Cw in the SWIR region. Thus, this study developed a novel
approach for optimizing LMA estimation using a 3D VI matrix based on PROSPECT-D
simulations. The results showed that compared with the corresponding single VIs and 2D
matrices, the 3D matrix improved the estimation of LMA effectively. Compared with the
machine learning models constructed using the same VI combinations, the 3D matrices
estimate LMA more accurately. Between the two 3D matrices, R1800-MND-D achieved
slightly better comprehensive performance than MSR-ND-R2300, with a lower RMSE for
both experimental datasets. Given the physical principle used in constructing the 3D
matrix, and that little prior information was involved in calibrating the models, the 3D
matrix shows high potential for a stronger generalization capability. The proposed method
can provide valuable guidance for reflecting vegetation growth, development stages, as
well as physiological response to environmental stresses.
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