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Abstract: Soil moisture monitoring using Global Navigation Satellite System (GNSS) multipath
signals has gained continuous interests in recent years. However, traditional GNSS-interferometric
reflectometry (GNSS-IR) soil moisture retrieval methods generally utilize a single frequency or
single satellite, which fail to take full advantage of different and complementary of satellite signals
with different frequencies. An improved algorithm for soil moisture retrieval based on principal
component analysis (PCA) and entropy method using multi-frequency amplitude and phase offset
fusion data was proposed in this research. The performance of the proposed soil moisture retrieval
method was evaluated using data recorded by Plate Boundary Observatory (PBO) H2O networks and
a self-built site in Henan, China. The results from GPS and BeiDou both showed that the retrieved soil
moisture has a stronger correlation with in situ soil moisture, which can better reflect the fluctuation
of ground truth measurements. Compared with the traditional method, the retrieval accuracy of
the proposed method in terms of root-mean-square error (RMSE) was improved by 50.93%, and the
average correlation coefficient were increased by 11.71%. This research proved that the proposed
method could effectively improve retrieval accuracy due to the increasing number of frequencies and
tracks clustering. Moreover, this study has illustrated the feasibility of BeiDou signals to precisely
estimate surface soil moisture.

Keywords: Global Navigation Satellite System interferometric reflectometry; soil moisture; principal
component analysis; entropy method; multi-frequency fusion

1. Introduction

In the last years, the Global Navigation Satellite System (GNSS) has been widely
explored as an efficient remote sensing tool, working on surface environmental monitoring.
The first use of GNSS reflected signals in remote sensing was proposed by Hall and Cordey
to sense ocean wind [1]. Subsequently, GNSS reflectometry (GNSS-R) has been investigated
for estimating a range of geophysical parameters, including soil moisture [2,3], sea surface
wind speed [4], snow depth [5,6], vegetation state [7,8], and sea-ice monitoring [9,10].

The above studies focused on using specially designed GNSS receivers to estimate
changes in environmental conditions, which needed additional expensive antennas and
were not conducive to the application of GNSS networks or Continuously Operating
Reference Stations (CORS) simultaneously. Since 2008, Larson et al. [11] proposed the
GNSS-interferometric reflectometry (GNSS-IR) technique, where the GNSS signal was
collected by geodetic GNSS receivers using a Right-Hand Circularly Polarized (RHCP)
antenna. The time-evolution of the received Signal-to-Noise Ratio (SNR) was then used

Remote Sens. 2021, 13, 3725. https://doi.org/10.3390/rs13183725 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5059-5327
https://doi.org/10.3390/rs13183725
https://doi.org/10.3390/rs13183725
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183725
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183725?type=check_update&version=1


Remote Sens. 2021, 13, 3725 2 of 17

to monitor soil moisture variations. Since then, a new and inexpensive source of surface
environmental information has become available to a broader scientific community, and
different studies have been conducted based on the GNSS-IR technique, such as soil
moisture [11–14], vegetation growth status [15–17], and snow depth [18–20]. Soil moisture
is an important criterion for measuring the circulation of water resources, and its accurate
and long-term monitoring is the basis of environmental scientific research. Larson et al. [21]
further confirmed that GPS SNR data were more sensitive to the soil with a vertical depth
of 1~6 cm, and were consistent with the results measured by traditional soil moisture
reflectometer. Chew et al. [22] obtained the relative phase offset, amplitude, and effective
reflection height from simulated signal data, which further indicated the sensitivity of
phase offset and amplitude to changes in soil moisture. Vey et al. [23] used the SNR data
collected at the Sutherland Station in South Africa to construct an empirical model for
soil moisture estimation. A GPS multipath electrodynamics model was established by
Zavorotny et al. [24] to further investigate how soil moisture fluctuations affect the change
of SNR. The inversion of soil moisture from the BeiDou Navigation Satellite System (BDS)
B1 and B2 signals through the interference pattern technique and the SNR, were verified by
Yang et al. [25]. Zhen et al. [26] used two machine learning algorithms, Back Propagation
(BP) neural network and Support Vector Regression (SVR) to construct the soil moisture
retrieval model of GNSS satellite reflection signal. Jing et al. [27] proposed an estimation
model that uses the entropy method to fuse the dual-frequency amplitude of single satellite.
Sun et al. [28] established an inversion model based on the minimum variance method
fused with GPS tri-frequency amplitude. Meanwhile, the effect of vegetation on reflected
signals was also observed, which needed to be mitigated to achieve better estimation of
the soil moisture [29]. Two soil moisture retrieval algorithms, with different complexity to
mitigate vegetation effects, were verified in [30]. Zribi M et al. [31] discussed the influence
of radar frequency on the relationship between surface soil moisture over bare soils. It
proved that L band penetration depth is approximately 5 cm for medium moisture levels,
whereas the penetration depth for the C and X bands is around 1 cm.

