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Abstract: Over the past several centuries, the iron industry played a central role in the economy
of Sweden and much of northern Europe. A crucial component of iron manufacturing was the
production of charcoal, which was often created in charcoal piles. These features are visible in LiDAR
(light detection and ranging) datasets. These charcoal piles vary in their morphology by region,
and training data for some feature types are severely lacking. Here, we investigate the potential
for machine automation to aid archaeologists in recording charcoal piles with limited training data
availability in a forested region of Jönköping County, Sweden. We first use hydrological depression
algorithms to conduct a preliminary assessment of the study region and compile suitable training data
for charcoal production sites. Then, we use these datasets to train a series of RetinaNet deep learning
models, which are less computationally expensive than many popular deep learning architectures
(e.g., R-CNNs), allowing for greater usability. Together, our results demonstrate how charcoal piles
can be automatically extracted from LiDAR datasets, which has great implications for improving our
understanding of the long-term environmental impact of the iron industry across Northern Europe.
Furthermore, our workflow for developing and implementing deep learning models for archaeological
research can expand the use of such methods to regions that lack suitable training data.

Keywords: charcoal piles; deep learning; RetinaNet; hydrological depression analysis; LiDAR; Sweden

1. Introduction

Over the last 2500 years, iron production has been a central economic industry in
Sweden [1–4]. During the 17th century, there was a drastic increase in iron production
that coincided with the immigration of Walloons, who brought new finery processes that
produced a type of wrought iron known as iron rod, as well as new charcoal production
and forestry techniques [5]. By the 16th and 17th centuries, production was accelerated
by capitalist ventures and continued well into the 19th century [6], so much so that by the
18th century, iron production made up three quarters of Sweden’s total exports [7]. During
this period, the cost of charcoal has been estimated to have made up more than 50 percent
of the production costs for wrought iron. As a result of major alterations in the structure
of the iron industry, charcoal use decreased from the mid-19th century, when many of the
small foundries were closed, and larger foundries were endorsed. Moreover, black coal
was used to a higher degree, due to its higher energy content [5].

To understand the iron production industry in this region, knowledge of charcoal
manufacturing is essential. To produce charcoal from wood, slow combustion and a
controlled supply of oxygen is required. This is achieved through different types of
constructions, either sunken (pits) or above ground (piles) [4]. These constructions are
called charcoal pits, which date to between the late Iron Age through the Medieval Period,
or charcoal piles that emerged in the post-Medieval Period around the 12th century [4,5,8].
The exact morphological characteristics vary by local tradition, but most are defined by a
pile of wood covered in turf and surrounded by post-holes where supporting structures
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were placed around burning materials [5]. Charcoal piles were produced across much of
Europe and display morphologies that range in similarity to those in Sweden (e.g., [9,10]).
This means that attempts to automate their detection can have far-reaching implications for
archaeologists working beyond Sweden and for studies attempting to understand cultural
affiliation of land use activity in given localities.

However, current information about the regional morphological diversity of charcoal
piles in Sweden is somewhat limited, even though there are more than 50,000 charcoal
production sites registered in the Swedish National Heritage Board’s database for archaeo-
logical sites and monuments. This is due to several different factors. Typologically, charcoal
production sites can vary in shape and size depending on time and place of origin, but
often share basic characteristics (such as material composition and a distinctive topographic
signature from the surrounding environment). There are also local types that differ from the
traditional classes. Therefore, despite large numbers of recorded charcoal production sites,
these records do not contain information on many local charcoal production typologies.

Further limitations to knowledge of Sweden’s charcoal piles come from problematic
elements associated with obtaining accurate radiometric dates from these particular sites.
Radiocarbon (14C) analyses are limited to providing rough estimates, as many charcoal
production sites were in use for long periods of time using long-growth species. Even
if the individual phases of a pit could be distinguished by applying a correct excavation
method, the dates obtained from a 14C analysis would not meet chronometric hygiene
standards [11]. While wood-powered charcoal piles should, theoretically, be datable using
dendrochronology, the species of trees used in the piles were often short-lived and rarely
old enough to provide acceptable dates [5]. Taking these aspects into consideration, it is
currently difficult to typologize and make any developmental patterns salient.

