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Abstract: Mining-induced geo-hazard mapping (MGM) is a critical step for reducing and avoiding
tremendous losses of human life, mine production, and property that are caused by ore mining.
Due to the restriction of the survey techniques and data sources, high-resolution MGM remains
a big challenge. To overcome this problem, in this research, such an MGM was conducted using
detailed geological exploration and topographic survey data as well as Gaofen-1 satellite imagery
as multi-source geoscience datasets and machine learning technique taking Liaojiaping Orefield,
Central China as an example. First, using Gaofen-1 panchromatic and multispectral (PMS) sensor
data and Random Forest (RF) non-parametric ensemble classifier, a seven-class land cover map was
generated for the study area with an overall accuracy (OA) and Kappa coefficient (KC) of 99.69% and
98.37%, respectively. Next, several environmental drivers including land cover, topography (aspect
and slope), lithology, distance from fault, elevation difference between surface and underground
excavation, and the difference of spectral information from PMS multispectral data of different years
were integrated as predictors to construct an RF-based MGM model. The constructed model showed
an excellent prediction performance, with an OA of 98.53%, KC of 97.06%, and AUC of 0.998, and
the 85.60% of the observed geo-disaster that have occurred in the predicted high susceptibility class
(encompassing 2.82% of the study area). The results suggested that the changes in environmental
factors in the high susceptibility areas can be used as indicators for monitoring and early-warning of
the geo-disaster occurrence.

Keywords: geo-hazard mapping; Gaofen-1 satellite; land cover; environmental factors; susceptibility

1. Introduction

Mining-induced geo-disasters (MG) are a type of disaster related to geological pro-
cesses induced by natural and/or man-made factors [1,2]. These disasters, which include
debris flow, landslide, collapse, ground fissure, and subsidence, are usually caused by inten-
sive mining activities with tremendous damage to the natural and man-made environment,
such as water bodies, farmlands, roads, and pipelines. More importantly, mining-induced
disasters lead to mining accidents and losses of human life and property and even reduce
the sustainability and stability of development among human beings, resources, and the
environment. Hence, some useful prevention measures and technology of MG must be
proposed [3–5]. Mining-induced geo-hazard mapping (MGM) based on determining the
relative probability of geo-disaster occurrence is essential for real-time monitoring and
prediction of the spatial patterns of geological disasters and subsequently protection of the
ecological resources and human health in the mining areas [6,7].
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Qualitative or semi-quantitative estimation of the occurrence possibility is considered
a common procedure for evaluating geo-disaster susceptibility, especially for individual
disasters. This can be implemented by studying the mechanism of geo-disaster occurrences,
identifying triggering factors, and then using these factors to simulate the deformation
progress of the related geological bodies, especially for the single landslide triggered
by rainfall or earthquake [8–12]. Various geo-disasters may occur concurrently by the
same type of environmental factors, such as rainfall, geological structures, and excavation
activity. Moreover, trigger factors caused by geo-disasters should be used for predicting
and evaluating geo-disaster susceptibility. The characteristics of geological structures
are one of the important factors in the field of MGM. In this regard, Wang et al. [13]
developed a disaster-area prediction model that is based on analyzing the correlation of
geo-disaster with mining-induced activity, lithology, and geological structure. In another
study, Segoni et al. [14] performed a landslide susceptibility mapping approach using
various geological data including structural, lithology, chronologic, genetic units, and
paleogeography. These triggering and triggered factors, as well as the geological and
geographical conditions and environmental factors, can be obtained from field-based
disaster investigation, geological survey, and remote sensing (RS), taking advantage of
the earth observation satellite data, geographic information system (GIS) technique, and
machine learning modeling [15].

In order to quantitatively conduct MGM, it is necessary to first consider all causes
of previous events and accordingly analyze the association between disasters with dif-
ferent environmental drivers using data-driven methods in the GIS platform [16–19]. In
the literature, various multi-source geospatial data, i.e., topographic features, geologi-
cal information, rainfall conditions, and vegetation indexes (VIs) from field survey and
satellite imagery were used as environmental predictive factors for MGM using power-
ful data-driven methods, such as support vector machine (SVM) [20], logistic regression
(LR) [21], artificial neural networks (ANN) [22], random forest (RF) [23], decision tree
(DT) [24], weights of evidence (WofE) [20], frequency ratio (FR) [25], analytic hierarchy
process (AHP), and linear combination (LC) [26,27]. Overall, a wide variety of approaches
have been used for MGM, among which supervised machine learning algorithms have
shown high efficiency and reliability. In recent years, these methods have been successfully
applied in the field of geoscience, especially for mineral prospectivity mapping (MPM) and
MGM [15,28–38]. MG occurs suddenly within/around mining areas with the characteristic
of small scale, high density, and frequency. Due to the vital need for more detailed mining
activity and geological exploration data, the implementation of MGM is associated with
some restrictions [8,39]. Despite numerous studies in this field, due to the restriction of the
survey techniques and data sources, MGM with high-resolution remains a major challenge.

