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Abstract: Satellite-based models for estimating concentrations of particulate matter with an aerody-
namic diameter less than 2.5 µm (PM2.5) have seldom been developed in islands with complex topog-
raphy over the monsoon area, where the transport of PM2.5 is influenced by both the synoptic-scale
winds and local-scale circulations compared with the continental regions. We validated Multi-Angle
Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) with ground
observations in Japan and developed a 1-km-resolution national-scale model between 2011 and 2016
to estimate daily PM2.5 concentrations. A two-stage random forest model integrating MAIAC AOD
with meteorological variables and land use data was applied to develop the model. The first-stage
random forest model was used to impute the missing AOD values. The second-stage random forest
model was then utilised to estimate ground PM2.5 concentrations. Ten-fold cross-validation was
performed to evaluate the model performance. There was good consistency between MAIAC AOD
and ground truth in Japan (correlation coefficient = 0.82 and 74.62% of data falling within the expected
error). For model training, the model showed a training coefficient of determination (R2) of 0.98 and
a root mean square error (RMSE) of 1.22 µg/m3. For the 10-fold cross-validation, the cross-validation
R2 and RMSE of the model were 0.86 and 3.02 µg/m3, respectively. A subsite validation was used to
validate the model at the grids overlapping with the AERONET sites, and the model performance
was excellent at these sites with a validation R2 (RMSE) of 0.94 (1.78 µg/m3). Additionally, the model
performance increased as increased AOD coverage. The top-ten important predictors for estimating
ground PM2.5 concentrations were day of the year, temperature, AOD, relative humidity, 10-m-height
zonal wind, 10-m-height meridional wind, boundary layer height, precipitation, surface pressure,
and population density. MAIAC AOD showed high retrieval accuracy in Japan. The performance of
the satellite-based model was excellent, which showed that PM2.5 estimates derived from the model
were reliable and accurate. These estimates can be used to assess both the short-term and long-term
effects of PM2.5 on health outcomes in epidemiological studies.

Keywords: aerosol optical depth; PM2.5; random forest model; satellite-based estimation model

1. Introduction

Particulate matter (PM) is a mixture of solid particles and liquid droplets suspended in
the air that can be classified into coarse (PM with an aerodynamic diameter less than 10 µm;
PM10) and fine (PM with an aerodynamic diameter less than 2.5 µm; PM2.5) fractions based
on their size [1,2]. PM2.5 is considered more toxic than PM10 because of its smaller diameter,
meaning it can deposit into the alveolar region of the lungs and induce a series of immune
responses [2]. Many epidemiological studies reported that exposure to PM2.5 is associated
with adverse health outcomes, such as allergic respiratory diseases, asthma, cardiovascular
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diseases, neuropsychological diseases, and mortality [3–7]. The major sources of PM2.5
in Japan include sea salt, biomass combustion, soil dust, and secondary aerosols, which
are derived from local emission sources and long-range transportation [8]. The higher
PM2.5 concentrations in western Japan, particularly in spring and winter, are mainly due to
long-range transportation from Asia [9]. Owing to the significant adverse health effects of
PM2.5, there is an urgent need to better monitor its temporal and spatial distributions.

In Japan, the PM2.5 monitoring network was launched in 2010 with only a few moni-
toring stations, and the number of monitoring stations has increased over time. However,
the lack of extensive PM2.5 measurements before 2010, and sparse monitoring stations in
mountainous areas and Hokkaido, may limit the application of PM2.5 data in long-term
epidemiological studies in Japan and cause exposure misclassification of subjects. Land use
regression (LUR) is a cost-effective approach to estimate large-scale PM2.5 distributions [10],
but lacks temporal resolution owing to the unavailability of temporally resolved land use
data. Hence, it is difficult to estimate daily PM2.5 concentrations using LUR. With the
merits of large-scale coverage and daily routine records, satellite-based aerosol optical
depth (AOD), defined as the integrated extinction coefficient over the vertical atmospheric
column above the earth’s surface, is a useful and reliable indicator of daily ground PM2.5
concentrations [11]. However, no study has used AOD to develop a satellite-based PM2.5
estimation model in Japan.

AOD generated from the Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard the NASA Terra and Aqua satellites is the most popular product, which has
been applied widely with meteorological variables and land use data to estimate PM2.5
concentrations across the world [12]. However, most previous studies were conducted
in continental regions, such as the United States [13–15], Europe [16,17], and mainland
China [18–21]. Only a few studies were conducted on islands in moist environment because
the missing rates of AOD are generally high in coastal regions and islands, mainly owing
to frequent cloud occurrence [22,23]. Early studies relied on MODIS AOD with coarse
spatial resolution using the Dark Target (10 or 3 km resolution) and Deep Blue (10 km
resolution) algorithms [24]. A new advanced algorithm with 1-km-resolution, the Multi-
Angle Implementation of Atmospheric Correction (MAIAC) algorithm, was released in
2018 [25]. The high-resolution MAIAC AOD product is potentially useful for estimating
the ground PM2.5 in islands with complex topography and land use type distribution such
as Japan.

Several traditional statistical models, such as multivariate linear regression, a linear
mixed effect model, geographically weighted regression, and a generalised additive model,
have been utilised with AOD to establish the empirical models for PM2.5 (as reviewed
by [26]). However, these statistical models generally make strong assumptions about
the data. Machine learning algorithms that take into account the complex non-linear
interactions between variables without needing to make assumptions about distributions
were also proposed to develop satellite-based AOD-PM2.5 models. These machine learning
algorithms include random forest [14,27], gradient boosting [28], extreme gradient boosting
(XGBoost) [29], support vector machine [21], and deep learning [30,31]. These studies have
proved that machine learning algorithms outperform traditional statistical models.

