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Abstract: The abundance of phytoplankton is generally estimated by measuring the chlorophyll-a
concentration (Cchla), which is an important factor in photosynthesis and can be used to analyze the
density and biomass of phytoplankton in the ecosystem. The band-ratio-based empirical or semi-
analytical algorithms are operationally applied to retrieve Cchla in global oceans, which generally
experience difficulties from the diversity of optical properties and the complexity of the radiative
transfer equations in analytical analyses, respectively. With an attempt to develop an accurate Cchla

retrieval model for the optically complex coastal and estuarine waters, this study aimed to explore the
deep learning (DL) methods in satellite retrieval of Cchla. A two-stage convolutional neural network
(CNN), named Cchla-Net, was proposed, which utilized the spectral information of remote sensing
reflectances at MODIS/Aqua’s visible bands. In the first-stage phase, the Cchla-Net was pretrained by
a set of remote sensing patches, in which the Cchla was generated from an existing model (OC3M).
The pretrained results were than used as the initial values to refine the network with the synthetic
oversampled in-situ dataset in the second-stage training phase. Using in-situ samples for training
with the new initial values has a higher probability to reach the global optimum. The quantitative
analyses showed that the two-stage training was more likely to achieve a global optimum in the
optimization than the one-stage training. Matchups of the in-situ Cchla measurements were used
to evaluate the retrieval models. Results showed that the proposed Cchla-Net produced obvious
better performance than the empirical and semi-analytical algorithms, implying the DL method
was more effective for optically complex waters with extremely high Cchla. This study provided
an applicable method for remote sensing retrieval of Cchla, which should be helpful for studying the
spatial distribution and temporal variability in the productive Pearl River estuary (PRE) waters.

Keywords: pearl river estuary; convolutional neural networks; chlorophyll-a concentration; MODIS

1. Introduction

Chlorophyll-a concentration (Cchla) is one of the key estuarine water quality param-
eters and serves as an essential indicator of ocean primary productivity [1]. Accurate
retrieval of Cchla from ocean color data is often an extremely challenging task in estuarine
and coastal waters, due to the complex optical properties related to the inconstant and
uncorrelated phytoplankton biomass, suspended sediments and colored dissolved organic
matter (CDOM). The currently available satellite-derived water quality products are re-
stricted to optically significant materials [2], and the standard ocean algorithms have tended
to be largely dispersed in specific regions [3]. In addition, the atmospheric correction errors
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can lead to inaccuracies in remote sensing reflectance, especially for blue wavelengths, from
which Cchla is typically derived [4]. Many retrieval models for Cchla estimation have been
developed for different ocean color sensors, such as the sea-viewing wide field-of-view
sensor (SeaWiFS), the moderate resolution imaging spectroradiometer (MODIS) and the
visible infrared imaging radiometer suite (VIIRS). In general, the retrieval models are
inputted with normalized water-leaving radiance (nLw) or remote sensing reflectance (Rrs)
and compute Cchla in a direct or indirect way, and they can be grouped as empirical and
semi-analytical models. Empirical models are commonly based on the band ratios of Rrs
and regression functions [5–7]. The accuracy of empirical models mainly depends on the in-
situ measurements utilized on their respective developments. Semi-analytical models [8,9]
require analytical expressions relating inherent optical properties (IOPs) or apparent optical
properties (AOPs) and several mathematical constraints. Semi-analytical models have
advantages over the empirical models since they can derive multiple optical properties
from a single water-leaving radiance spectrum. However, the relative complexity of the
semi-analytical models has stalled the operational implementation since the optimal model
parameters are hard to determine [10,11].