Preparation of land cover map is a preliminary to analyzing physiognomy charac-
teristics and evaluating land resources, and it also definitely facilitates the prediction and
evaluation of MG. Under normal circumstances, different land cover types indicate the
different levels of human activities as the triggering factors of MG. Utilizing multispectral
and multi-temporal RS datasets is a momentous approach to mining geospatial informa-
tion. For example, a great number of researchers obtain the land use/cover maps based on
RS image classification techniques by taking advantage of the capabilities of supervised
machine learning methods (e, g., RF, SVM, ANN, and LR) [40–42].

Nowadays, thanks to the development of high-spatial- and spectral-resolution RS
technology, it has become feasible to extract more precise and comprehensive geospatial
information. In the same context, Youssef [43] generated predictive geo-disaster drivers
by integrating 15 m resolution satellite imagery and 10 m contour maps to obtain the
landslide susceptibility indices. Pachuau [44] identified the areas susceptible to landslide
occurrence with a variety of high spatial resolution satellite datasets, i.e., Quick Bird,
IRS, and Cartosat-I imagery. Arabameri et al. [45] used RS datasets with different spatial
resolutions to assess landslide susceptibility based on combined FR and RF approaches. In
their study, the sample data were collected from various resources, such as extensive field
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surveys, historical records, aerial photo interpretation, and high-spatial-resolution Google
Earth images.

The Liaojiaping Orefield, which is located in Hunan province, Central China, is an
important part of the gold (Au) and antimony-tungsten (Sb-W) polymetallic metallogenic
belt in the southern branch of the middle Xuefeng Arcuate Tectonic Belt (XATB). The main
deposits hosted in this orefield have been indiscriminately mined for decades. Coupled
with the complex geological and structural setting of the mining areas, this has led to
the frequent occurrence of different MGs such as landslip, collapse, land subsidence,
and fissure. It should be noted that these MGs directly restrict mine exploitation and
pose serious threats to human life and property. In the absence of systemic research on
susceptibility, these disasters are difficult to prevent. Accordingly, the main purpose of this
study is to perform a high-resolution MGM in Liaojiaping Orefield based on multi-source
high spatial resolution geo-environmental data using data-driven methods, taking the
main environmental factors that are associated with MG into account.

2. Study Area and Materials
2.1. Geological Setting

Liaojiaping Orefield, covering an area of 41.25 km2 and located in the central Hunan
province, China, is situated in the southern margin of the middle XATB, which is developed
between the Dongting Basin and the Gui-Xiang subsidence belt in the Yangtze Block and
consists of Northeastern Hunan fault-uprising belt and the Xuefeng thrust belt (Figure 1).
The approximately EW- and NE-striking faults and the secondary anticlines with the NE
direction axis in this tectonic setting form the basic structural framework of the orefield
(Figure 2). These multi-phase geological structures intricately crisscross and lead to the dip
and steep landform.

Figure 1. Location of the Hunan province in China (a), the study area in Hunan province (b) and the geological settings of
the Liaojiaping Orefield (c).
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Figure 2. Geological map of the Liaojiaping Orefield, showing the main stratigraphic units, faults, water body, and the 

main mining areas, including (a) Taiping–Tanchelun, (b) Babaoshan, (c) Xiaojiawan, (d) Niejialing, and (e) Tianshenghe. 
Figure 2. Geological map of the Liaojiaping Orefield, showing the main stratigraphic units, faults, water body, and the main
mining areas, including (a) Taiping–Tanchelun, (b) Babaoshan, (c) Xiaojiawan, (d) Niejialing, and (e) Tianshenghe.

The fine clastic rocks intercalated with carbonate rocks that were deposited in the
epicontinental rift basin environment from Lower Proterozoic to Upper Paleozoic Era and
the carbonate rocks intercalated with clastic rocks in the epicontinental basin environment
(later Paleozoic) form the stratigraphic assemblage of this region. The strata from Sinian
to Devonian are well exposed in this orefield, and the Quaternary sediments are mainly
deposited in the northwest corner (Figure 2 and Table 1). The outcrops of different strata
have been experiencing various degrees of weathering and splintering; for example, the
fine sandstone in the Upper Zhoujiaxi Formation of Lower Silurian presents a bead shape
as a result of an intense spheroidal weathering process.
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Table 1. Detailed stratigraphy of the Liaojiaping Orefield.

Epoch Lithological Unit Code Thickness and Lithological Composition

Quaternary No Q 1~3 m. Eluvium and alluvium: thin clay and clayey soil.

Upper Devonian Tianxin Formation D3t 180~400 m. Thin-bedded siltstone, silty shale.

Middle Devonian Tiaomajian Formation D2t
More than 660 m. Silty shale with siltstone interblended, thick
fine-grained quartzose sandstone intercalated with siltstone

and celadon shale.

Lower Silurian Zhoujiaxi Formation S1z
64~375 m. Medium-thick fine sandstone intercalated with thin

layered silty shale, carbonaceous fine sandstone with
interlayers of the siltstone.

Upper Ordovician Wufeng Formation O3w 5~28 m. Medium-bedded silty carbonaceous platy shale with
intercalated siliceous bands.

Middle Ordovician Modao Formation O2m 48~80 m. Carbon-bearing silicate with thin silty shale
interblended.

Lower Ordovician Baishuixi Formation O1b 150~520 m. Gray plate shale locally intercalated with
carbon-bearing mudstone and siliceous bands.