In this study, we validated MAIAC AOD with ground measurements of AOD, and
established a 1-km-resolution satellite-based model over Japan between 2011 and 2016 to
estimate daily PM2.5 concentrations. The objectives of this study were (1) to validate per-
formance of satellite-based AOD over Japan; (2) to apply a two-stage random forest model
incorporating AOD, meteorological variables, and land use data to estimate daily PM2.5
concentrations; and (3) to identify important predictors of outdoor PM2.5 concentrations.

2. Materials and Methods
2.1. Study Area

The study area included the main islands of Japan and the island group of Okinawa
within 24◦ to 46◦N and 123◦ to 149◦E (Figure 1). The remote offshore islands, i.e., the Bonin
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Islands, were excluded from the study. To facilitate data integration, the study area was
divided into 379,643 grids with a resolution of 45 s in longitude and 30 s in latitude based
on the Japan third mesh data (approximately 1-km × 1-km) [32].

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 19 
 

 

2. Materials and Methods 
2.1. Study Area 

The study area included the main islands of Japan and the island group of Okinawa 
within 24° to 46° N and 123° to 149° E (Figure 1). The remote offshore islands, i.e., the 
Bonin Islands, were excluded from the study. To facilitate data integration, the study area 
was divided into 379,643 grids with a resolution of 45 s in longitude and 30 s in latitude 
based on the Japan third mesh data (approximately 1-km × 1-km) [32]. 

The study collected satellite-based AOD, meteorological data, and land use data (the 
data sources, coverage years, and spatial and temporal resolutions are summarised in Ta-
ble S1). The details of these data are described in the following sections. 

 
Figure 1. Study area and locations of PM2.5 monitoring stations in 2016. 

2.2. MAIAC AOD 
The 1-km-resolution MAIAC algorithm-based level-gridded AOD data (MCD19A2 

collection 6 product) between 1 January 2011 and 31 December 2016 were downloaded 
from the Level 1 and Atmospheric Archive and Distribution System Distributed Active 
Archive Center (LAADS DAAC; https://ladsweb.modaps.eosdis.nasa.gov/search/, ac-
cessed on 12 September 2021). MAIAC AOD at 550 nm (SDS name: Optical_Depth_055) 
from Terra (overpass at around 10:30 a.m.) and Aqua (overpass at around 1:30 p.m.) with 
the best quality (QA.CloudMask = Clear (code: 001) and QA.AdjacencyMask = Clear 
(code: 000)) were retrieved separately. A simple linear regression between MAIAC AOD 
from Terra and Aqua was developed by using complete pairs of AOD from these two 
satellites. If the MAIAC AOD from Terra was missing for a specific day, the MAIAC AOD 
from Aqua was used to impute the missing value by simple linear regression, and vice 
versa [23]. Then, the arithmetic means of AOD from Terra and Aqua were calculated to 
represent daily values. 

2.3. AERONET AOD 
The AErosol RObotic NETwork (AERONET) programme is a global ground-based 

remote sensing aerosol network established by NASA and PHOTONS (PHOtométrie 
pour le Traitement Opérationnel de Normalisation Satellitaire; Univ. of Lille 1, CNES and 
CNRS-INSU) with several collaborators, including national agencies, institutes, and uni-
versities across the world [33]. The AOD from the AERONET can be used as ‘ground 
truth’ to validate satellite-based measurements. Total optical depths based on the AOD 
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The study collected satellite-based AOD, meteorological data, and land use data (the
data sources, coverage years, and spatial and temporal resolutions are summarised in
Table S1). The details of these data are described in the following sections.

2.2. MAIAC AOD

The 1-km-resolution MAIAC algorithm-based level-gridded AOD data (MCD19A2
collection 6 product) between 1 January 2011 and 31 December 2016 were downloaded from
the Level 1 and Atmospheric Archive and Distribution System Distributed Active Archive
Center (LAADS DAAC; https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on
12 September 2021). MAIAC AOD at 550 nm (SDS name: Optical_Depth_055) from Terra
(overpass at around 10:30 a.m.) and Aqua (overpass at around 1:30 p.m.) with the best
quality (QA.CloudMask = Clear (code: 001) and QA.AdjacencyMask = Clear (code: 000))
were retrieved separately. A simple linear regression between MAIAC AOD from Terra
and Aqua was developed by using complete pairs of AOD from these two satellites. If the
MAIAC AOD from Terra was missing for a specific day, the MAIAC AOD from Aqua was
used to impute the missing value by simple linear regression, and vice versa [23]. Then, the
arithmetic means of AOD from Terra and Aqua were calculated to represent daily values.

2.3. AERONET AOD

The AErosol RObotic NETwork (AERONET) programme is a global ground-based
remote sensing aerosol network established by NASA and PHOTONS (PHOtométrie pour
le Traitement Opérationnel de Normalisation Satellitaire; Univ. of Lille 1, CNES and CNRS-
INSU) with several collaborators, including national agencies, institutes, and universities
across the world [33]. The AOD from the AERONET can be used as ‘ground truth’ to
validate satellite-based measurements. Total optical depths based on the AOD levels
(Level 2.0: cloud screened and quality assured) of 12 stations in Japan (Figure S1) were
downloaded from the Goddard Space Flight Center (https://aeronet.gsfc.nasa.gov/new_

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://aeronet.gsfc.nasa.gov/new_web/index.html
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web/index.html, accessed on 12 September 2021). The AERONET did not provide the
AOD at 550 nm and therefore this was interpolated from the AOD at 500 and 675 nm [34].

2.4. Ground PM Measurements

Hourly PM2.5 measurements from 2011 to 2016 were downloaded from the envi-
ronmental numerical database of the National Institute for Environmental Studies [35].
There were 1,068 stations measuring PM2.5 that were maintained by local government
in 2016 (Figure 1). The monitoring stations used a β-ray attenuation method, tapered
element oscillating microbalance, and a light-scattering method to measure PM2.5 concen-
trations continuously and hourly. The air quality data were collected, summarised, and
released by the National Institute for Environmental Studies [35], and are available online
(https://www.nies.go.jp/igreen/index.html, accessed on 12 September 2021).