However, previous traditional regression models have concentrated on the use of sin-
gle frequency phase offset or amplitude, and failed to take full advantage of the difference
and complementarity of satellite signals with different frequencies. Moreover, it is difficult
to select a set of optimal SNR combinations from many SNR observations for modeling,
which will affect the efficiency of soil moisture retrieval of GNSS-IR. In fact, due to the
difference of the satellite transmitting power and the surface environment, soil moisture
may also lead to changes of other characteristic parameters, such as the fluctuation of
amplitude. Therefore, it is not enough to simply use characteristic parameters from a single
GNSS frequency.

In order to make up for the shortcomings of low reliability and poor stability of single-
satellite or single-frequency approaches, an algorithm using multi-frequency and multi-
satellite amplitude and phase offset fusion data is proposed and verifies its applicability to
BDS in this research. The method is validated using experimental data from Plate Boundary
Observatory (PBO) H2O networks and Henan, China. After the introduction, we present
the principles of traditional GNSS-IR and retrieval procedure of the proposed method.
Following this, processing strategies and data collection are described. After that, the
performance of the proposed method is shown and evaluated. More details about this
method will be described in the following sections. Finally, the conclusions are drawn.

2. Methods
2.1. The Traditional Single-Frequency Retrieval Method of GNSS-IR

A geodetic-quality GNSS receiver is typically installed as shown in Figure 1. In
the ground-based case, due to the reflections from the surrounding environment (sea
surface, soil surface, etc.), superimposition at the antenna will produce a relatively stable
interference signal, and the interference phenomenon is more obvious under the low
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elevation angle of the satellite. The interference signal SNR received by the antenna can be
given by:

SNR2 = A2
d + A2

m + 2Ad Am cos ϕ (1)

where Ad and Am are the amplitude of the direct and reflected signal, respectively; ϕ is the
phase difference between the direct and reflected signals.
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Figure 1. Schematic diagram of GNSS reflected signal.

Note that the SNR series recorded by a GNSS receiver are typically expressed on
a logarithmic scale in units of dB-Hz. In fact, according to Equation (1), the SNR for
each satellite track is first converted from dB-Hz to a linear scale (volts/volts) through
the function: 10(SNRdB−Hz/20). When GNSS satellite elevation angle changes, the power
of the direct signal is typically much larger than the reflected signal, and the trend of
SNR variation is dominated by Ad that does not contain the information about the surface
environment. Therefore, direct signal components are first removed through detrending
the SNR data using two-order polynomial fitting and mainly focusing on analyzing the
reflected signal components [11].

Initial studies characterized the SNR reflection component using the following
Equation (2) [9]:

SNR = A cos(
4πh

λ
sin θ + ϕ) (2)

where h denotes the priori reflector height, which is generally replaced by the median of the
high reflectance series calculated by Lomb-Scargle periodogram; θ denotes the elevation
angle of the satellite; λ refers to the wavelength of the GNSS signal; A is an amplitude term;
and ϕ is a phase offset.