Upper Cambrian Miliangpo Formation Є3m 140~320 m. Crystal powder limestone intercalated with
siliceous bands.

Middle Cambrian Tanxi Formation Є2t 110-280 m. Gray banded marlstone and globular crystal
powder limestone.

Lower Cambrian Xiaoyanxi Formation Є1x 158~368 m. Carbonaceous mudstone intercalated with poor
coal seam and siliceous bands.

Upper Sinian Doushantuo
Formation Zbd 70~121 m. Thin-bedded carbon-bearing mudstone, biomicrite,

and silicate layered clearly.

Lower Sinian Nantuo Formation Zan 100~680 m. Moraine conglomerate, conglomerate, and
carbonate with the character of glaciomarine deposit.

2.2. Geological Disasters

This orefield has been mined on and off for more than half a century. Early unau-
thorized and later wasteful mining activities led to a series of environmental problems in
these mining areas, such as ground deformation, water, and soil pollution. The MG often
occurring next to each other cause serious damage to human life and property, although
the mining has been conducted in a more scientific and cautious way in the last decade.
For example, the landslide that occurred in July 2018 caused one death and two injuries
in one family in the Tianchelun mine of this orefield. This highlights the need for MGM
using multi-source environmental factors that are related to the geological setting and
mining activities.

It took several months to investigate the MG that occurred in Liaojiaping Orefield, and
the survey results showed that the landslide, collapse, land subsidence, and fissure errati-
cally took place in this orefield, especially in case of heavy rainfall. The main characteristic
of MG is that they usually occur at a different scale around mining and excavated areas.
The difference in lithology and physical environment leads to different degrees of outcrop
weathering, and in this circumstance, various MGs are triggered in these outcrop areas
by various types and scales of human activities. The MGs that occurred (e.g., Figure 3)
are mainly medium–small in size in the Liaojiaping Orefield. In this regard, the detached
mass of landslides in Figure 3a,b is less than 1000 m3, the biggest collapsed area (Figure 3c)
is no more than 500 m2, and other common collapsed areas (e.g., Figure 3d) are about
10 to 100 m2. Most of the collapsed blocks (e.g., Figure 3e) are only several m3, and the
ground fissures are normally tens of centimeters in width and several meters in length (e.g.,
Figure 3f). Some of these MG are interconnected in terms of occurrence; e.g., the ground
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fissures above the mining areas always occur before the subsidence, and the places often
affected by the collapse may concurrently produce landslides.

Figure 3. Mining-induced geo-disasters (MG) in the Liaojiaping Orefield, showing the different types
and scales, (a,b): landslide, (c,d): subsidence, (e): collapse, and (f): ground fissure.

2.3. Multi-Source Geo-Environmental Data

The occurrences of MG in the Liaojiaping Orefield are often related to different factors
including underground mining, geological structures, topographic features, near-surface
excavation, and rock weathering. In addition to these factors, the land cover information
and surface spectral characteristics can be also used for MGM. MG investigation, geological
survey, mineral exploration, and RS are vital and common techniques that can provide all
mentioned multi-source geo-environmental data necessary for MGM.

The dataset composed of the above factors is actually an integration of different
variable layers that are rasterized into the same grid size, and the sample set, an important
part of this grid dataset containing the target variable, is used for training the prediction
model and its validation. The determination of features (for the whole dataset) and the
target variable (for the sample set) plays an important role in the construction of the
prediction model, and these variables, which are used as predictive factors [46,47], need to
be explored by different methods, and their spatial autocorrelation must be reduced [48].

Three Au and two Sb-W deposits have been mined for more than 20 years in the
study area. The data supporting this study can be sourced accordingly: (1) the detailed
geological data acquired by continuous geological survey and exploration, i.e., the main
stratigraphic units and faults presented in the geological map of the study area (Figure 2);
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(2) the exploration data from mining activities, such as tunnels and stopes implemented in
the mining areas; (3) the topographic features such as aspect and slope values extracted
from the high-precision topographic map on the scale of 1:5000; (4) the minor structures
and the surface spectral characteristics (e.g., VIs) obtained and interpreted using high-
resolution RS imagery, in this case, Gao Fen-1 (GF-1) satellite, which was launched on
April 26, 2013 by CNSA (China National Space Administration) [49]. Two panchromatic
and multispectral sensors (PMS) and four wide field-of-view (WFV) sensors are aboard
the GF-1 satellite [50]. The present study took advantage of the PMS sensor data. The
specifications of GF-1/PMS are presented in Table 2.

Table 2. Imagery parameters of the GF-1/PMS [50].

Sensor Spectral Band Wavelength Range (µm) Spatial Resolution (m)

PMS

Panchromatic B–1 (PAN) 0.45–0.90 2

Multispectral

B–2 (Blue) 0.45–0.52

8
B–3 (Green) 0.52–0.59
B–4 (Red) 0.63–0.69
B–5 (NIR) 0.77–0.89

3. Methodology

The results of different statistic-based prediction models for MGM are quite differ-
ent [51–53]. For a certain algorithm, it may achieve good prediction accuracy/performance
in one case but perform poorly in another. The intrinsic structure of samples must be
the decisive factor that causes this situation. In the same context, Kalantar et al. [54] and
Qin et al. [37] have also pointed out that the determination of the sample dataset has a
direct effect on the model prediction accuracy. Accordingly, to increase the generalizability
of the predictive model, it is adequate to combine the classical and popular mathemat-
ical methods to construct a robust prediction model as long as the relevant dataset is
well prepared.