Machine learning methods have demonstrated their abilities in remote sensing applica-
tions, such as evapotranspiration estimates [12,13], and oceanic particulate organic carbon
retrieval [14]. Deep learning (DL) methods, which exclusively learn the representative
features in a hierarchical manner from data, have been recently introduced into the remote
sensing community for big data analysis [15]. As the most representative supervised
DL model, convolutional neural networks (CNNs) have proven to be good at extracting
features from remote sensing imageries by interleaving convolutional and pooling lay-
ers [16]. The main advantages of CNNs are the association with nonlinear complexities,
the reduced sensitivity to noise, and the ability to learn highly abstract features. Recent
studies showed that CNNs were highly effective in large-scale image recognition and
object detection [17–21]. For the Pearl River estuary (PRE), which has turbid and highly
productive waters, several local algorithms for Cchla retrieval have been developed [22,23].
However, the DL network has not been widely applied to the PRE waters.

This study aimed to explore the potentials of DL in improving remote sensing re-
trieval of estuarine and coastal Cchla. To achieve the goal, with climatological monthly
products from MODIS/Aqua ocean color data and long-term in-situ measurements, a two-
stage CNN model, which was named Cchla-Net, was trained and validated by a k-fold
cross-validation, and it was further compared with the representative empirical and semi-
analytical models. The proposed network could contribute to developing more accurate
Cchla retrieval approach in the turbid and high productive estuarine and coastal waters.
By applying the network, the long-term Cchla products in the PRE were derived, from
which the spatial distribution and the temporal variability were analyzed, and the different
patterns were observed in the coastal and continental shelf area, which related to the river
discharge, and the mixing of the upper layer was revealed.

2. Materials and Methods
2.1. Study Area

The PRE is a subtropical and high biological productivity estuary located in the
continental shelf of the northern South China Sea (SCS). The SCS is a typical monsoon-
influenced region. Southwest winds prevail in summer, and northeast winds prevail in
winter [24,25]. In this study, the seasons refer to those for the northern hemisphere, i.e.,
summer refers to June, July and August, and winter refers to December, next January and
February. As the third largest river in China, the Pearl River is well known for its complex
river networks, and the water composition varies widely both spatially and temporally
in the PRE [26]. Lingdingyang Bay of the Pearl River estuary (LBPRE) forms the largest
estuarine bay in South China, which is a trumpet-shaped bay stretching in a near NNW-
SSE direction and covering a sea area of about 2110 km2 [27]. With rapid growth of the
population and urbanization, the PRE is contaminated by industrial pollution, agricultural
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runoff and domestic sewage, which threaten the water quality of the PRE [28,29]. In the
study area, there are turbid and high productive coastal waters and clear continental shelf
waters. As a result, the Cchla is characterized by wide ranges and fast changes, indicating
that the PRE is a suitable place for training a representative retrieval network.

2.2. Data Sources
2.2.1. In-Situ Dataset

Ten campaigns were conducted between the year 2003 and 2012 to collect the water
samples and optical spectrum. A total of 18 consistent stations were pre-set along the
central y-axis of the PRE. The distance between neighboring stations was about 4.5 km, and
all the stations covered a total distance of about 80 km from the sea upstream. Positions
for sampling stations are plotted in Figure 1. Note that it only covered the first 16 or
17 stations in several campaigns due to weather conditions. A total of 165 in-situ Rrs and
the corresponding Cchla dataset was collected. The statistical descriptions of the in-situ
samples are summarized in Table 1.
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Table 1. Summary of in-situ campaigns during 2003 and 2012.

No. Date N Range of Cchla (mg·m−3)

1 6 January 2003 18 7.82 ± 10.79
2 6 January 2004 18 14.48 ± 11.45
3 18 May 2004 17 15.17 ± 13.03
4 15 August 2009 16 6.10 ± 4.65
5 22 October 2009 16 5.55 ± 4.85
6 22 November 2009 16 2.43 ± 1.83
7 13 December 2009 16 4.40 ± 1.51
8 1 February 2010 16 3.24 ± 1.38
9 4 July 2010 16 13.73 ± 6.29
10 5 June 2012 16 3.77 ± 2.02

The water-leaving Rrs was measured using a spectrometer (USB4000, Ocean Optics,
Inc., Dunedin, FL, USA) following the National Aeronautics and Space Administration
(NASA) ocean optics standard protocol [30]. The upwelling radiance (Lu), sky radiance
(Lsky) and radiance reflected by a standard gray plaque (Lp) were measured, and Rrs was
calculated using the following equation:

Rrs(λ) = ρp(λ)
⌊

Lu(λ)− ρ f (λ)Lsky(λ)
⌋

/
⌊
πLp(λ)

⌋
(1)

where λ is the wavelength, ρp is the reflectance of the gray plaque and ρf is the water
surface Fresnel reflectance, with a value of 0.028 for wind speeds less than 5 m·s−1.