2.5. Meteorological Variables

The in situ measurements of daily temperature, relative humidity, precipitation,
and surface pressure recorded by the automated meteorological data acquisition system
(AMeDAS) during 2011–2016 were downloaded from the Japan Meteorological Agency.
There are around 1300 rain gauges across Japan, and approximately 921 and 147 monitoring
stations observing daily temperature and relative humidity across Japan, respectively [36].
Missing values of meteorological variables were excluded. The regression-kriging method
was applied to estimate daily temperature and surface pressure in a 1-km-resolution grid
lacking weather-monitoring stations [37]. Additionally, ordinary kriging was utilised to
estimate daily values of relative humidity and precipitation in 1-km grids.

Boundary layer height, 10-m-height zonal wind (u10), and 10-m-height meridional
wind (v10) were obtained from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Re-analysis Interim (ERA-Int). Data at 00.00 and 12.00 UTC, and at four
steps (i.e., 3, 6, 9, and 12 h) after the observation time points, with a spatial resolution
of 0.125◦ longitude × 0.125◦ latitude, were downloaded from the ECMWF online depository
(https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, accessed on
12 September 2021). The inverse distance weighted (IDW) method was used to interpolate
the boundary layer height, u10, and v10 data to the centroids of grids. The fixed search
radius was set to 15 km for each centroid of fixed grids, and all the observed values of
boundary layer height within the 15 km searching radius of a specific grid were averaged.
The same IDW method was applied in our previous study [23].

Five-kilometre cloud-fraction data were accessed from the Terra and Aqua MODIS
Collection 6 Level cloud product (MOD06_L2 and MYD06_L2), which consisted of cloud
optical and physical parameters downloaded from the LAADS DAAC. The cloud-fraction
data from Terra and Aqua were averaged as daily values. The IDW method with a fixed
search radius of 7.5 km was used to interpolate the cloud fraction values into each grid.

2.6. Land Use Data

Urban and built-up area data with 50 m resolution during 2006–2011 (ID number of
the category = #2) were retrieved from the High-Resolution Land Use and Land Cover
(HRLULC) map published by the Japan Aerospace Exploration Agency (JAXA) Earth
Observation Research Center (https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm,
accessed on 12 September 2021). Industrial area data created in 2009 were accessed from
the Ministry of Land, Infrastructure, Transport and Tourism (https://nlftp.mlit.go.jp/
ksj/gml/datalist/KsjTmplt-L05.html, accessed on 12 September 2021). Road network
data were retrieved from the Global Map Japan v2.2 Vector data released in 2016 by the
Geoinformation Authority of Japan (https://www.gsi.go.jp/kankyochiri/gm_japan_e.
html, accessed on 12 September 2021). The distances from the centroid of the grid to the
nearest primary road and highway were calculated, as well as the total length of roads
within each grid.

https://aeronet.gsfc.nasa.gov/new_web/index.html
https://aeronet.gsfc.nasa.gov/new_web/index.html
https://www.nies.go.jp/igreen/index.html
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm
https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L05.html
https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L05.html
https://www.gsi.go.jp/kankyochiri/gm_japan_e.html
https://www.gsi.go.jp/kankyochiri/gm_japan_e.html
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The normalised difference vegetation index (NDVI), a measurement of plant health,
was extracted from the Terra MODIS MOD13Q1 product with a 16-day interval and 250 m
spatial resolution in the sinusoidal coordinate system.

2.7. Population Counts

Annual population count data with 100 m resolution during 2011–2016 were down-
loaded from the WorldPop website (https://www.worldpop.org/geodata/listing?id=29,
accessed on 12 September 2021). The annual average population count in each 1-km grid
was calculated.

2.8. Elevation

Elevation data with 30 m spatial resolution was accessed from the Advance Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model
v002 (ASTGTM.002) announced in 2011. The average elevation within each 1-km grid
was calculated.

2.9. Statistical Methods

The Pearson’s correlation coefficient (R), RMSE, mean bias error (MBE), percentage
of data within the expected error (EE; ±(0.05 + 0.15AERONET AOD)), and slope of the
linear regression were selected to evaluate the consistency between MAIAC AOD and
AERONET AOD [38,39].

Random forest is an ensemble learning model, which has outperformed most tradi-
tional machine learning algorithms [40]. The random forest model is an extended machine
learning algorithm of bagging (bootstrap aggregation) that not only builds a number of
decision trees on bootstrapped training samples, but also randomly selects a subset of
predictors (mtry) from the full set of predictors when building these trees [40,41]. For regres-
sion, the random forest model aggregates predictions from trees by averaging the predicted
values from trees. In the present study, a two-stage random forest model was applied
to develop the satellite-based PM2.5 model. In the first stage, random forest was used to
impute the missing values of MAIAC AOD on a weekly basis. Since satellite-based AOD
values are frequently missing due to the presence of clouds and in the mountainous areas,
longitude, latitude, temperature, relative humidity, cloud fraction, and elevation were used
to impute missing AOD values based on the previous study and our early work [19,42].
The formula of the first-stage random forest model is as follows:

AODij = f
(

Longi, Lati, Tempij, Humij, CFij, Elevationi

)
(1)

where AODij is the AOD value in grid i at day j; Longi and Lati are longitude and latitude
in grid i; Tempij is temperature in grid i at day j; Humij is relative humidity in grid i at
day j; CFij is the cloud fraction in grid i at day j; and Elevationi is elevation in grid i. The
numbers of trees and mtry were set to 1000 and 2 (one-third of the number of predictors),
respectively. The weekly models were evaluated by calculating the out-of-bag (OOB)
coefficient of determination (R2) and root mean square error (RMSE).