3.1. GF-1 Image Processing

Band ratio operation, multispectral transformation, and image filtering are important
techniques for image enhancement and extraction of spectral information of the ground
objects after preprocessing, including ortho-rectification, radiometric calibration, and
atmospheric correction [55]. For the GF-1 imagery, the spatial resolution of the multispectral
bands can be improved to 2 m by fusing them with the panchromatic band so that it can
meet the requirements of this study despite its low spectral resolution.

3.1.1. Band Ratio Operation

All kinds of VIs that can detect spatiotemporal patterns of vegetation can be used as
an important factor for land cover classification [32]. Kaufman and Tanré [56] proposed a
VI named soil-adjusted atmospherically resistant vegetation index (SARVI) based on the
soil-adjusted vegetation index (SAVI) [57], which can be written as Equation (1),

SARVI = (1 + L)
BNIR − (2× BRED − BBLUE)

BNIR + (2× BRED − BBLUE) + L
(1)

where L is a constant that is used to reduce the soil effect as much as possible, and it is
suggested to be set as 1; BNIR, BRED, and BBLUE are, respectively, the reflectance of the
near-infrared (NIR), red, and blue bands. SARVI is suitable for the strongly vegetated areas
from various satellite sensors, and it also can be employed for vegetation analysis based on
Gaofen-1/PMS data.
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3.1.2. Image Transformations

With the help of color-space conversions and principal component analysis (PCA),
the spectral information can be enforced while the noise is reduced to a certain extent.
Munsell HSV transformation, which converts a three-layer color space of red (R), green (G),
and blue (B), known as RGB, into another three-layer color space, including hue (H),
saturation (S), and value (V), known as HSV, facilitates the description and distinction
of the color features of soil and rock [58]. The theoretical model of the Munsell HSV
transformation is presented as follows:

H =



0 R = G = B

60×
(

G−B
max(R,G,B)−min(R,G,B) + 1

)
max(R, G, B) = R

60×
(

B−R
max(R,G,B)−min(R,G,B) + 3

)
max(R, G, B) = G

60×
(

R−G
max(R,G,B)−min(R,G,B) + 5

)
max(R, G, B) = B

(2)

S =

{
max(R,G,B)−min(R,G,B)

max(R,G,B) max(R, G, B) 6= 0
0 max(R, G, B) = 0

(3)

V = max(R, G, B) (4)

where R, G, and B are the reflectance values of the corresponding RGB combined band, H
is a range from 0 to 360, and S and V range from 0 to 1.

PCA, which is also known as the Karhunen–Loeve (K–L) transform [59], is used
to generate a new spectral space F from the original space X that consists of n samples
with p dimensions. The dimensions p of the space X can be reduced to m using a linear
transformation matrix A, which contains m multi-feature vectors. The first few principal
components of the new space F usually contain the vast majority of the spectral information.
This process can be described as Equation (5):

X =


x11
x21

...
xn1

x12
x22

...
xn2

. . .

. . .

. . .

. . .

x1p
x2p

...
xnp


F=AX−−−→ F =


F11
F21
...

Fn1

F12
F22
...

Fn2

. . .

. . .

. . .

. . .

F1m
F2m

...
Fnm

 (5)

3.1.3. Filtering

The purpose of image filtering is to highlight useful spatial information and depress
the noise of a single image using various filters [60]. Convolutions and morphology are two
common filtering methods. The convolution filtering intensity depends on the parameter-
setting transform kernels, and the morphology filtering is generally used for effectively
eliminating the noise in single bands.

3.2. RF-Based Classification Scheme and Prediction Model
3.2.1. RF Background

Developed by Breiman [61], RF is a type of ensemble learning algorithm and is
constructed by multiple decision trees. A decision tree is a typical supervised learning
approach that can be used to categorize or regress something based on the data we have [62].
Classification and regression trees (CART), which is an important dichotomy algorithm, are
used to generate binary decision trees [63]. Determining the optimal feature for splitting
and providing a condition to stop splitting are two critical processes of tree generation.
For the classification tree, the Gini coefficient (Gini) is used to measure the impurity of
the node splitting, and the feature with the minimum Gini can be used for splitting in the
generation of decision trees (Equations (6) and (7)). For the regression tree, the minimum
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squared error (MSE) is used for splitting in decision tree generation [63]. The Gini criterion
for node splitting is defined as:

Gini (t) = 1−∑[p(ck|t)]2 (6)

where p(ck|t) is the probability of the class ck in the node t for a decision tree. There are
two assemblies (DL and DR) corresponding to the left and right child nodes around the
parent node, and the Gini after splitting can be defined as Equation (7):

Gini(D, A) =
|DL|
|D| Gini(DL) +

|DR|
|D| Gini(DR) (7)

In general, two random processes, namely bootstrap aggregating (bagging) [64] and
stochastic subspace [65], are employed to construct RF. These two processes can help to
ensure the accuracy of every tree and effectively avoid its overfitting. More details on the
generation procedure of the RF are given in Qin et al. [37].