The water samples for measuring Cchla were collected from the surface layer (a depth
of between 30 cm and 50 cm) and filtered through 25-mm Whatman GF/F filters under
a low vacuum. The filters were measured using a 90% acetone method in a pre-calibrated
Turner Design 10 fluorometer [31].

2.2.2. MODIS Imagery

Level-1A MODIS data onboard the Aqua spacecraft was obtained from the National
Aeronautics and Space Agency (NASA) ocean color data archive. The remote sensing
imageries were preprocessed using the SeaWiFS data analysis system (SeaDAS, version
7.5.3). The Management Unit of the North Seas Mathematical Models (MUMM) was
employed for atmospheric correction [32]. Flags were used to mask contamination from
land, clouds, sun glint and other potential disturbances. For the matchups between in-
situ and satellite data, the procedure developed by Evers-King et al. was adopted [33].
A 3 × 3 box surrounding the location of the in-situ measurement was used to extract
satellite data. The mean value within the box was calculated for each parameter if the box
contained at least 3 valid pixels.

The discrepancies between in-situ measured and sensor-observed Rrs were minimized
through the adjustment process based on a multilinear regression algorithm (MLR) [34].
The adjusted Rrs

adj(λ) was calculated as follows:

Radj
rs (λ) = Ror

rs(λ) + 〈∆Rrs(λ)〉 (2)

where Rrs
or(λ) is the original MODIS-observed Rrs, and ∆Rrs(λ) is the discrepancy between

in-situ measured and MODIS-observed Rrs. The MLR scheme is as follows:

〈∆Rrs(λ)〉 = asat
0 +

9

∑
i=1

asat
i Ror

rs(λi) (3)

where the input vectors are the original Rrs at the MODIS’s visible bands (412, 443, 469, 488,
547, 555, 645, 667 and 678 nm). The coefficients ai

sat (i = 0,1,...,9) were calculated through
a multilinear regression between ∆Rrs(λ) and the input vectors based on the matchup
Rrs dataset.
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3. Algorithm Development
3.1. Overall Framework

Despite the complex hierarchical structures, all the DL-based models included three
main components: the prepared input data, the core deep networks and the expected
output data. The overall framework is briefly outlined in Figure 2. Four major steps were
involved in the development of network, including feature generation, imagery patching,
dataset oversampling and two-stage Cchla-Net training and validating. In these steps, Rrs at
the MODIS/Aqua’s visible bands were used to generate six sensitive features. The Ocean
Colour 3 band ratio (OC3M) [4], a fourth-order band ratio algorithm that uses one of two
blue and green band ratios, depending on the optical properties of different water types,
was utilized for the initial Cchla estimation. The formula of OC3M is defined as follows:

Cchla = 10(a+bR+cR2+dR3+eR4)

R = log10{max[Rrs(443)/Rrs(547),Rrs(488)/Rrs(547)]}
a = 0.2424, b = −2.7423, c = 1.8017, d = 0.0015, e = −1.228

(4)
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Figure 2. Overall framework of model development and application.

A two-stage network was adopted to achieve a global optimum in the optimization.
A synthetic minority oversampling technique was adopted to overcome the shortcoming
of limited in-situ samples. The 10-fold cross-validation was applied for model training
and validation. When the core deep network has been well-trained, it can be employed to
predict the expected output of a given testing dataset.
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The coefficient of determination (R2), root mean squared difference (RMSD), mean
absolute difference (MAD) and mean absolute percentage difference (MAPD) between two
datasets were used to evaluate model performance.