Currently, the characteristic parameters such as amplitude and phase offset in the
Equation (2) can be obtained by using the principle of a nonlinear least square fitting
algorithm. According to the strong correlation between phase offset and soil moisture, the
corresponding unary linear regression statistical model can be given by:

y = aϕ + b (3)

where y refers to the ground truth soil moisture values and a and b are the fitting coefficients.
In summary, the above explanation process is mainly based on GNSS single-frequency

SNR data. The emergence of multi-frequency observations is conducive to further improv-
ing the retrieval accuracy of soil moisture, so it is necessary to carry out multi-frequency
SNR data fusion research.

2.2. An Improved Method
2.2.1. Multi-Frequency Fusion Retrieval Procedure

Specifically, the algorithm procedure is shown in Figure 2. The method proposed
by Larson was used to calculate the phase offset and amplitude of SNR data within low
elevation angles in the range 5◦~25◦. In order to reduce the complexity of data selection
and extract the major feature components, Section 2.2.2. describes the use of principal
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component analysis (PCA) to cluster the phase offset and amplitude data of different
tracks within a 15◦ sliding window of azimuths. More importantly, to make full use
of the complementarity between different frequencies and improve inversion accuracy,
the weights are calculated to fuse multi-frequency feature observations in Section 2.2.3.
Then the data set is divided into the training set and test set at a ratio of 4:1. With the
fusion feature observations based on the proposed method as an input and the ground
soil moisture as an output, the retrieval model based on Light Gradient Boosting Machine
(LightGBM) is established in Section 2.2.4. Eventually, this model is compared with the
multi-satellite unary linear regression model and another model with single-frequency
original phase offset series as input, based on LightGBM.
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2.2.2. Use PCA to Extract Main Feature Components of Single-Frequency

According to the previous studies [21], the phase offset and amplitude calculated by
Equation (2) are different due to many factors, such as the diversity of surface environment
around the receiver and satellite transmission power. Therefore, the correlation between
the metrics time series of the ascending or descending tracks of different satellites and the
soil moisture is quite different.

PCA is a widely used data dimensionality reduction method [32]. The main idea is to
map n-dimensional features to k-dimensions (k < n). New features are linear combinations
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of old features. These linear combinations maximize the sample variance and make the
new k features as uncorrelated as possible. On the basis of retaining the major feature
components, the noise and unimportant features are reduced [33].

PCA is used to map the single-frequency phase offset and amplitude series within 15◦

azimuths to one-dimension in this research, so as to extract its main feature components.
The normalized phase offset ϕ and amplitude A time series can be expressed as:

Xk = {A1, A2, · · ·Ak; ϕ1, ϕ2, · · ·ϕk} (4)

The covariance matrix is calculated:

C =
1
n

XkXk
T (5)

Then, the eigenvalue decomposition method is used to find the eigenvalue and eigen-
vectors of the covariance matrix. The eigenvalues are sorted to select the largest one. Its
corresponding eigenvectors are used as row vectors to form the eigenvector matrix P.

Eventually, SNR feature series are converted into a new space constructed by a feature
vector, which are the main feature components after clustering:

Y = PXk (6)

2.2.3. Use Entropy Method and Priori Information to Fuse Multi-Frequency Features

The entropy method is an objective weighting method that draws on the idea of
information entropy. According to previous research [34], information entropy can quan-
titatively measure the uncertainty of information, so the entropy method determines the
weight of the index according to the information entropy of the index and the influence of
the difference degree of the index on the entire system. In order to obtain the weight, the
proportions of characteristic parameters are first calculated in the series [35]:

zk
ij =

Yk
ij

k
∑

j=1
Yk

ij

(7)

Then, the index entropy and redundancy are calculated:

ei
j = −

1
ln(n)

n

∑
j=1

zk
ij × ln(zk

ij) (8)

dk
j = 1− ek

j (9)

Finally, the weight can be expressed as:

wk
i = dk

j /
n

∑
j=1

dk
j (10)

where k refers to the number of frequency; n indicates the length of the data; and i is the
number of available arc segments.

It is worth noting that although the entropy method avoids the deviation caused by
human factors, due to ignoring the importance of the index itself, sometimes the determined
index weight will be far from the expected result. Therefore, a priori error and correlation
coefficient are introduced to comprehensively determine the weight.