Charcoal production sites (sometimes referred to as relict charcoal hearths [RCHs])
are studied across Europe and North America, increasingly via LiDAR and LiDAR-derived
products (e.g., [12–15]). RCHs provide key insight not only to past economic activities, but
also the environmental impacts of industrialization in Europe and the United States, where
charcoal and iron production were central industries [13,16–18]. Many of these RCHs are
located deep within forests, and thus LiDAR has aided in their detection at increasing
rates over the past decade. This study hopes to contribute to this broadening literature
to improve the ability of archaeologists to document charcoal production sites and better
understand their role in socioenvironmental and ecological systems.

Here, we investigate the capacity for automated remote sensing methods and LiDAR
data to identify a specific type of charcoal pile known in Swedish as resmila, which directly
translates to “erected charcoal pile”. Resmila were constructed by placing firewood ver-
tically leaning towards a central log (Figure 1). In certain cases, a foundation below the
firewood is also constructed in order to regulate the influx of oxygen from the ground.
The diameter of a standard erect charcoal pile was commonly between ten and fifteen
meters [5].

Within Jönköping County, Sweden, the documentation of resmila in the National
Database is limited, as only a handful were previously discovered in large part due to
the difficulty in identifying them during ground surveys. As such, we developed an
iterative approach for deploying advanced machine intelligence techniques in regions
where information about these features is lacking (Figure 2). Thus, our case study has
implications for archaeologists around the world where automated site prospection is
hampered by limited available training datasets. Particularly among studies of RCHs in
Europe and North America, our methods can aid in the documentation of broad landscapes
under tree canopies where these features are often abundant but poorly recognized on a
landscape scale [13]. Using depression algorithms, we can (1) allow for relatively good
initial assessment of certain archaeological features, identifying dozens to hundreds of
these deposits. This then permits for (2) the detection of initial training datasets needed for
the implementation of more sophisticated automation algorithms, such as deep learning.
In what follows, we provide a case study from a 22 km2 area of Jönköping County, Sweden,
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where charcoal piles were recently located by one of the authors (JL) by manually evaluating
LiDAR data (Figure 3).
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Figure 1. (A). Historical image of resmila in use for coal production (credit: ref [19]). (B). Schematic drawing of resmila 
charcoal piles (credit: ref [5]). (C). Two examples of resmila in a LiDAR-derived hillshade map (indicated by yellow ar-
rows). These features range in size (10–20 m) in terms of diameter. 
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2. Automation in Archaeological Remote Sensing

Machine learning and computer automation applications have advanced rapidly
in the past two decades [20–22]. The methods applied for automated feature detection
are widely varied, especially for landscape-scale datasets such as LiDAR and satellite
imagery [23–27]. Among the many advances made by scholars in the past few years, the
use of morphological characteristics and object-based classifiers has been widely applied,
especially to LiDAR data (see [13]). More recently, developments in deep learning (DL)
have made progress in improving the accuracy of automated prospection of archaeological
materials (e.g., [17]).

DL is a branch of artificial intelligence (AI) that has been recently gaining popularity
among computational archaeologists [24,28–31]. DL has resulted in higher accuracy by
increasing true positives while reducing false positive results compared to other machine
learning and automation techniques [24,32,33]. Convolutional Neural Networks (CNN’s),
specifically, are a type of DL architecture that have led the charge in archaeological applica-
tions. CNNs input data from multidimensional matrices, which allow them to quantify
patterns using neighboring pixels, which can affect the final identification [24,31]. As
such, CNNs are often more sensitive to subtle patterns within datasets than other forms of
machine learning.

DL applications, while now growing rapidly, have remained limited within archaeol-
ogy, largely because of the computational power, amount of training data, and expertise
required to successfully develop these models [34]. The need for large training datasets has
been substantially reduced by transfer learning (e.g., [24]), which is a technique that uses
previously trained DL models to train new (oftentimes unrelated) models [35]. Transfer
learning has led to a breakthrough in archaeological research [32].

Within DL, there are two main architectural types for models: two-stage and one-stage.
Two-stage detectors have been more popular among archaeologists, particularly those
studying landscape scale datasets [29,36] because they often achieve greater accuracy than
one-stage detectors. This stems from the ability of two-stage detectors to reduce false
positives by using their two-stages to generate potential feature maps while simultaneously
filtering out negative locations [37]. Two-stage detectors are computationally intensive,
however, making their use more limited to those with high-computing power. Single stage
detectors, in contrast, require less computational power but have historically struggled
with reducing background noise, leading to lower performance. However, recent devel-
opments with one-stage DL architectures are yielding improved results. One example is
the RetinaNet architecture [37,38]). Here, we specifically chose a RetinaNet architecture
because it can be run relatively quickly on computers without high-performance GPUs
(graphical processing units).