R2 = 1− ∑N
t=1
(
xmt − xpt

)2

∑N
t=1(xmt − xm)

2 (5)

RMSD =

√√√√ 1
N

N

∑
t=1

(
xmt − xpt

)2 (6)

MAD =
∑N

t=1
∣∣xmt − xpt

∣∣
N

(7)

MAPD(%) =
100
N

N

∑
t=1

∣∣∣∣ xmt − xpt

xmt

∣∣∣∣ (8)

Here, xm and xp denote the measured and predicted samples, respectively. xm denotes
the mean value of the measured samples, and N is the number of samples.

3.2. Feature Generation and Data Preprocessing

The atmospheric-corrected and adjusted Rrs at MODIS/Aqua’s visible bands were
considered for algorithm development. Band ratio algorithms involving Rrs at blue and
green bands have been widely employed for Cchla retrieval [4,6,7]. To determine the
optimal band ratios for the PRE waters, Figure 3 shows the R2 from the linear regression
analysis between different band ratios and Cchla based on in-situ dataset. It can be seen
that the correlation was insufficient with those band ratios involving Rrs(412), which might
be attributed to the atmospheric correction issues associated with the 412 nm band in
turbid coastal waters. To improve the efficiency of Cchla-Net, six different band ratios,
with R2 ranging from 0.38 to 0.54, were used as input features. The six band ratios were
Rrs(443)/Rrs(555), Rrs(469)/Rrs(555), Rrs(488)/Rrs(555), Rrs(547)/Rrs(555), Rrs(667)/Rrs(645)
and Rrs678)/Rrs(667).
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The patching process was primarily performed to create a local 64 × 64 patch. The
determination of patch size was a key procedure, which needed to take into account both
the network’s structure and characteristics of the remote sensing imagery (i.e., spatial
resolution). Features extracted from too small of a patch were insufficient for a deep
network, whereas a single pixel’s Cchla from too large of a patch was not representative.
Those patches with clouds or lands were eliminated. The maximum of the OC3M-based
Cchla within the patch was used to represent the rough value of each patch. After the
patching process, the log10-transformed Cchla and six band ratio data were normalized to
0.0~1.0 to ensure that they were in the same range.

3.3. Oversampling In-Situ Dataset

Cchla-Net is a deep network which requires a large number of in-situ samples for
training. However, only 156 in-situ samples were insufficient, which would probably have
increased the generalization errors. In addition, the sampling sites were mostly distributed
in the estuary; therefore, the number of samples with a high Cchla was more than that
with a low Cchla. This imbalance of the dataset could have made it difficult to adjust the
weights and biases related to low Cchla during training and finally reduce the accuracy of
low Cchla estimation. To solve this problem, a synthetic minority oversampling technique
(SMOTE) [35] was adopted. The SMOTE technique, as an improved approach based on
random oversampling, is commonly used for imbalanced data learning. Synthetic samples
are generated in the following ways:

For a dataset with m samples {xi,yi}, i = 1,2,...,m, where xi is a vector with n dimensional
features, and yi is the class label associated with xi. Take the difference between the feature
vector under consideration and its nearest neighbor. Multiply the difference by a random
number between 0 and 1, and add it to the feature vector under consideration [35]. For each
minority class sample xsi and the number of synthetic samples that need to be generated gi,
repeat the following calculation from 1 to gi. Randomly choose one minority class sample
xzi from the K nearest neighbors, and generate the synthetic sample si.

si = xsi + (xzi − xsi)× λ (9)

where λ is a random number between 0 and 1. A novel adaptive synthetic (ADASYN)
sampling approach for imbalanced learning was employed [36]. The essential idea of
ADASYN is to use a density distribution to adaptively generate synthetic samples for
minority datasets.