The second-stage random forest model was utilised to estimate ground PM2.5 concen-
trations. The predictors in the second-stage model were selected based on the previous
studies and our early works [19,23,42,43]. All the predictors have plausible physical mech-
anisms on PM2.5 concentrations. Temperature, relative humidity, boundary layer height,
surface pressure, wind speed and direction, and precipitation significantly influence the
distribution and formation of PM2.5 [44]. Industrial areas, road networks, and human
population are sources of PM2.5. Accessibility of data is also a consideration for including
predictors. The other gaseous pollutants, such as nitrogen oxides and sulphur dioxides, are
precursors of PM2.5, and we did not include them in the model since they are not available
in grids without air quality monitoring stations. The formula of the second-stage random
forest is as follows:

https://www.worldpop.org/geodata/listing?id=29
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PM2.5 ij = f(AOD ij, Daysj, Tempij, Humij, BLHij, SPij, U10ij, V10ij, Precij, NDVIi , Indus_areai,
Urban_areai, Elevationi , Road_leni, Distoprimi, Distohighi, Popi)

(2)

where PM2.5 ij is PM2.5 value in grid i at day j; AODij is AOD value in grid i at day j; Daysj
is the day of the year; Tempij is temperature in grid i at day j; Humij is relative humidity in
grid i at day j; BLHij is boundary layer height in grid i at day j; SPij is surface pressure in
grid i at day j; U10ij is zonal wind at a height of 10 m in grid i at day j; V10ij is meridional
wind at a height of 10 m in grid i at day j; Precij is precipitation in grid i at day j; NDVIi is
the normalised difference vegetation index in grid i; Indus_areai is the area of industrial
facilities in grid i; Urban_areai is the urban and built-up area in grid i; Elevationi is eleva-
tion in grid i; Road_leni is the length of roads in grid i; Distoprimi is the distance from the
grid centroid to the nearest primary road in grid i; Distohighi is the distance from the grid
centroid to the nearest highway in grid i; and Popi is the average population count in grid i.
The descriptive statistics of predictors from 2011 to 2016 are presented in Table S2. Similar
to the first-stage model, the number of trees was set to 1000, and mtry was tuned from 1 to 17.
mtry was finally set to 15 for the second-stage model according to the highest OOB R2.
Ten-fold cross-validation was performed to evaluate the performance of the second-stage
model. During the cross-validation process, the dataset was randomly divided into ten non-
overlapping and equally sized partitions, and nine partitions and one partition were used
as training and validating data, respectively. The cross-validation process was repeated
ten times until all partitions had been used to validate the model performance. The cross-
validation results were represented by cross-validation R2, RMSE, percentage relative er-
ror (RE; (mean(Obsearvations) − mean(Predictions))/mean(Observations) × 100%), and
mean absolute error (MAE). A tree-based ensemble model–eXtreme Gradient Boosting (XG-
Boost) [45] was performed to estimate ground PM2.5 concentrations and compared with the
performance of random forest. The hyperparameters tuned to optimise the performance of
XGBoost is shown in Table S3.

In addition to the ten-fold cross-validation, a subsite validation that used the grids
overlapping with the AERONET sites as the validating data was conducted to check the
model performance. Additionally, the ten-fold cross-validation results were stratified by
seasons (spring: March–May; summer: June–August, autumn: September–November; win-
ter: December–February) and quartiles of AOD coverage (below 25th percentile: <16.61%;
25th–50th percentile: 16.61–23.79%; 50th–75th percentile: 23.79–33.26%; and above 75th
percentile: ≥33.26%) to evaluate the model performance.

The relative importance of predictors in random forest model was determined by
calculating permutation importance scores. Additionally, accumulated local effect (ALE)
plots were used to explore the effects of predictors on predicted PM2.5 values.

All analyses were conducted using R software v4.1.0 (caret, ranger, iml, and xgboost
packages; R Core Team, Vienna, Austria) and ArcGIS Pro 2.8.0 (ESRI, Redlands, California).

3. Results
3.1. Validation of MAIAC AOD with Ground Measurements over Japan

The overall mean coverage of MAIAC AOD in Japan was 15.48%. The highest coverage
was in autumn (19.48%), followed by spring (17.94%), winter (14.05%), and summer
(10.51%). The spatial distribution of MAIAC AOD coverage is shown in Figure 2. The
mean coverage of AOD was higher in the Kanto, southern Chubu, and Kyushu regions;
however, the mean coverage was extremely low (<4.79%) in the Hokkaido, Tohoku, and
Okinawa regions (Figure 2).
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The descriptive statistics for MAIAC AOD and AERONET AOD are shown in Table S4.
Overall, the 1-km-resolution MAIAC AOD was highly correlated with AERONET AOD
(R = 0.82), 74.62% of data falling within the EE (Figure 3). The MAIAC AOD slightly
underestimated AOD values in Japan (MBE = −0.006) (Figure 3). The performance of
MAIAC AOD was highest in the Hokkaido University (R = 0.93, RMSE = 0.12, MBE = 0.033,
and 65.15% of data within the EE), while the performance of MAIAC was lowest in the
Osaka-North station (R = 0.61, RMSE = 0.108, MBE = 0.036, and 58.62% of samples within
the EE) (Figure 4).
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Figure 3. Comparison of daily AErosol RObotic NETwork (AERONET) aerosol optical depth (AOD;
9:00 a.m. to 3:00 p.m. local time) and Multi-Angle Implementation of Atmospheric Correction
(MAIAC) AOD. The blue solid line shows the linear regression between MAIAC AOD and AERONET
AOD. The red dashed line is the one-one line and the MAIAC AOD and AERONET AOD values are
equal along the red dashed line.
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3.2. Ground PM2.5 Measurements

The overall average PM2.5 concentration in Japan during 2011–2016 was 14.3 ± 8.1 µg/m3

(mean ± standard deviation [SD]). The average PM2.5 concentration was highest in spring
(16.6 ± 8.5 µg/m3), followed by summer (14.8 ± 8.4 µg/m3), autumn (12.8 ± 6.8 µg/m3),
and winter (12.8 ± 7.8 µg/m3) (Table 1).