First, the cumulative mean square error and (R2)k are calculated according to the fused
characteristic parameters from each frequency:

σk
n = ((soilk

true − soilk
retrieval)

2
)
−1/2

(11)
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qk
i = ∑

n=1
σk

n (12)

where soilk
true is the ground truth soil moisture; soilk

retrieval is the soil moisture calculated
from the fused characteristic parameters; σk

n indicates the daily mean square error. The
weights obtained from the prior information can be expressed as:

Qk
i = [qk

i ×∑
1
σk

n
]
−1

(13)

pk
i = (R2)

k
/∑ R2 (14)

Based on these, the final fusion weight is defined as:

Wk
i =

1
2

5×wk
i
+ 3

5×Qk
j
+ 2

5×pk
i

(15)

Therefore, the multi-frequency fusion observations can be expressed as:

Yf usion = ∑ Yk
ij ×Wk

i (16)

2.2.4. Use LightGBM to Establish a Retrieval Model

LightGBM is a fast and high-performance distributed gradient boosting framework,
proposed by Microsoft in 2015 [36]. It is a variant of the Gradient Boosting Decision Tree
(GBDT) model, and the basic principle is still a boosting tree algorithm. The idea of gradient
boosting is to iterate variables at one time, add sub models one by one in the iterative
process, and ensure that the loss function decreases continuously. It assumes that fi(x) is a
sub model and the composite model is defined as:

Fm(X) = ∂0 f0(X) + ∂1 f1(X) + · · ·+ ∂m fm(X) (17)

The loss function is L[FM (x), y]. Every time a new sub model is added, the loss
function will gradually decrease towards the variable with the second highest information
content:

L[Fm(X), Y] < L[Fm−1(X), Y] (18)

In addition, LightGBM adds Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) to reduce the time complexity of processing samples. GOSS is a
sampling algorithm, which can achieve a good balance with the accuracy of a decision tree
while reducing the number of data. EFB realizes the binding of mutually exclusive features
to reduce the number of features [37]. Through this, the training speed can be improved
without losing its accuracy. In addition, the LightGBM algorithm selects ‘Leaf-wise’ leaf
growth strategy with depth restriction. This leaf node expansion method can reduce the
training error and get better accuracy [38]. Simultaneously, the performance of LightGBM
has been significantly improved by technology optimizations such as support for parallel
learning, support of the histogram algorithm, and so on.

Due to the great performance and generalization capability of LightGBM, using multi-
frequency fusion observations as input and in situ soil moisture as output, soil moisture
inversion is regarded as a nonlinear regression problem to establish a retrieval model.
Figure 3 shows the framework of the retrieval model.
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3. Experiments
3.1. PBO H2O Network Experiments

The PBO H2O networks were jointly funded by the National Science Foundation (NSF)
and National Aeronautics and Space Administration (NASA). The networks were managed
and operated by the NSF. It was mainly used to analyze topographical changes caused
by crustal movements and volcanic eruptions. More than 1000 geodetic-quality receivers
have been installed in the PBO H2O networks. Based on selection criteria of wide field of
view, insignificant vegetation variation and flat terrain, data from three PBO H2O network
stations (http://www.unavco.org/ (accessed on 20 April 2021)) are used for validation.
Figure 4a indicates the distribution and surrounding environment of three GNSS stations:
P037, P041, and P043. These stations can provide users with L1 and L2 dual-frequency
observations at a sampling rate of 15 Hz. The change in soil moisture and rainfall at all
stations during the experiment is shown in Figure 4b. The rainfall is dominated by products
from the North American Land Data Assimilation System (NLDAS). Therefore, we chose
these stations for our experimental studies. Meanwhile, the specific time and length of data
we used were recorded (see Table 1).

http://www.unavco.org/
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Figure 4. (a) The distribution and surrounding environment of P037, P041, P043 stations; (b) the soil
moisture-rainfall diagram during the experimental period.

Table 1. Stations data usage.