3.4. Cchla-Net Structure

The Cchla-Net layer configurations were designed following the same principles of VG-
GNET16 [15], which has been demonstrated to be beneficial for the classification accuracy
by increasing the depth with very small convolution filters. Figure 4 illustrates the network
structure of Cchla-Net. The input to the Cchla-Net was a volume of a fixed size 64 × 64 × 6,
and the output was the estimated Cchla normalized at the center pixel. Each pixel in the
patch contained six normalized band ratio features. The Cchla-Net contained 13 convolution
layers and three fully connected layers. The input volume was passed through a stack
of convolution layers, where the filters used a small kernel size of 3 × 3 to capture the
notion of left/right, up/down and center. The channel of convolution started from 64 in
the first layer and then increased by a factor of 2, until it reached 512. The stride was fixed
to 1 pixel, and the patch was padded with zeros to ensure the spatial size was preserved
after the convolution. All convolution layers were equipped with a rectified linear unit
function (ReLU) [17]. Spatial pooling was carried out by five max-pooling layers over
a 2 × 2 window with stride of 2, following some of the convolution layers. The purpose
of max-pooling layer was for downsampling and compressing features. The 3D volume
was reshaped into a 1D vector by flattening and three fully connected layers: the first
and second layer had 2048 neurons, respectively, and the final layer contained 1 neuron
representing the normalized Cchla at the center pixel.
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The stochastic gradient descent with momentum (SGDM) optimizer, which utilizes
mini-batch stochastic gradient, was employed for optimization. The batch size was set to
128 and momentum to 0.9. To alleviate the overfitting, the L2 regularization was added to
the loss function during the network’s backpropagation (the L2 penalty multiplier was set
to 1.0 × 10−5), whereas the dropout regularization for the first two fully connected layers
was adopted. The dropout ratio was set to 0.5, indicating that 50% of the neurons in the
two fully connected layers were temporally retained when computing the loss function
for the weights’ updating. In the training phase, the number of epochs was set to 30, and
the initial learning rate was set to 0.01, with a drop factor of 0.1 after every 10 epochs. The
half-mean-squared-error was used as the loss function, which is defined as:

loss =
1
2

R

∑
i=1

(ti − yi)
2 (10)

where ti is the labeled sample, yi is the corresponding prediction and R is the number
of samples.

4. Results and Discussion
4.1. MLR Adjustment

A total of 15 pairs of matchups from all campaigns were used for extracting coefficients
of MLR adjustment and for the network testing independently. The MLR adjustment relied
on in-situ measurements for reducing uncertainty and bias due to systematic perturbations,
as resulting from absolute calibration and minimization of the atmospheric effects.

The scatterplots in Figure 5 showed the in-situ measurements versus the Rrs before
(‘black’ plots) and after (‘red’ plots) adjustment at all visible bands. The approach appeared
quite effective at those center wavelengths, with the largest differences between in-situ
and orbit measurements, which were 443 and 469 nm, and other shorter wavelengths. As
expected, a better performance after the adjustment was observed. Specifically, the RMSD
and MAPD of MODIS derived Rrs, with respect to in-situ measured Rrs at 443 nm, had
shown values of 0.005 Sr−1 and 31.4% before adjustment and a value of 0.001 Sr−1 and
7.3% after adjustment, respectively.
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4.2. K-Fold Cross-Validation

A 10-fold cross-validation was conducted, in which all patches and in-situ samples,
except those for testing, were uniformly divided into 10 folds. In addition, a two-stage
training consisting of pre-training and refinement was used. The first-stage procedure
trained the network using the patches in which the Cchla was estimated by OC3M algorithm,
whereas the second-stage procedure refined the network by utilizing the in-situ samples.
The scatterplots of estimated versus original log10-transformed Cchla showed the network
performance for cross-validation results (Figure 6).
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Figure 6. Scatterplots of estimated versus original (synthetic dataset) Cchla for two-stage training (left)
and only first-stage training (right).