Table 1. Descriptive statistics of in situ measurements of particulate matter with an aerodynamic
diameter less than 2.5 µm (PM2.5) in Japan during 2011–2016 (unit: µg/m3).

Period Number Mean SD Min Q1 Median Q3 Max IQR

Overall 1,491,808 14.3 8.1 0.0 8.4 12.5 18.2 149.5 9.8
Spring 378,303 16.6 8.5 0.0 10.6 15.2 20.9 112.5 10.3

Summer 362,641 14.8 8.4 0.0 8.7 12.9 18.9 101.0 10.2
Autumn 368,560 12.8 6.8 0.0 7.9 11.5 16.2 97.2 8.3
Winter 382,304 12.8 7.8 0.0 7.3 10.8 16.3 149.5 9.0

Abbreviations: SD, standard deviation; Q1, 25th percentile; Q3, 75th percentile; Min, minimum; Max, maximum;
IQR, interquartile range.

3.3. Model Performance of the First-Stage Model

The average OOB R2 and RMSE for the first-stage random forest model were 0.97
(range, 0.93–1.00) and 0.016 (unitless; range, 0.009–0.038), respectively. After imputing miss-
ing values, the mean MAIAC AOD was 0.182 ± 0.145 (mean ± SD) overall, and was highest
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in spring (0.264 ± 0.182), followed by summer (0.206 ± 0.158), winter (0.134 ± 0.087), and
autumn (0.128 ± 0.079) (Table 2). The seasonal trend of MAIAC AOD was consistent with
in situ PM2.5 measurements.

Table 2. Descriptive statistics of 1-km-resolution Multi-Angle Implementation of Atmospheric
Correction (MAIAC) aerosol optical depth (AOD) during 2011–2016 across Japan (unit: unitless).

Period Number a Mean SD Min Q1 Median Q3 Max IQR

Overall 129,090,082 (15.48%) 0.182 0.145 0 0.091 0.145 0.231 3.770 0.140
Spring 37,531,792 (17.94%) 0.264 0.182 0 0.148 0.226 0.330 3.180 0.182

Summer 22,073,935 (10.51%) 0.206 0.158 0 0.107 0.170 0.263 3.773 0.156
Autumn 40,183,589 (19.49%) 0.128 0.079 0 0.074 0.111 0.163 3.516 0.089
Winter 29,300,766 (14.05%) 0.134 0.087 0 0.076 0.115 0.170 1.750 0.094

a The number in brackets is the coverage rate. Abbreviations: SD, standard deviation; Q1, 25th percentile; Q3,
75th percentile; Min, minimum; Max, maximum; IQR, interquartile range.

3.4. Model Performance of the Second-Stage Model

A total of 1,488,612 matched pairs of MAIAC AOD and PM2.5 concentrations were
available during 2011–2016 to develop the satellite-based PM2.5 model by random for-
est. The results of model training and 10-fold cross-validation are displayed in Figure 5.
For model training, the satellite-based PM2.5 model had a low bias with a training R2

of 0.98, an RMSE of 1.22 µg/m3, an MAE of 0.85 µg/m3, and a RE of −0.20, which
showed that the model fitted the measured PM2.5 values very well. For the 10-fold cross-
validation, the cross-validation R2, RMSE, MAE, and RE of the satellite-based model were
0.86, 3.02 µg/m3, 2.14 µg/m3, and −0.52, respectively, which showed that the model was
slightly overfitted. The training and 10-fold cross-validation of XGBoost are shown in
Figure S2. The performance of random forest was better than XGBoost in this study.
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The spatial distributions of the residuals (differences between estimated PM2.5 and in
situ measurements) are shown in Figure S2. Generally, the random forest model tended to
slightly overestimate PM2.5 in the grids close to the shore (mean, 0.1 ± 0.5 µg/m3; range,
−1.8 to 1.8 µg/m3). Nevertheless, the residuals on most grids (75%) were below 4% of
the mean measurement of PM2.5 (Figure S2). Additionally, the observed and predicted
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PM2.5 showed a highly consistent trend during 2011–2016 according to the time series plot
(Figure S3).

We used the grids overlapping with the AERONET sites to validate the second-stage
random forest model, and the model performance was excellent at these sites with a
validation R2 (RMSE, MAE, and RE) of 0.94 (1.78 µg/m3, 1.40 µg/m3, and 1.55, respec-
tively) (Figure S5). Additionally, the training and cross-validation results stratified by
season are shown in Figure S6. The model performances were similar across the four
seasons, while the model performance in autumn was slightly worse than the other seasons
(cross-validation R2, RMSE, MAE, and RE of 0.83, 2.83 µg/m3, 2.03 µg/m3, and −0.63,
respectively) (Figure S6). The model performance under different AOD coverages is pre-
sented in Figure S7. The model performance increased as AOD coverage increased, and the
model performance at the grids with coverage rate ≥33.26% (cross-validation R2, RMSE,
MAE, and RE of 0.87, 2.74 µg/m3, 1.93 µg/m3, and −0.45, respectively) was slightly higher
than the first, second, and third quartiles (Figure S7).

3.5. Important Predictors of PM2.5 Concentrations

The top ten important predictors of ground PM2.5 concentrations were day of the year
(relative importance: 19.9%), temperature (12.3%), AOD (11.9%), relative humidity (11.7%),
v10 wind (8.78%), u10 wind (7.55%), boundary layer height (7.48%), precipitation (5.58%),
surface pressure (5.01%), and population density (1.83%) (Figure S8).

Increased AOD, surface pressure, population density, road length, and area of in-
dustrial facilities were positively associated with ground PM2.5 concentrations (Figure S8).
By contrast, increased relative humidity, precipitation, and elevation were negatively cor-
related with PM2.5 concentrations (Figure S8). Day of the year, temperature, v10 wind,
u10 wind, boundary layer height, NDVI, distance to the nearest highway, distance to the
nearest primary road, and urban and built-up area showed non-linear relationships with
ground PM2.5 concentrations (Figure S8).