Station Latitude and Longitude Location Year Time Span/Days of Year

P037 38.42◦ N,105.10◦ W Canon, Colorado 2014 145–294
P041 39.95◦ N,105.19◦ W Boulder, Colorado 2012 87–236
P043 43.88◦ N,104.49◦ W Newcastle, Wyoming 2016 184–333

First, according to Section 2.2.2, PCA is adopted to cluster the tracks whose azimuths
are within 15◦. An example using station P043 is depicted in Figure 5. Due to the different
transmitting power of GNSS satellites, the reflected signals recorded by the receiver are
not the same. Therefore, the amplitudes and phase offsets calculated by Equation (2) have
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large differences for different satellites. As shown, for PRN32 and PRN17 (Figure 5, top),
the correlation coefficient with the ground truth values is only 0.3723 and 0.6557, showing
a large deviation, while after track clustering the correlation coefficient between the main
feature components series (Figure 5, bottom) and in situ soil moisture is increased to 0.7887,
which further extracts the main information of feature parameters.
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To take full advantage of the complementarity between different frequencies, the
weights are calculated by Equations (7)–(16) to fuse multi-frequency feature observations.
Figure 6 gives an example of fusion results using station P043. It should be noted that there
are relatively large differences between the L1 and L2 frequency, for which the correlation
coefficient is 0.3061 and 0.7887, respectively. The possible reason for this phenomenon is
that the L1 SNR data are less precise than the L2 SNR data. Specifically, this is related to the
new L2C code being more robust than the L1 C/A code and the different tracking power
between the L1 and L2 signals [19], which means that the L2 SNR is more conducive to
soil moisture retrieval. In contrast, the multi-frequency fusion results show a correlation
coefficient of 0.8318 with respect to the ground truth soil moisture, 0.05 larger than the
correlation only using the L2 frequency, thus showing that combining data from both
frequencies allows a better soil moisture retrieval [27].
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Then, 120-day training set data are used to train the model by LightGBM and other
30-day test data are used to verify the model. The test set results are also compared with
the ground truth soil moisture and results of other two models by statistical regression
evaluation index. The method of modeling is consistent for different locations but model
parameters are different due to the differences of surface environment and soil components
around the station. Thus, the hyper parameter optimization module is used to search for
the best parameters.

Figure 7 depicts an example of verification of soil moisture measurements using sta-
tion P041. The ground truth soil moisture data from three depths (2.5, 7.5, and 20 cm)
were collected by the University of Colorado [12], which can provide a daily average
soil moisture. It can be seen from Figure 7 that all three methods can roughly reflect the
changing provide a moderate accuracy with respect to the ground truth values, showing
correlation coefficient of 0.9045, 0.8596, and 0.767, respectively. The retrieval values based
on machine learning are in good agreement with the ground truth soil moisture, which
fully proves the feasibility and accuracy of the soil moisture retrieval model using machine
learning algorithms. However, both using LightGBM, the results of the proposed method
are improved and fluctuation is smaller than another method using the L2 signal. Con-
versely, there is still a large deviation between the results of the linear regression model
and ground truth values, especially during days of year (DOYs) 214–224 and 230–235.
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3.2. Henan Experiment

The second experiment was recently performed in Fengqiu Experimental Station for
the Agro-ecology Chinese Academy of Sciences, Fengqiu County, Henan Province, China
(35.019882◦N, 114.547572◦E), from 26 January 2021 to 7 March 2021. A Sino M300 Pro
GNSS receiver and AT500 GNSS antenna were used to receive GNSS signals which contain
multi-frequency signals for multi-GNSS constellations (GPS/GLONASS/Galileo/BDS).
The ground soil moisture was measured by a frequency domain reflectometry (FDR) sensor
installed at 5 cm depth, which can provide a measured soil moisture value every hour.
Figure 8a indicates the station’s surrounding environment and corresponding instruments
and equipment. The ground soil moisture and rainfall were shown in Figure 8b, which
showed dry and wet variation; such fluctuation could better verify the sensitivity of the
proposed method in this research. It is worth noting that there was a snowfall on DOY 56,
which led to a significant change of reflection height, so we excluded data for that day.
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Figure 8. (a) Instrument and equipment (mid), surrounding environment (left), and soil moisture
sensor (right). The red box represents the antenna and receiver; the blue box represents power supply
equipment. (b) The soil moisture-rainfall diagram during the experimental period.