The RMSD, MAD and MAPD of second-stage training were decreased compared to
those of the first-training, with values that decreased from 0.48 to 0.07, 0.44 to 0.06 and
38.46% to 6.93%, respectively. The metrics of model accuracy were calculated in a log10-
transformed scale. The pretrained network may have exhibited large discrepancy while
applied to the validating dataset, implying that the first-stage training could not reach
a global optimum, because the input Cchla was estimated by the OC3M algorithm, instead
of from in-situ measurements. However, the purpose of first-stage training was to obtain
suitable initial values of the network parameters. Training with the suitable initial values
may have had a higher probability of obtaining a better generalized network, especially
when the number of in-situ samples was insufficient.

Convergence was evaluated by comparing the loss function of both one-stage and two-
stage training. The loss function of 10-fold networks is presented in Figure 7, in which the
upper panel shows the loss values in the training phase, and the lower panel shows the loss
values in the validating phase. By using the refined parameters from one-stage training as
the initial values of two-stage training, the network could converge more efficiently (about
6 epochs) than the one-stage training (about 11 epochs). Note that in both the training and
validating phases, the final loss value of the one-stage network was smaller than that of the
two-stage network, with values ranging between 0.004–0.007 and 0.004–0.005, respectively.
It should be attributed to the different characteristics of the two datasets. The in-situ dataset
was more discrete and contained less features than the imagery patches, despite it being
oversampled by the SMOTE technique.
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4.3. Model Performances

To evaluate the feasibility and performance, the proposed Cchla-Net approach was
compared with two representative algorithms based on the independent testing dataset.
The two algorithms were the OC3M, an empirical model, and the Garver-Siegel-Maritorena
(GSM01), a semi-analytical model [10]. Statistics of the model performance are listed
in Table 2. The Cchla-Net demonstrated a more satisfactory performance than the other
two algorithms with higher R2, lower RMSD, lower MAD and lower MAPD, and its slope
values of linear fit between estimated versus in-situ measured Cchla (0.97, closer to the
1:1 line) were higher than the other two models (0.29 and 0.30, Figure 8).

Table 2. Statistical descriptions of three different model’s performance; the best metric is in bold.

R2 RMSD MAD MAPD (%)

Cchla-Net 0.85 0.15 0.13 14.34
GSM 0.63 0.25 0.22 25.61

OC3M 0.77 0.32 0.26 22.54

The OC3M model seemed to be underestimated in the high productive waters, es-
pecially when the Cchla was higher than 10 mg·m−3. The OC3 model was defined on the
basis that the difference of two spectral reflectances was small, such that the absorption
of suspended sediments and colored dissolved organic matter (CDOM) could be omitted.
However, as typical Case-II waters, the optical properties of PRE waters were complex,
and the total absorption of phytoplankton, suspended sediments and CDOM and the back-
scattering coefficient of phytoplankton and suspended sediments were spectrally variant.
Thus, the traditional band-ratio algorithms through blue and green ratios simply did not
work for the high productive and turbid PRE waters. The GSM model showed a tendency
to overestimate the lower Cchla. Meanwhile, the correlation between the GSM-estimated
and in-situ measured Cchla was the lowest among the three algorithms (R2 = 0.63, lower
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than 0.77 and 0.85). The optimal GSM parameter values were hard to determine, due to the
spareness of in-situ data on the backscattering coefficient of particulates bbp(λ) and the lack
of predicted knowledge for the particle phase function [37]. The assumed constants of the
model might not be appropriate for the PRE waters.
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The estimated results of Cchla-Net were very close to the in-situ measurement, with its
slope being around 1.0 and R2 being higher than 0.8. It demonstrated that the CNN model
had a strong capability to learn the nonlinear relationship between the water-leaving Rrs
and the corresponding Cchla of water body, as well as to make full use of the information at
all the MODIS/Aqua’s visible bands. Additionally, the oversampling approach, the SMOTE
technique, allowed us to provide a massive synthetic in-situ dataset for the second-stage
training, and it turned out that the trained Cchla-Net generalized well to the independent
testing dataset.