3.6. PM2.5 Estimates

The overall average PM2.5 estimate was 12.5 ± 5.5 µg/m3. The PM2.5 estimates were
higher in southern Japan and in several metropolitan areas, including Tokyo, Nagoya, and
Osaka, than in the northern region (Figure 6). The seasonal mean PM2.5 estimates were
highest in spring (14.7 ± 6.0 µg/m3), followed by summer (13.2 ± 5.5 µg/m3), autumn
(11.1 ± 4.6 µg/m3), and winter (11.1 ± 4.8 µg/m3) (Table 3). The seasonal trends were
consistent with those determined from in situ PM2.5 measurements. The seasonal spatial
distribution of estimated PM2.5 is presented in Figure S9. The PM2.5 concentrations showed
a decreased trend from 2011 to 2016 (Figure 7), which is consistent with the estimation in a
previous study [46].

Table 3. Descriptive statistics of estimated particulate matter with an aerodynamic diameter less than
2.5 µm (PM2.5) during 2011–2016 in Japan (unit: µg/m3).

Period Number Mean SD Min Q1 Median Q3 Max IQR

Overall 832,177,456 12.5 5.5 1.2 8.8 11.4 15.0 93.6 6.2
Spring 209,562,936 14.7 6.0 1.2 10.6 13.6 17.3 93.6 6.7

Summer 209,562,936 13.2 5.5 1.3 9.4 12.2 15.8 69.6 6.4
Autumn 207,285,078 11.1 4.6 1.4 8.0 10.1 13.0 77.0 5.0
Winter 205,766,506 11.1 4.8 1.4 7.9 10.1 13.0 88.1 5.1

Abbreviations: SD, standard deviation; Q1, 25th percentile; Q3, 75th percentile; Min, minimum; Max, maximum;
IQR, interquartile range.
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4. Discussion

In the present study, we validated MAIAC AOD with ground measurements of AOD
and developed a 1-km-resolution satellite-based model for daily PM2.5 concentrations
during 2011–2016 by using a random forest model in Japan. The MAIAC AOD showed a
high retrieval accuracy in Japan (R = 0.82, with the EE: 74.62%), which was comparable
to those conducted in South Asia (including Pakistan, India, and Bangladesh) (R = 0.882,
within the EE: 72.22% and R = 0.887, within the EE: 73.5 for Aqua and Terra MAIAC AOD,
respectively) [47] and better than in Central Asia (R = 0.730, within the EE: 58.7% for spring;
R = 0.709, within the EE: 66.7% for summer; R = 0.729, within the EE: 62.4% for autumn,
and R = 0.744, with the EE: 67.9% for winter) [38].

The satellite-based model achieved excellent performance with a training and 10-fold
cross-validation R2 (RMSE, MAE, and RE) of 0.98 (1.22 µg/m3, 0.85 µg/m3, and −0.20) and
0.86 (3.02 µg/m3, 2.14 µg/m3, and −0.52), respectively. The top ten important predictors
of the model were day of the year, temperature, MAIAC AOD, relative humidity, v10 wind,
u10 wind, boundary layer height, precipitation, surface pressure, and population density.
The overall average PM2.5 estimate was 12.5 ± 5.5 µg/m3, and the estimates were higher in
southern Japan and metropolitan areas. The estimates showed that PM2.5 concentrations in
Japan decreased from 2011 to 2016. Long-range transportation is a main contributor of high
PM2.5 in western Japan during winter and spring. China implemented an Air Pollution
Prevention and Control Action Plan in 2013 with a series of stringent clean air actions
during 2013–2017, which led to PM2.5 rapidly decreasing across China [48]. In addition, the
domestic emissions, especially those derived from road transport, decreased in Japan [46].
Hence, the decrease in both foreign and domestic emission sources may cause a long-term
decreasing trend in Japan.

Several studies developed nationwide PM2.5 estimation models in Japan. Araki and
colleagues modelled the spatial distributions of annual mean PM2.5 concentrations using
LUR and the regression-kriging method [49]. They included AOD at 500 nm from JAXA
Satellite Measurements for Environmental Studies (JASMES) as a predictor in the models
but excluded AOD during the backward variable selection process. Their final model
retained the built-up area ratio, agricultural area ratio, population, distance to the nearest
highway, distance to the coastline, precipitation, temperature, wind speed, and longitude
as predictors. The leave-one-out cross-validation R2 (RMSE) was 0.71 (1.2 µg/m3) and
0.81 (1.0 µg/m3) for LUR and regression-kriging, respectively, after removing the spatial
outlier [49]. In 2020, Araki and colleagues in Japan used an artificial neural network and
included meteorological variables (precipitation, wind speed, temperature, and relative
humidity) and land use data (built-up area ratio, green area ratio, population density, dis-
tance to coastline, and longitude) as predictors to estimate monthly PM2.5 concentrations
during 1987–2016. Their model achieved a spatial and temporal cross-validation R2 (RMSE)
of 0.76 (1.9 µg/m3) and 0.73 (2.0 µg/m3), respectively [46]. The same group also applied
the random forest model with ordinary kriging to estimate monthly PM2.5 concentrations
in Japan during 2010–2015 [50]. They used 5-fold cross-validation to validate the model
performance and obtained a cross-validation R2 of 0.79 with RMSE of 2.1 µg/m3 for all
stations [50]. Their results showed that the top ten important predictors of PM2.5 were
suspended PM, ozone (O3), longitude, month, sulphur dioxides (SO2), temperature, rel-
ative humidity, latitude, nitrogen dioxides (NO2), and precipitation. Only a few studies
attempted to estimate daily PM2.5 concentrations in Japan. Shimadera and colleagues sim-
ulated daily air quality from April 2010 to March 2011 by using the Community Multiscale
Air Quality Model (CMAQ) v5.0.2 with the Weather Research and Forecasting Model (WRF)
v3.5.1. Their model performance was fair for PM2.5 (with a Pearson’s correlation coefficient
of 0.75 and RMSE of 7.3 µg/m3) [9]. We integrated MAIAC AOD with meteorological
variables and land use data to develop the daily PM2.5 estimation model in this study. Our
model achieved a 10-fold cross-validation R2 of 0.86 with RMSE of 3.02 µg/m3. Our model
performance is better than those in studies that merely relied on meteorological variables
and land use data to estimate monthly or annual mean PM2.5 concentrations. This shows
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that satellite-based AOD can provide additional spatial and temporal information about
daily PM2.5 concentrations and improve the model performance.