Note that the difference between the previous experiments was that BDS B1-2, B2b,
and B3 signals (S2I, S6I, S7X) [39] were chosen to verify the applicability of soil moisture
retrieval by BDS. Unlike the other three constellations, BDS consists of satellites in three
types of orbits: the Geostationary Orbit (GEO), the Inclined Geosynchronous Orbit (IGSO),
and the Medium Earth Orbit (MEO). The trajectories of BDS satellites of station Henan
on DOY 30, 2021 are shown in Figure 9. The different trajectories show the different orbit
types they belong to. The trajectories shaped like an ‘8’ represent IGSO, and the trajectories
showing a point represent GEO. As there is almost no change in the elevation angle for
GEO satellites, the SNR arcs from GEO satellites have no multipath oscillation, so the
traditional method cannot be used for retrieval. Due to the characteristics of BDS mixed
constellation and the different orbital parameters, the pre-processing of IGSO and MEO is
slightly different. As shown in Table 2, the revisit periods of BDS satellites are much longer
than those of GPS. MEO satellites need seven times the amount of GPS data, which puts
forward certain requirements for the amount of data. In the case of short observation time,
the average value is considered to be used. Specifically, MEO use the average phase offset
and amplitude within 5◦ azimuths, while IGSO processes in the same way as GPS.
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Table 2. Revisit periods of GPS and BDS constellations.

Item Revisit Period (Days)

GPS 1
BDS(GEO and IGSO satellites) 1

BDS(MEO satellites) 7

According to the method proposed above, the soil moisture can be calculated. Figure 10
depicts the retrieval results of the Henan experiment. These indicate that the estimation
obtained from two methods agrees well with the in situ soil moisture, which proves that
BDS has a similar potential to GPS in soil moisture retrieval. However, there is a significant
deviation in unary linear regression model, with 0.03 cm3cm−3, approximately. This further
proves that the direct retrieval of soil moisture from single-satellite or single-frequency
data involves relatively large uncertainties, which may be caused by the differences among
the geometric motion trajectories relative to the satellites during the experiment and
the performance of the satellites. On the contrary, the proposed one has better retrieval
performance in the whole experiment period, which shows great correspondence with in
situ soil moisture.
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4. Discussions

In the PBO H2O networks experiment, an example of the soil moisture retrieval
errors produced by three methods with station P041 is illustrated in Figure 11. Obviously,
most of the residuals based on LightGBM are concentrated within ±0.04 cm3cm−3, while
those from the traditional method are slightly larger, with a variation of ±0.06 cm3cm−3.
The errors of LightGBM, based on L2 frequency, are slightly worse than those of the
proposed method, which have the highest accuracy, with stable residuals smaller than
±0.02 cm3cm−3. A statistical histogram of the proportion of the absolute error for the soil
moisture inversion obtained using three models is depicted in Figure 12. Furthermore,
83.33% retrieval residuals of the proposed method are distributed with ±0.02 cm3cm−3.
Only 16.67 and 53.33% retrieval residuals calculated by the traditional method and the
L2-LightGBM method are distributed within these. By contrast, 46.67% retrieval residuals
by the traditional method are larger than ±0.05 cm3cm−3, with the proposed method
being zero. Furthermore, the proposed method distributes more narrowly than the other
two models and conforms to a normal distribution overall. Therefore, by fusing of multi-
frequency SNR data, the problems of partial fluctuation and low retrieval accuracy can be
effectively overcome.
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In terms of correlation, the scatterplot of soil moisture retrieval using station P041
by three methods is depicted in Figure 13. It presents that the estimation results are both
consistent with the trend of true values. Compared with the other two methods, the results
of the proposed method perform better, providing a good fit with the ground truth values.
The correlation coefficient of the proposed method combination is the largest, reaching
0.9045, followed by single-phase offset as input with a correlation coefficient of 0.8596,
while the traditional method correlation coefficient of 0.7677 is the smallest.
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Furthermore, the performance of the proposed method is compared with that of
the other two methods. Table 3 gives the accuracy in terms of error statistics of three
stations based on the three retrieval methods. It is noticed from Table 3 that the correlation
coefficients of the three stations based on the proposed method are both above 0.9, and
those based on the traditional method are below 0.8, conversely. In addition, RMSE and
mean absolute error (MAE) are decreased to some extent. Specifically, compared with the
other two methods, the average correlation coefficient of the proposed method is increased
by 6.12 and 19.34%, the average RMSE is decreased by 28.83 and 50.93%, and the average
MAE is decreased by 28.11 and 51.35%, respectively.