3.2.2. RF-Based Classifier

Each sample has only one single attribute class, both for the case of binary- and
multi-class classification, i.e., all the attribute classes of the sample set are separately and
exclusively present in one sample. For a sample set with n (1, 2 . . . , n) attribute classes, it
can be classified by n binary classifiers; every classifier has two classes, e.g., class 1 with
classes (2, 3 . . . , and n) or class 2 with classes (1, 3 . . . , and n). In this way, one classifier can
be learned for binary classification, while n classifiers will be learned for n-class problems
from every training set.

The training and validation datasets are randomly determined using the bagging
method from the sample dataset, and the ratio of these two sets is about 7 to 3 (i.e., 70%
for training and 30% for validation). The RF-based classifier that was constructed based
on multiple training sets will return a classification result based on the ratio of the votes
provided by all the tree classifiers. In other words, the final attribute class is decided by the
maximum of all the returned values (namely prediction probability) for every class.

The out-of-bag error (OBB error), F1 score, overall accuracy (OA), kappa coefficient
(KC), and area under the receiver operating characteristic (ROC) curve are obtained from
the generated confusion matrix based on the classification result and the validation dataset.
These statistics can be used to evaluate the performance of the constructed classification
and prediction model, and higher values indicate the higher prediction accuracy of the
corresponding model [37,66]. The RF classifier can provide the relative importance of
different features in the sample dataset, and this kind of importance value indicates their
contribution to the decision tree, and thus, the correlation of every feature with the attribute
class could be analyzed using other statistical methods.

3.3. Sample-Improved WofE Method

Weight of evidence (WofE), a multivariate statistical approach and fusion method
based on probabilistic uncertainty and Bayes theorem, was developed for spatial correlation
analysis and posterior probability prediction in mineral prospectivity mapping [67–69]. In
the WofE analysis, the samples D (e.g., the MG occurrence) are used as training points,
the geological factors that are related to the samples are used as evidential factors, and
these themes should be generated as the grid file with a given unit cell size. In the study
area T, the number of the grid cell is marked as N, and the prior probability of the sample
occurrence is defined by Equation (8).

P{D} = N(D)

N(T)
(8)
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According to the theorem, the conditional probability of the sample occurrence with
the appearance of evidential factor Bj (j = 1, 2 . . . , n) can be written as Equation (9):

P
{

D
∣∣Bj
}
=

P
{

D ∩ Bj
}

P
{

Bj
} (9)

The positive and negative weights of the sample occurrence are defined as Equation (10)
and Equation (11):

W+
j = ln

P
{

Bj
∣∣D}

P
{

Bj
∣∣D} (10)

W−j = ln
P
{

Bj
∣∣D}

P
{

Bj
∣∣D} (11)

where the positive W+
j and negative W−j indicates that the occurrence of sample D is

positively related to the evidence Bj; otherwise it has a negative correlation. In addition,
this degree of correlation can be measured with the contrast (C), in which a larger positive
C value means a greater positive correlation. For the evidence Bj, its Cj is calculated by
Equation (12):

Cj = W+
j −W−j (12)

In conventional WofE analysis, all the samples are abstracted as the training points
regardless of their spatial size. This process is able to reduce the number of sample
occurrences and directly affects the correlation based on probability analysis between
samples and evidential factors. Therefore, the areas of the sample occurrence are firstly
identified and then grided into the same cell size as other factors of the study area. In this
way, every sample area is converted into a certain number of training points for spatial
correlation analysis (Figure 4). In addition, this approach is also suitable for improving
samples to train machine-learning-based prediction models.

Figure 4. Improving the process of GM sample occurrence, (a) show the occurrence areas (vector),
(b) are their grid form (raster), and (c) are the training points converted from samples.

4. Results
4.1. Land Cover Mapping

The study area encompasses 10,312,500 grid cells with a size of 2 × 2 m. In this study,
RF classifier, as a non-parametric supervised machine learning algorithm, is employed for
land cover mapping. The ground truth samples were determined based on GF-1/PMS (the
year 2020) true-color image (TCI), composed of bands 3 (R), 2 (G), and 1 (B) (Table 2) based
on the field disaster and land cover survey. The ground truth samples were randomly
divided into two sets, i.e., training and validation sets, with a 7 to 3 ratio. Figure 5 shows
the different ground truth land cover classes in the training and validation sets. As shown
in Table 3, the training and validation sets occupy about 9.58% of the entire study area.
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Figure 5. Ground truth datasets for land cover mapping: (a) training set and (b) validation set.

Table 3. Ground truth sample composition for land cover mapping.