Nearly all previous studies used ensemble models (i.e., random forest, gradient
boosting, or XGBoost) to develop satellite-based PM2.5 models, and only a few used a deep
learning model or support vector machine (as summarised in Table S5). A study built a
model in Great Britain, UK during 2008–2018 by using a random forest model and obtained
a 10-fold cross-validation R2 (RMSE) of 0.767 (4.042 µg/m3) [22]. A study in Guangdong–
Hong Kong–Macao Greater Bay Area, China also developed models by random forest and
achieved a 10-fold cross-validation R2 (RMSE) of 0.937 (3.527 µg/m3), 0.905 (3.780 µg/m3),
and 0.884 (3.633 µg/m3) for 2016, 2017, and 2018, respectively [51]. A recent study in
Italy built models between 2013 and 2015 using an ensemble generalised additive model,
and combined the results derived from a linear mixed-effect model, random forest, and
XGBoost. They found that the cross-validation R2 (RMSE) was 0.79 (6.56 µg/m3), 0.79
(5.29 µg/m3), and 0.81 (6.34 µg/m3) for 2013, 2014, and 2015, respectively [17]. Overall,
our model performance is comparable to or better than those in these studies.

Our results showed that day of the year was the most important variable in the
random forest model for estimating PM2.5 (relative importance of 19.92%). Early studies
that developed satellite-based AOD-PM2.5 estimation models by using the linear mixed
effect model needed to include day-specific intercepts and slopes to achieve high model
performance because the relationship between AOD and PM2.5 may change day-to-day
due to differences in mixing height, relative humidity, particle composition, and vertical
profiles [13]. Recent studies that applied the machine learning algorithm also found that
day of the year (or Julian day) is an important variable for modelling PM2.5 [22,52,53].
According to the ALE plot (Figure S8), the relationship between day of the year and PM2.5
estimates displayed a bimodal pattern with two peaks between Julian day 0–100 (spring)
and after Julian day 300 (winter). Day of the year can be a surrogate of seasonal effects.
PM2.5 concentrations in Japan displayed an obvious seasonal variation. Both foreign
and domestic sources may cause the seasonal variations of PM2.5 in Japan. Long-range
transportation from Asia (yellow dust storm and anthropogenic aerosols) contributes to
high PM2.5 levels in western Japan, particularly in spring and winter [9,54]. Photochemical
smog events frequently occurred in summer can contribute to high concentrations of PM2.5
in summer [55]. Besides, increase in operation time of coal-burning power plants and heat
appliance usage can cause raising PM2.5 concentrations during winter [55].

AOD was the third most important variable in our model (relative importance of
11.89%). There was a strong and positive relationship between AOD and PM2.5 according
to the ALE plot (Figure S8). However, the results from previous studies are contradictory. A
study conducted on an island, Great Britain of the UK, found that satellite-based AOD 0.47
and 0.55 µm values retrieved from the MAIAC AOD product were not important predictors
in a random forest model for estimating ground PM2.5 concentrations, and the authors
concluded that the contribution of satellite-based AOD in the model was very limited [22].
A study in Tehran, Iran also indicated that satellite-based AOD with an extremely high
missing rate of 94.09% (3 km Terra Dark Target Algorithm AOD) did not significantly
contribute to PM2.5 estimations [56]. It should be noted that aerosol compositions (i.e.,
nitrate/sulphate ratio), presence of black carbon, and an arid environment with higher
surface reflectance may cause poor correlations between satellite-based AOD and ground
PM2.5 concentrations [57]. Nevertheless, our results demonstrated that satellite-based AOD
can provide valuable information for estimating ground PM2.5 concentrations in Japan.

Meteorological variables had stronger influences on PM2.5 estimates than population
density and land use data according to the variable importance (Figure S8). A previous
study also observed that forest area and population density have lower importance values
than meteorological variables due to a lack of temporal variation [53].

Temperature was the second-most-important variable in our model (relative impor-
tance of 12.25%). We observed a U-shaped relationship between temperature and PM2.5
concentrations (Figure S8). Temperature both positively and negatively influences PM2.5.
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High temperature can increase PM2.5 concentrations by promoting photochemical reactions
and accelerating formation of PM2.5 precursors and other secondary pollutants [44,58]. In
winter, increased temperature may induce formation of a temperature inversion layer due
to low surface temperature and result in accumulation of PM2.5 [44]. On the other hand,
high temperature can enhance thermal activities, facilitate dispersion of PM2.5, and increase
evaporation loss of PM2.5 (loss of vapor, ammonium nitrate, and volatile and semi-volatile
pollutants), causing decreases in PM2.5 concentrations [44]. In addition, low temperature
can reduce atmospheric convection and lead to increases in PM2.5 concentrations [44]. We
observed negative correlations of PM2.5 concentrations with relative humidity and precipi-
tation (Figure S8). These results are unsurprising; PM2.5 concentrations may decrease as
relative humidity increases beyond a threshold due to dry deposition [58]. Additionally,
precipitation can decrease PM2.5 concentrations via wet deposition [58].