Table 3. Soil moisture retrieval precision statistics.

Station Method Correlation
Coefficient

Root-Mean-Square-Error
(cm3/cm3)

Mean-Absolute-Error
(cm3/cm3)

P037
Proposed 0.9007 0.0217 0.0190

L2-LightGBM 0.8493 0.0270 0.0237
Linear 0.7403 0.0364 0.0319

P041
Proposed 0.9045 0.0172 0.0142

L2-LightGBM 0.8596 0.0327 0.0286
Linear 0.7677 0.0568 0.0525

P043
Proposed 0.9524 0.0120 0.0100

L2-LightGBM 0.8896 0.0149 0.0116
Linear 0.8033 0.0209 0.0168

For the Henan experiment, as illustrated in Figure 14, the correlation coefficient of the
proposed method and ground truth soil moisture is 0.9023, and RMSE is 0.0057 cm3cm−3,
which achieves about 9.66 and 84.12% improvement compared with the traditional linear
regression model, respectively. That is, the proposed method can be applied to BDS,
effectively overcomes the uncertainty discussed above, and greatly improves the stability
and accuracy of soil moisture retrieval. It is worth mentioning that due to the short time
series of the experiment and the single experimental site, the applicability of the proposed
model for BDS needs to be further verified.
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5. Conclusions

The acquisition and long-term monitoring of soil moisture are of great significance
to environmental science research. This contribution aims to improve the accuracy of
soil moisture retrieval based on fully exploiting the advantages of multi-mode GNSS
combination. An improved method is proposed to retrieve soil moisture using multi-
frequency fusion data of single geodetic-quality GNSS antenna and evaluates using dual-
constellation SNR data.

Observation data from PBO and Henan station, estimated by GNSS-IR based on the
proposed method, were compared with in situ soil moisture and the other two methods. In
terms of soil moisture retrieval accuracy, the proposed method performs better than the
traditional method by experiments for GPS and BDS. The long experimental results show a
great correlation between ground truth values and the retrieval values, the correlation coef-
ficient of three PBO stations is 0.9007, 0.9045, and 0.9524, respectively. The corresponding
RMSEs are 0.0217, 0.0172, and 0.012 cm3cm−3. Another short-term experiment also proves
the feasibility and accuracy of soil moisture retrieval by BDS, with 0.0057 cm3cm−3 of
RMSE and 0.9023 of correlation coefficient. Moreover, it is demonstrated that the proposed
approach could be extended to BDS. These improvements mainly benefit from the fusion of
multi-feature parameters from multi-frequency. Simultaneously, the difference of satellite
signals with different frequencies and the problem of SNR selection are alleviated by using
the PCA algorithm and entropy method with prior information.

In addition, these experiments indicate that the GNSS antenna is affected by the
geometrical trajectory of the satellite and the performance of the satellite itself. The phase
offset and amplitude of different satellites have different response modes to the surface soil
moisture, and there is a different correlation with the in situ soil moisture. The proposed
method can better combine the two, and has better inversion performance in terms of
accuracy and stability, which effectively suppresses the phenomenon of ‘abnormal jump’
when using a single satellite or frequency for inversion. Future research will focus on
multi-constellation fusion to retrieve soil moisture and reduce the impact of vegetation
coverage on soil moisture measurement.
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