The learning curve associated with DL is also being reduced thanks to advances in
GIS technology [31]. ArcGIS Pro [39], for example, has a suite of tools specifically designed
for DL using remote sensing datasets. Here, we make use of hydrological algorithms—to
generate the data needed to train a DL algorithm—and ArcGIS Pro’s DL capabilities to
design a RetinaNet model, which can be trained and implemented on computers without
high-performance GPUs.

A Solution to Training Data Issues: Hydrological Depression Algorithms

Depression algorithms have been utilized by archaeologists for a range of purposes
from crater detection to mound and shipwreck identification [27,40–43]. In the past several
years, researchers developed a depression algorithm designed for sinkhole detection
that works using a contour-tree procedure [44] wherein a computer looks for changes in
elevation contours to locate high and low points in a region. Specifically, the algorithm
locates low-lying points and searches for subsequently higher elevations surrounding that
point to identify sinks (or depressions) on a landscape [44]. Wu et al. [44] demonstrated
that using a contour tree process results in an exponentially faster processing time than
previous methods, such as the stochastic depression algorithm [45], which has been used
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by archaeologists (e.g., ref [19]). Recently, researchers used this contour-tree method to
automatically detect shipwrecks in bathymetric datasets in North America [41], thereby
demonstrating its utility for cultural heritage research.

3. Materials and Methods

Extensive historical production of charcoal leaves discernable topographic scars on the
present landscape. The availability of LiDAR data from Lantmäteriet, a Swedish govern-
mental agency, permits a detailed analysis of the extent of centuries of charcoal production
activities throughout forested regions of Sweden. Advances in machine learning and au-
tomation, likewise, offer great potential to record these deposits with speed and precision
throughout large areas. Although tens-of-thousands of charcoal piles are recorded in Swe-
den’s National Heritage databases, local variations are not well documented. Therefore,
we assessed the ability for a sinkhole detection algorithm to locate resmila charcoal piles
because this method does not require training data. Then, we used the results of this
analysis to compile training data to train a RetinaNet DL model.

3.1. Depression Algorithm

We used the Contour-Tree Depression Tool developed by Wu et al. [44,46] to detect
small-circular depressions associated with charcoal production (see Figure 1c). The tool
runs in ArcMap. We generated a Digital Elevation Model (DEM) with 1 m spatial resolution
from LAS point data provided by Lantmäteriet with between 1 and 2 return points per
square meter and used this DEM as input for the depression analysis. We ran the algorithm
using a buffer size of 2 m and a minimum size of 5 m. Once the algorithm ran, we calculated
the circularity of each detected depression using the equation:

C =
4πA

P2 (1)

where C = circularity, A = area, and P = perimeter. Area and perimeter were calculated
using the Calculate Geometry tool, and circularity was calculated using the field calculator
tool in ArcGIS 10.8 [47]. Next, we calculated topographic roughness, which characterizes
the topography of a given region, using the formula developed by Riley et al. [48]:

TR =
Mean − Minimum

Maximum − Minimum
(2)

where the neighborhood mean, minimum, and maximum values of the DEM are used to
calculate roughness. Neighborhood values were generated using the focal statistics tool
in ArcGIS 10.8 [47]. The values from the resulting raster were extracted for each location
identified by the depression algorithm using zonal statistics. Finally, we reduced the results
of the contour-tree depression analysis using circularity (>0.5) and topographic roughness
values (mean > 60, range > 5).

3.2. Deep Learning with RetinaNet

RetinaNet architecture was predicated on a Feature Pyramid Network (FPN) and
Focal Loss. FPNs are an architecture for processing data wherein low resolution data are
combined with high-resolution data through a process of downsampling and upsampling
(see Figure 4; ref [38]). Focal Loss alleviates the problem of having an overwhelming
number of candidate objects, which often results in decreased accuracy for single-stage
detectors [37].
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the bottom-up pathway (A). Predictions made in (C) are divided into two components: Class and box subnets (D). Class
subnets determine the probability of a given area containing an object. Box subnets label objects within class subnets.

RetinaNet operates on four main components (Figure 4): a bottom-up pathway, a top-
down pathway, a classification subnetwork, and a regression subnetwork. The bottom-up
pathway calculates a set of features at specific locations (or feature maps) at multiple scales.
The top-down pathway up-samples the coarser feature maps and merges them with the
bottom-up feature maps of the same size. Next, the classification subnetwork calculates the
probability of an object being present at a given location and belonging to a specific class
(defined by training data). The regression subnetwork then creates a labeled object from that
classification (For more information about RetinaNet, see Lin et al. [37,38]. More information
on RetinaNet in ArcGIS Pro can also be found at https://developers.arcgis.com/python/
guide/how-retinanet-works/accessed on 25 October 2019).