Boundary layer height was the seventh most important variable in our model (relative
importance of 7.48%). Boundary layer height can affect the vertical distribution of PM; low
boundary layer height leads to accumulation of PM2.5 near the earth’s surface [44]. Tsai
and colleagues in Taiwan reported that AOD normalised by haze layer height detected by
ground-based LiDAR (i.e., the sum of boundary layer height and scaling height) remarkably
improves the correlation between AOD and PM2.5 concentrations [59]. Several studies also
included boundary layer height from reanalysed datasets as a predictor in satellite-based
AOD-PM2.5 models [30,60,61]. However, normalising AOD by boundary layer height or
including boundary layer height as a predictor did not improve the performance of a linear
mixed-effect model in our previous work [23]. It is possible that the linear mixed-effect
model cannot capture the complex interactions between AOD and boundary layer height.
Nonetheless, we applied a random forest model in this study, and boundary layer height
was a critical variable in this model. This demonstrates that random forest is suitable
for developing satellite-based AOD-PM2.5 models, especially when predictors (AOD and
meteorological variables in this study) are highly inter-correlated, and their relationships
are not linear or monotonic.

This study has several strengths. First, we comprehensively validated the MAIAC
AOD with the AERONET AOD across Japan. The results can provide a basic understanding
of accuracy of MAIAC AOD in Japan. Second, this is the first study in Japan that used
machine learning algorithms with 1 km MAIAC AOD to develop a high spatiotemporal
resolution PM2.5 estimation model that can provide daily estimates of PM2.5 concentra-
tions at a national scale. We the assessed model performances of two machine learning
algorithms—random forest and XGBoost for estimating PM2.5 concentrations and found
that random forest had the best performance. Our cross-validation results showed that the
random forest model can provide accurate estimates in areas without air quality monitoring
stations from 2011 to 2016. The Japan Environment and Children’s Study (JECS), a nation-
wide birth cohort study, recruited 103,099 participants from 15 regional centres during
2011–2014 [62], and the residential addresses of the participants are being geocoded. The
daily PM2.5 estimates from the satellite-based model can be integrated with the geocodes
of the JECS participants to analyse the acute and chronic effects of PM2.5 on children’s
health, and to assess the time windows when children are vulnerable. Third, this study
provided ALE plots that can describe how predictors influence PM2.5 estimates in the
model. Although ALE is not a new technology, it has rarely been used in previous studies.
Here, we demonstrate the importance of ALE can help to quantify the effect of a specific
predictor and its direction on PM2.5 estimates.

This study has some limitations. First, missing AOD values are a major limitation
and challenge when building satellite-based models. AOD values can be missing due
to the presence of clouds and high surface reflectance, and thus this problem is much
worse for islands, which are frequently cloudy and rainy. In the present study, the average
coverage rate of the 1-km MAIAC AOD in Japan was only 15.48%. In our previous
study in Taiwan, the average coverage rate of the 10 km Dark Target algorithm AOD
was 22.99% [23]. Schneider and colleagues reported that the coverage rate of the 1 km
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MAIAC AOD in Great Britain, UK was 6–13% during 2008–2018 [22]. The coverage rates of
AOD in island environments are frequently low based on these studies. Several methods,
such as multiple imputation, random forest, and interpolation, were proposed to impute
missing AOD values [19,53,63], but they may introduce uncertainties into the model.
In 2014, Japan launched a geostationary satellite, Himawari-8, which can continuously
provide AOD values every 10 min. A future study could use AOD values derived from
this geostationary satellite to overcome the problem of missing AOD values. Second, our
land-use data for industrial areas were from 2009 and thus not up-to-date. New data
for industrial areas or points of interest in Japan are hard to access, which may constrain
the estimation ability of the model. Third, emission inventory data and other criteria
pollutants (i.e., nitrogen dioxides, sulphur dioxides, and ozone) were not included in
our model. Interactions between pollutants can enhance the production of secondary
pollutants, causing increases in PM2.5 concentrations. A future study could include these
data to improve the model performance.

5. Conclusions

This study applied a random forest model integrating satellite-based AOD, meteo-
rological variables and land use data to generate full-coverage and daily PM2.5 estimates
at 1-km spatial resolution across Japan during 2011–2016. The model performance was
excellent, with a 10-fold cross-validation R2 of 0.86 and an RMSE of 3.02 µg/m3, which
showed that PM2.5 estimates derived from the satellite-based model were reliable and
accurate. According to the variable importance, the determinants of outdoor PM2.5 in
Japan were day of the year, temperature, satellite-based AOD, relative humidity, wind
vectors, boundary layer height, precipitation, surface pressure, and population density.
These estimates can be used to assess both the short-term and long-term effects of PM2.5 on
health outcomes in epidemiological studies.
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ing (XGBoost) model for estimating PM2.5 concentrations. The red dashed line is the one-one line;
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situ measurements) based on the random forest model; Figure S4. Time series variation of monthly
average observed and predicted PM2.5 concentrations during 2011–2016; Figure S5. Training (left
panel) and validation (right panel) of the random forest model at the grids overlapping with the
AERONET sites. The red dashed line is the one-one line; Figure S6. Model training (upper panel) and
10-fold cross-validation results (lower panel) of the random forest model stratified by four seasons.
(a, e) Spring (March–May); (b, f) Summer (June–August); (c, g) Autumn (September–November);
and (d, h) Winter (December–February); Figure S7. Model training (upper panel) and 10-fold
cross-validation results (lower panel) of the random forest model stratified by quartiles of coverage.
(a, e) the first quartile (coverage rate <16.61%); (b, f) the second quartile (coverage rate 16.61–23.79%);
(c, g) the third quartile (23.79–33.26%); and (d, h) the fourth quartile (≥33.26%); Figure S8. Ac-
cumulated local effect plots for the effects of predictors on estimated PM2.5 values. Numbers in
brackets show the relative permutation importance (%); Figure S9. The seasonal spatial distribution
of estimated PM2.5 concentrations. (A) Spring (March–May); (B) Summer (June–August); (C) Autumn
(September–November); and (D) Winter (December–February). References [64,65] are cited in the
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