Classification
No. of Samples for Sample Proportion

Training Validation In Sample Set In Study Area

Tailing area 1258 545 0.183 0.017
Residential area 3252 1412 0.472 0.045

Farmland 22,904 9618 3.293 0.315
Road 2718 1164 0.393 0.038

Woodland 621,245 266,578 89.902 8.609
Water body 35,801 15,346 5.179 0.496
Bare land 4108 1594 0.577 0.055

Aiming for precise land classification, four kinds of factors were considered for gener-
ating the classification dataset (Figure 6): (1) the SARVI calculated by Equation (1) and the
vegetation and no-vegetation areas are distinguished in Figure 6a; (2) the first component
(PC-1) of the PCA using bands 1, 2, 3, and 4 includes 87.42% of the eigenvalue (Figure 6b);
(3) the HSV space image was generated by Munsell HSV transformation from the pseudo
color image (PCI) composed of bands 3 (R), 2 (G), and 1 (B), and it can facilitate identifying
soil and rocks as bare lands (Figure 6c); (4) the useless information of the TCI is depressed
by convolution filtering, which helps distinguish between the land cover classes in the
filtered image (Figure 6d).

The RF-based land cover classification model is constructed with the parameter of
168 trees and three randomly selected features within EnMap-Box [70]. The performance
parameters and variable importance can be calculated by applying the constructed model to
the validation set. Table 4 shows the obtained confusion matrix based on the classification
result and validation set. The number of correctly classified grid cells in each class is
displayed in bold on the diagonal matrix. The minimum F1 score calculated from this
matrix is 92.28%, pointing to the remarkable performance of the classification model. The
high OA of 99.69% and KC of 98.37% suggest that this RF-based model can be successfully
used for classification.
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Figure 6. Determined classification factors for land cover mapping: (a) SARVI, (b) PC-1, (c) HSV_PCI,
RGB color image from HSV space transformation (bands 4, 3, and 1), and (d) CF_TCI, RGB color
image from convolution filtering (bands 3, 2, and 1).

Table 4. Accuracy assessment of RF-based land cover classification model.

Class
Confusion Matrix (No. of Grid Cells) F1 Score

(%)Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Sum

Tailing
area 536 * 1 0 2 0 0 6 545 98.80

Residential
area 0 1333 1 14 0 4 60 1412 95.01

Farmland 0 7 9356 5 138 0 112 9618 96.33
Road 1 3 0 1131 0 0 29 1164 97.16

Woodland 0 22 439 0 266,110 1 6 266,578 99.89
Waters 0 7 0 0 0 15,339 0 15,346 99.96
Naked
land 3 21 10 12 0 0 1548 1594 92.28

Sum 540 1394 9806 1164 266,248 15,344 1761 296,257 -
* Diagonal number highlighted in bold indicates the correctly classified cells.

The raw variable importance can indicate its contribution to the generation of every
class. It can be seen that the filtering process on the TCI is most favorable for the identifi-
cation of different land covers, while SARVI comes second, and HSV transformation also
performs rather well (Figure 7).
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Figure 7. Contribution ranking of each classification factor to the RF-based classifier.

Finally, by applying the RF-based constructed model to the whole dataset, the classifi-
cation result of the seven-class land cover map is presented in Figure 8. In this study area,
the woodland has the highest proportion of up to 81.96%, farmland occupies 8.86%, and
the other classes range from 1.19% to 3.42%, except for the tailing area (0.07%). This result
is highly consistent with what has been observed in the recent field survey.

Figure 8. The obtained RF-based 2 m resolution land cover map of the study area using
GF-1/PMS imagery.

4.2. Mining-Induced Geo-Hazard Mapping (MGM)

The actual distribution of the MG occurrences, which is obtained by a large amount of
detailed fieldwork, is used as the positive samples, and the places with no MG occurrences
are determined as the negative samples. It is important to note that the negative samples
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should be evenly selected in every land cover class and approximately equal to the positive
samples. Here, 24,570 samples, containing 17,126 training samples and 7444 validation
samples, are used for training and testing the RF-based prediction model (Figure 9).

Figure 9. Spatial distribution of the acquired positive and negative samples in the training and
validation sets for construction of RF-based prediction model for MGM of the study area.

Under the guidance of experts and former field investigations, stratigraphic lithology,
geological structure, topographical features, road distribution, and rainfall rates are usually
used as the predictive factors for MGM. There is no need for information on rainfall
because the study area is only about 41 km2, with no variation in rainfall. In addition,
environmental factors related to mining activities should be considered as well as the
different spectral information of the surface features. Accordingly, the eight predictive
factor layers are determined as follows:

(1) Lithology: the lithology layer with twelve types of lithological information is gener-
ated from the geological map (Figure 2). Different lithology of the strata possesses different
physical structures, resulting in different degrees of weathering and fragmentation.

(2) Land cover map: based on GF-1/PMS data and RF classifier, a land cover map
was produced (Section 4.1), and this factor layer is shown in Figure 8.

(3) Structure: geological structure, especially the faults, has a strong relationship with
MG. As Figure 2 shows, the identified structures are only distributed around mining areas,
so the detailed structures of the whole study area need to be reinterpreted. Here, the
three-dimension (3D) terrain surface is modeled using triangulated irregular network (TIN)
and discrete smooth interpolation (DSI) within GOCAD platform based on a topographic
map of 1:2000 on scale. Simultaneously, the noise of the spatial-resolution-improved
multispectral bands (1, 2, 3, and 4) are depressed by morphological filtering, and the PC-1
of PCA that is carried out on the filtered result can be used to generate new PCI combining
with the other two original bands. Finally, the TCI and two PCIs (enhanced in ENVI) are
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displayed on a 3D terrain model within MICROMINE (Figure 10). In this way, the faults
are easily extracted from these 3D displays through visual interpretation with the help of
geologic recognition. The MG occurrences are associated with the distance to faults, and
thus, the buffer zones of faults are constructed using three buffer radii of 10, 20, and 30 m,
and the distance that is greater than 30 m is set to a value of 999 (Figure 11a) because this
distance interval does not affect the MG occurrence under normal circumstances in the
study area.