3.3. Implementing RetinaNet CNN in ArcGIS Pro

We created a composite raster consisting of a DEM, hillshade, and slope map for the
study region (following ref [31]) to create training data for the RetinaNet Model. ArcGIS
Pro requires a multiband raster for deep learning applications. Using the pit features
detected from the depression analysis, we labeled charcoal pit locations using the Label
Training Data for Deep Learning Analysis tool in ArcGIS Pro 2.6 [39]. In total, we labeled
155 charcoal piles.

The number of documented charcoal piles was still somewhat limited, so we used
augmentation procedures to increase our sample size. We augmented the training data
using 90◦ rotations, thereby creating synthetic data that increased our sample sizes by a
factor of 4. Using augmentation, we created a total of 940 images of charcoal piles with a
size of 200 × 200 pixels using the Export Training Data for Deep Learning tool in ArcGIS
Pro [39]. Other image dimensions were tested (248 × 248, 100 × 100) but resulted in lower
model performance.

Next, we trained four different RetinaNet models using a ResNet 34, ResNet 50,
ResNet 101, and ResNet 151 backbone model (Figure 5) with a batch size of 4, optimized
learning rates, 10% validation, and 50 epochs. We also set the training to use an unfrozen
model and to stop training if improvements stopped. We chose a batch size of 4 to ensure
that the process could be implemented on computers without CUDA GPU processors,

https://developers.arcgis.com/python/guide/how-retinanet-works/accessed
https://developers.arcgis.com/python/guide/how-retinanet-works/accessed
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which are quite expensive and can limit the usability of this method. Models were trained
on multiple computers, including a personal laptop with 8 GB of RAM, an Intel Core
i7-4510U CPU @ 2.0 GHz with two cores and four logical processors to ensure our method
can be utilized by researchers with a range of computational resource availability. ResNet
(Residual Network, He et al. 2017) is a transfer learning architecture that is trained on the
ImageNet dataset (consisting of over 1 million images) and contains different numbers of
layers and helps to improve both the speed and accuracy of the model training process.
Here, we used ResNet with 34, 50, 101, and 152 layers. We set up the training procedure to
run each model 50 times (50 epochs) and to stop training when the model was no longer
improving, in order to save time and processing power. To evaluate overfitting issues with
the model, we withheld 10% of the training data for validation.
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Figure 5. ArcGIS tool settings for deep learning implementation. For the Training Deep Learning Model Tool, the ResNet
backbone was changed from ResNet 34, ResNet50, ResNet101, and ResNet152 for each of the models reported below.

Once the model was trained, we evaluated its performance by detecting objects within
the boundaries of two LiDAR tiles from Jönköping County, Sweden, via the Detect Objects
Using Deep Learning tool in ArcGIS Pro [39]. Newly detected charcoal piles were added to
the training dataset, and we trained another RetinaNet Model using the best performing
backbone architecture from the initial set of tests. Due to the ongoing COVID-19 pandemic,
ground evaluation has not yet been conducted, but will constitute the focus of future research.
For the purpose of this study, we are still able to demonstrate the utility of these techniques
for expanding archaeological investigations on charcoal production in Northern Europe.
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4. Results
4.1. Depression Analysis Results

The Wu et al. [44] contour tree algorithm detected 768 possible depressions related
to charcoal production. We checked each of these identifications manually by assessing
morphology, location, and conformity with known examples of resmila. This manual
evaluation led to the confirmation of 243 depressions related to charcoal piles within the
study area and 38 possibly related to charcoal production (accuracy = 33.3%). Future
ground testing will confirm or reject these possible charcoal production locations. Among
the 243 identified depressions were 180 charcoal pit sites. We used a selection of 155
of these detections to train a series of RetinaNet models (see Section 3.2). We excluded
25 depressions and retained them for validation of our RetinaNet models.

4.2. RetinaNet Results

Using a selection of the best-preserved charcoal pit features detected using the depres-
sion algorithm, we trained four different RetinaNet models using different transfer learning
architectures. The results of these models are listed in Table 1. Using these models, we ran
the ResNet50 and ResNet152 models on the same test area as the depression analysis to
further evaluate each model’s performance (Figure 6).