4.4. Model Applications

Given the satisfactory performance of the proposed Cchla-Net developed using in-
situ dataset from PRE, this model was applied to all available MODIS/Aqua Cchla data
between 2003 and 2020 to construct a multi-year product for PRE waters. Figure 9 showed
the climatological monthly MODIS/Aqua Cchla estimated by Cchla-Net and the difference
between Cchla-Net and OC3M models in the PRE. In general, the estimated Cchla from
both models agreed well in the temporal patterns in the continental shelf. However,
the difference between the two models in the coastal and estuarine areas was remarkable.
Especially during summer, the maximal difference was up to 5.80 mg·m−3. Such differences
were mainly due to the worse performance of OC3M model for high Cchla (>10 mg·m−3).
Therefore, it is likely that Cchla-Net could serve as a better approach to provide the long-term
MODIS/Aqua products than the classical OC3M model in the PRE waters. As expected,
Cchla increased from the continental shelf to the coastal and estuarine area, as the latter
received more direct influence of the highly productive freshwater. After exiting the LBPRE,
the discharged freshwater generated a nearly stable bulge and formed a distinct plume,
which was located in the southwestern LBPRE. The plume axis gradually shifted offshore
as a result of the intensified Ekman drift. Therefore, The Cchla of western PRE was observed
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to be higher than that of eastern PRE. During summer, a tongue with a relatively higher
Cchla tends to expand to the southern and southeastern LBPRE. Forced by the wind-driven
coastal current, the plume was wider over the shelf due to the freshwater in the outer part
of the bulge flowing downstream at the speed of the current. During winter, the plume
was confined nearshore under the influence of the northeastly wind.
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Figure 9. Climatological monthly MODIS/Aqua Cchla between 2003 and 2020, estimated by Cchla-Net, OC3M and the
difference of both models. Four months (April, July, October and January) were chosen, representing four seasons (spring,
summer, autumn and winter).

To facilitate quantitative interpretations, the spatial and seasonal variations in the
coastal and estuarine area (‘Box 1’ in Figure 1), as well as the continental shelf (‘Box 2’
in Figure 1) were further examined. Figure 10 presents the monthly mean Cchla in both
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areas. The monthly mean values estimated by Cchla-Net ranged from 0.94 to 11.97 mg·m−3

in the LBPRE and from 0.09 to 0.65 mg·m−3 in the continental shelf. Different seasonal
variations were found in coastal area and continental shelf, with relatively higher Cchla
observed during summer in the former region and during winter in latter region. These
seasonal variations appeared to be regulated primarily by river discharge and mixing of
the upper ocean [23].
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Cchla-Net in the estuary and continental shelf.

5. Conclusions

This study found that the Cchla-Net showed an apparent advantage over the empir-
ical and semi-analytical models for extremely high Cchla. Therefore, Cchla-Net might be
a promising method for the Cchla retrieval in optically complex coastal and estuarine waters.
The proposed Cchla-Net model worked well for low to high values especially, while the
OC3M algorithm tended to underestimate high values in the coastal and estuarine area.
The MLR adjustment, which specifically relies on matchups of corresponding in-situ and
orbit-measured Rrs to capture systematic differences, could remove the difference likely
due to uncertainties in the absolute calibration of sensors and the minimization of atmo-
spheric perturbations. The novel adaptive synthetic oversampling technique improved
the DL model with respect to the distribution of dataset in two ways: (i) reducing the
bias introduced by the imbalanced distribution of the dataset; (ii) adaptively shifting the
classification decision boundary to be more focused on the difficult to learn samples.

Considering the high performance, it has a great potential to be applied in the PRE,
especially for the productive and optically complex coastal and estuarine waters. However,
there is still room for improvement. As a data-driven method, input training the dataset
directly impacts the network performance. The accuracy of the DL network largely depends
on the in-situ dataset, which covered a wide range of Cchla variations. More in-situ datasets
are required to improve the model applicability. Furthermore, the OC3M products were
used on a global scale and could not be directly applied to the PRE waters. Collecting more
in-situ samples to adjust the parameters of the OC3M model could also be beneficial for the
DL network training.
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