Figure 10. The 3D visualization of the terrain surface, showing the TCI (a) and two enhanced PCI
(b,c) from GF-1/PMS imagery.

(4) Elevation difference: underground excavation, e.g., tunnels, stopes, and blasting
area, will change the stability of strata in the mining areas, and this may lead to surface
deformation. The minimum height difference between the surface and the underground
mining sites is calculated from the field survey data (Figure 11b).

(5) Aspect and slope: these two property values from topographic features have been
proven to be useful for the assessment of MG [27,46,71]. Constructed 3D terrain model
can be transformed into a digital elevation model (DEM), and then the aspect and slope of
every grid cell can be calculated from the DEM in ArcGIS (Figure 11c,d).

(6) Difference netween the PC-1 and SARVI: as mentioned before, most information
of the multispectral bands can be presented in PC-1 using PCA. The SARVI is conducive to
distinguish vegetation greenness between different land cover classes, and their difference
from different years indicates the changes of the terrain surface. The GF-1/PMS data in
the same acquisition phase of 2015 and 2020, in which spatial resolution is improved to
2m with the panchromatic band, are used to calculate SARVI and PC-1, and the difference
between these two indexes is shown in Figure 11e,f.
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Figure 11. Predictive factor layers: (a) distance buffers of the structure, (b) difference in elevation
between underground excavation and surface, (c,d) aspect and slope, and (e,f) difference between
the PC-1 and SARVI.

The pixel-based values of every predictive factor layer with the samples layer were
extracted as the data vector from their respective raster layers, and then these vectors were
combined into a matrix, the dataset for training and prediction consisting of 10,312,500
rows and 9 columns in R. The RF-based prediction model was constructed using positive
and negative sample sets (Figure 9) in the data matrix with optimal parameters, i.e., 108
trees and three randomly selected features. Meanwhile, its out-of-bag error (OOB Error)
is 1.80%, which indicates a good classification performance. By applying the constructed
model to the validation set, 3696 negative samples out of 3796 were correctly classified
and 3705 positive samples out of 3722 were correctly predicted. Accordingly, the OA of
98.53% and KC of 97.06% were calculated. In addition, the acquired high AUC value of
0.998 suggests that this constructed model has high performance for MGM in this study.
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The constructed RF-based prediction model was applied back to the whole data matrix,
and every row returned a probability (P) value of classification, containing positive and
negative classes. The returned positive class can be considered as the prediction result of
MG occurrence probability or susceptibility. The whole dataset is ranked according to the
probability values from high to low, and the cumulative percentage of the predictive cells
and predicted sample cells can be calculated. Then, the prediction efficiency curve (PEC)
and prediction probability curve (PPC) can be plotted (Figure 12). Three thresholds of 1,
2, and 3 were determined on the PEC (Figure 12a), and their corresponding probability
values were 90.59%, 77.26%, and 50.20%, respectively (Figure 12b). According to these
three thresholds, the whole study area, relative to the occurrence of MG, was divided
into four susceptibility classes consisting of high, middle, low, and stable (Figure 13b and
Table 5). For the high-susceptibility areas, 2.82% of the total grid cells hold 85.60% of the
disaster samples. The stable areas occupy 79.79% of the study area, containing almost no
disaster sample.

Table 5. Zonation of the MGM.

Susceptibility
Class

Probability Interval
(P, %)

Proportion of
the Predictive

Data (%)

Proportion of
the Samples

(%)

Occurrence
Rate of the

Samples (%)

High P ≥ 90.59% 2.82 85.60 7.23
Middle 90.59% > P ≥ 77.26% 5.28 8.08 0.36

Low 77.26% > P ≥ 50.20% 12.11 6.07 0.12
Stable P < 50.20% 79.79 0.25 0

Figure 12. Analysis of capture-efficiency curve (a,b) prediction probability curve for zonation of the
MGM.

By qualitatively comparing the terrain surface feature (Figure 10a), land cover map
(Figure 8), and MGM (Figure 13), it can be seen that the probability distribution of the MG
occurrence is closely related to the places of human activities, such as road excavation,
residential area, and mining areas (Figure 13a). In particular, the high susceptibility areas
to MG are distributed near the surface excavation and mining areas (Figure 13b).
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Figure 13. The 3D display of the MGM, showing (a) the probability distribution and (b) zonation of
the MG susceptibility areas.