Table 1. Results of RetinaNet models trained using samples collected from depression analysis.

Transfer Learning Architecture Learning Rate Accuracy Training Loss Validation Loss

ResNet34 8.3 × 10−5 59% 1.7295 1.9112
ResNet50 6.3 × 10−6 63% 1.8222 1.2973
ResNet101 0.0001 55% 0.8254 1.0824
ResNet152 4.8 × 10−5 61% 0.6316 0.8489
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When comparing the ResNet50 and ResNet152 models, both detected a similar number
of features with minimal false positives (Figure 7). The model trained on ResNet152
identified three more training data locations than the ResNet50 model and both had
similar numbers of false negatives. The ResNet50 model had fewer false positives than the
ResNet152 model (n = 16 and n = 29, respectively).
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Figure 7. Comparison of detections of charcoal piles by the depression analysis and the two best
performing RetinaNet models trained on ResNet50 and ResNet152. Black arrows show locations of
charcoal pit features that were missed by all of the automation methods. Hillshade basemap created
from Laserdata NH GSD- © Lantmäteriet (2012).

Following this analysis, we incorporated newly detected charcoal piles from the initial
RetinaNet models as training data to improve the model trained on ResNet50. The new
model was trained using a larger batch size of 8 because smaller batch sizes resulted in
lower accuracy (<60%). This new model achieved a slightly higher accuracy of 64.15%
and lower loss values for both training and validation data (1.12 and 1.05, respectively),
indicating greater utility across larger areas.

5. Discussion

We demonstrated how hydrological depression algorithms can be used to collect
preliminary training data for DL models. The depression analysis resulted in many false
positives, however, which require expert analysts to manually evaluate before choosing
appropriate training datasets. Nevertheless, this procedure allowed us to generate more
than 150 examples of charcoal piles within our study area which trained our initial DL
model. This iterative detection process can aid in the identification of archaeological
features at landscape scales with high degrees of accuracy and survey coverage, particularly
in areas where available archaeological data are initially limited, or where knowledge
about particular kinds of features are less well-established. In this study, our false positives
decreased at each stage, from ~67% with hydrological depression methods to less than 14%
with our first ResNet50 model. False positives also appeared to decrease with each iteration
but were present in all methods deployed (see Figure 7). Furthermore, by consistently
reapplying DL models with new training data identified during previous model runs,
we showed how automated detection can be utilized in an iterative manner to improve
archaeological recording efforts (see Figure 8). This can greatly increase the utility of
advanced automated methods of remote sensing analysis among archaeologists working
in regions with limited landscape scale archaeological records.
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Despite expanding the utility of automated analysis methods to case studies with
limited training data availability, one key limitation of many applications of DL is com-
putational requirements. Most applications of DL for archaeological prospection utilize
dual-stage model architectures (e.g., R-CNN). While these models result in high accuracy in
many cases, they are also computationally expensive and require high-performance GPU
processors to run effectively, placing their use outside of the realm of possibility for many
researchers. Here, we made use of a single-stage DL model (RetinaNet) and demonstrated
how these models can be trained without CUDA GPU processors. This opens the possi-
bilities of DL applications to a greater number of archaeologists. In the future, we plan to
expand our application of the DL models generated here to investigate the spatial extent
and total quantity of resmila charcoal pit features across Sweden’s forested landscape.

With continued analyses, the remains of charcoal piles can be placed in a comprehen-
sive cultural–historical context with the foundry Järnbruket Hörle bruk, which is located
nearby our study area. This means that there is likely to be a plethora of historical records
that can be processed in order to reach conclusions on organization, as well as economic
and social aspects of charcoal production. Moreover, spatial analyses of the locations of
these charcoal piles remain an unexplored research topic, and having a more compre-
hensive record of the geographic distribution of charcoal piles could be achieved using
the data generated from automated LiDAR analyses (e.g., [42,43,49,50]). Where clusters
of charcoal pits remain, future work can also investigate if other constructions related
to charcoal production, such as huts and storage piles, are located nearby, and attempts
to automate the detection of these features can form future research objectives. Finally,
with a systematic record of charcoal production for the area, future research can focus on
paleoecological analysis based on pollen records to analyse the intensity of the production
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in a certain area based on ash deposits. Such work can also provide a better understanding
of the development of vegetation on the landscape over time.

The identification and localization of these sites—especially if many prove to predate
1850—would result in them being registered as National Heritage Sites by the Swedish
National Heritage Board, which would then protect them under Swedish law. Fieldwork
conducted by one of the authors (JL) suggests that many of these remains would be over-
looked by non-archaeologists because of their subtle appearance in a constantly changing
landscape. Thus, the destructive nature of the forest industry may lead to many charcoal
production features becoming damaged or completely unidentifiable in the future. The
sheer number of these remains, along with the fact that they are overlooked, places them at
risk of destruction. We hope that our methods for quickly identifying these structures in
LiDAR assist in increasing attention towards these features and lead to many more charcoal
piles being registered in archaeological site databases for future research.

6. Conclusions

This case study demonstrates the utility of single-stage RetinaNet DL models for
identifying charcoal pit features in the forested regions of Sweden. Using a topographic
depression analysis procedure, we collected the necessary training data to implement a
DL model that successfully detects these charcoal features, demonstrating the power of an
iterative approach to site prospection making use of multiple techniques. The ability to
train single-stage DL models for archaeological site prospection will likely open the door
for many more researchers to implement these methods because of their lower computa-
tional requirements when compared to most dual-stage methods commonly used within
archaeology (e.g., R-CNN, Faster R-CNN, Mask R-CNN, etc.). Within Northern European
and North American archaeology, generally, this research shows the potential for analyzing
available LiDAR datasets in a systematic way to expedite cultural heritage monitoring and
survey efforts, especially in the study of RCHs and other charcoal production methods.
Furthermore, such techniques make it possible to examine more closely the history of an-
thropogenic landscape modifications in northern Europe and compare resource extraction
between different areas.

Author Contributions: Conceptualization, D.S.D. and J.L.; methodology, D.S.D.; software, D.S.D.;
validation, D.S.D. and J.L.; formal analysis, D.S.D. and J.L.; data acquisition, J.L.; writing—original
draft preparation, D.S.D. and J.L.; writing—review and editing, D.S.D. and J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: LiDAR data are the property of Lantmäteriet and are not publicly
available. The trained ResNet151 deep learning model is available from Penn State’s ScholarSphere
repository: https://doi.org/10.26207/zfc5-rd31/ accessed on 30 July 2021. Other models are avail-
able from the authors upon request. The depression algorithms used were developed by Wu
and colleagues and are available at the following repository: https://figshare.com/articles/code/
Depression_Analysis_Toolbox/8866178/ accessed on 25 October 2019.

Acknowledgments: This study was conducted in cooperation with Johan A. Lundin, Professor of
History at the Faculty of Education and Society at Malmö University. LiDAR data were provided
by Lantmäteriet.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ågren, M. Iron-Making Societies: Early Industrial Development in Sweden and Russia, 1600–1900; Berghahn Books: Brooklyn, NY,

USA, 1998.
2. Petterssen, J.E. (Ed.) Svenskt Järn Under 2500 år: Från Gruvpigor och Smeddrängar till Operatörer; Bokbörsen AB: Stockholm,

Sweden, 1997.
3. Svensson, E. Människor i Utmark. [Lund Studies in Medieval Archaeology 21]; Lund University: Lund, Sweden, 1998.

https://doi.org/10.26207/zfc5-rd31/
https://figshare.com/articles/code/Depression_Analysis_Toolbox/8866178/
https://figshare.com/articles/code/Depression_Analysis_Toolbox/8866178/


Remote Sens. 2021, 13, 3680 12 of 13

4. Deforce, K.; Groenewoudt, B.; Haneca, K. 2500 Years of Charcoal Production in the Low Countries: The Chronology and Typology
of Charcoal Kilns and Their Relation with Early Iron Production. Quat. Int. 2021, 593–594, 295–305. [CrossRef]

5. Hennius, A. Spår Av Kolning: Arkeologiskt Kunskapsunderlag Och Forskningsöversikt; Riksantikvarieämbetet: Stockholm, Sweden, 2019.
6. Arpi, G. The Supply with Charcoal of the Swedish Iron Industry from 1830 to 1950. Geogr. Ann. 1953, 35, 11–27.
7. Jernkontoret Svenska Järn- och Stålindustrins Historia. Available online: https://www.jernkontoret.se/sv/stalindustrin/

stalindustrins-historia/ (accessed on 3 August 2021).
8. Anglert, M.; Lagerås, P. (Eds.) Människorna Och Skogen: Arkeologiska Platser i Örkelljungatrakten; Riksantikvarieämbetet: Stockholm,

Sweden, 2009.
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