5. Discussion
5.1. Importance of the Feature Variable

Variable importance is regarded as the contribution to tree node splitting in the
generation of the RF-based prediction model, i.e., the contribution of the predictive factors
to sample occurrence. The mean decrease accuracy (MDA) and mean decrease Gini (MDG)
are two common measures for estimating the variable importance of the RF model. The
MDA rankings are more stable than those using MDG, although the higher value of these
two indexes indicates the greater contribution of the factor to model construction [72].
Based on the performed importance ranking (Figure 14), we know that the lithology of the
strata and the land cover map contributed to the occurrence of the MG more than the other
six factors. The faults and underground excavation have been regarded as the critical ones
for causing MG, but this result is contrary to our common sense. This highlights the need
to quantitatively analyze the correlation of every factor with MG.

Figure 14. Ranking of predictive factors’ contribution to RF-based prediction modeling.
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5.2. Correlation of the Predictive Factors with MG Occurrence

Every predictive factor was divided into different intervals with its property categories
(e.g., lithology of the strata, distance buffers of the faults, and the land cover map) or
property value (e.g., elevation difference between the terrain surface and the underground
excavation, SARVI difference, PC-1 difference, aspect, and slope). Then, the correlation
indexes of every interval with MG occurrence, including positive and negative weights
(W+ & W−) as well as the contrast (C), were calculated by the WofE method and presented
in Figure 15.

Figure 15. Calculated results of WofE, showing the different predictive factors: (a) lithology of the
strata, (b) distance buffers of the faults, (c) elevation difference between the underground excavations
and the surface, (d) SARVI difference, (e) PC-1 difference, (f) land cover, (g) aspect, and (h) slope.
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The factors such as lithology and land cover map that are defined for MGM are closely
related to MG occurrence (Figure 15). To be specific, in Figure 15a, the calculated W+

and C values of the Baishuixi Formation are positive and the highest, followed by the
Zhoujiaxi, Modao, and Wufeng Formation, illustrating that the stratum holding the shale
and sandstone with intercalated carbon-bearing mudstones is the main geological disaster-
bearing body. In Figure 15f, for bare land, farmland, residential area, road, and tailing area,
their calculated W+ and C values are all positive and greater than those for woodland and
waters, showing a clear correlation between human activities and MG occurrence.

In Figure 15b,c, the generated buffers of the faults and the elevation difference between
terrain surface and underground tunnels almost obtained greater W+ and C than extremum
areas. The buffer distance was more than 30 m, and the elevation difference was more than
360 m, suggesting that these two predictive factors are all in favor of MGM. The SARVI
difference in the intervals between 0.25 and 1 showed a close correlation between the
decreasing vegetation cover and MG occurrence (Figure 15d). In addition, a higher value
of PC-1 difference indicates the increasing probability of the MG occurrence (Figure 15e).
Figure 15g,h shows that the MG easily occurred in the surface areas with the features of
aspect from 210◦ to 240◦ and 270◦ to 300◦ and slope from 18◦ to 36◦. Comparative analysis
of the results with the later field investigation showed that the aspect and slope of these
areas are essentially in agreement with the spatial patterns of the strata outcrop. To sum
up, the determination of the eight predictive factors above is reasonable and necessary
for MGM.

5.3. MG Monitoring and Pre-Warning

The main purpose of MGM is to monitor and predict the occurrence of future MG,
and this work should be continuously focused on the predicted high-susceptibility areas.
In addition to monitoring the ground deformation and subsidence using professional
GPS equipment and technology, the following precursor information should be captured
by visual inspection for MG early-warning: (1) surface and underground excavation,
(2) storage or flow changes of water, (3) suddenly bent trees and new fissures or bulges
on the ground. Geologically, more attention should be paid to the spatial patterns of
stratigraphic formation, especially for places that are highly consistent with the natural or
side slope.

6. Conclusions

After more than half a century of mining activities in Liaojiaping Orefield, a series
of mining-induced geo-disasters (MG) have been reported. One of the most effective
strategies for managing and controlling MG in these mining areas is to identify and map
their susceptibility. For this purpose, Gaofen-1 high-resolution satellite images, along with
environmental factors identified through geological exploration and topographic survey,
were used for mining-induced geo-hazard mapping (MGM) in Liaojiaping Orefield for the
first time. RF classifier was used to model the relationship between environmental factors
and actual MG events during the MGM, as well as to produce a land cover map. The main
findings of this study are summarized as follows:

(1) Using Gaofen-1 high-resolution data, both RF-based binary and multi-class classi-
fiers achieved good performance in land cover mapping and MGM. Some land cover types,
e.g., tailing disposal sites, excavated sites, and MG, occupy a small land area. In such cases,
a supervised learning algorithm can be used in tandem with high-resolution data to extract
samples and detect ground targets.

(2) Based on variable importance analysis, the highest contribution to MGM is related
to lithology and land cover among the observed environmental factors, which usually
indicate the stability of geological bodies and should be employed to map the geo-disaster
susceptibility. In addition, we are able to understand the contribution of variables to the risk
modeling through importance analysis of variables; nevertheless, the quantitative analysis
of the correlation between the geo-environmental factors and MG based on geostatistical
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method will allow us to achieve a better understanding of their spatial correlation. In any
cases, it is necessary and reasonable to involve all the predictive factors for MGM.

(3) Any changes in land cover, e.g., emerging excavation works and direct vegetation
change or degradation, as well as rock bedding creeping in the high susceptibility areas
need to be paid high attention to and shall be defined for monitoring and early-warning
of MG.
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