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Abstract: Fine-scale sea ice conditions are key to our efforts to understand and model climate change.
We propose the first deep learning pipeline to extract fine-scale sea ice layers from high-resolution
satellite imagery (Worldview-3). Extracting sea ice from imagery is often challenging due to the
potentially complex texture from older ice floes (i.e., floating chunks of sea ice) and surrounding
slush ice, making ice floes less distinctive from the surrounding water. We propose a pipeline using
a U-Net variant with a Resnet encoder to retrieve ice floe pixel masks from very-high-resolution
multispectral satellite imagery. Even with a modest-sized hand-labeled training set and the most
basic hyperparameter choices, our CNN-based approach attains an out-of-sample F1 score of 0.698–a
nearly 60% improvement when compared to a watershed segmentation baseline. We then supplement
our training set with a much larger sample of images weak-labeled by a watershed segmentation
algorithm. To ensure watershed derived pack-ice masks were a good representation of the underlying
images, we created a synthetic version for each weak-labeled image, where areas outside the mask
are replaced by open water scenery. Adding our synthetic image dataset, obtained at minimal effort
when compared with hand-labeling, further improves the out-of-sample F1 score to 0.734. Finally,
we use an ensemble of four test metrics and evaluated after mosaicing outputs for entire scenes to
mimic production setting during model selection, reaching an out-of-sample F1 score of 0.753. Our
fully-automated pipeline is capable of detecting, monitoring, and segmenting ice floes at a very fine
level of detail, and provides a roadmap for other use-cases where partial results can be obtained with
threshold-based methods but a context-robust segmentation pipeline is desired.

Keywords: pack-ice; worldview 3; semantic segmentation; deep learning; remote sensing image
processing

1. Introduction

Antarctic sea ice is an exceptionally dynamic habitat that plays an important role in
climate feedback cycles [1,2] and controls either directly or indirectly the Southern Ocean
food web [3–5]. While coarse-grained maps of Antarctic sea ice have been available for
several decades [6,7], and have been critical to safe navigation [8,9], climate modelling [10]
and our understanding of sea ice-dependent predators [11], current sea ice products
are primarily derived from passive microwave sensors operating at 25 km resolution
and are therefore too coarse to resolve individual floes. Moreover, marine predators
such as penguins and seals interact with sea ice on an extremely localized basis, and
the characteristics of sea ice that might influence decisions about movement, foraging,
or reproduction occur at scales far smaller than the resolution of typical sea ice imagery
products [12–14]. Sub-meter resolution satellite imagery is now widely available for the
Antarctic and this provides an opportunity to start mapping sea ice conditions over large
spatial scales. The development and availability of fine-scale sea ice data products will
radically expand our capacity to create high-resolution sea ice charts for navigation, link
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observed fine scale sea ice conditions to climate models, and to understand the detailed
habitat requirements of sea ice dependent predators. Mapping fine-scale sea ice conditions
at scale, especially within the highly-heterogeneous pack-ice zone, will require automated
pipelines for sea ice segmentation.

Sea ice extraction is an active field in remote sensing. Typically, sea ice layers are
extracted from Synthetic Aperture Radar (SAR) and optical sensors of low to medium
resolution (e.g., MODIS, Sentinel-2, Landsat). Traditionally, sea ice was identified using
pixel-based methods that used only the information contained in the spectral profile
of each individual pixel to extract sea ice masks [15]. Other approaches explored the
contrast between sea ice and the surrounding water bodies and threshold (e.g., watershed
segmentation) or clustering based methods (e.g., k-means clustering) to extract sea ice
polygons [16–18], without the need of labeled datasets. More recently, machine learning
models were trained to identify and predict different sea ice types from predetermined sets
of sea ice polygons and expert-annotated class labels (e.g., [19–21]). Approaches using low
to medium resolution sensors bring the advantages of larger spatial and temporal coverage
and, in the case of passive microwave and other non-optical sensors, the capability to
extract useful information regardless of cloud cover and other factors that affect lighting.
Although such methods have provided invaluable information on traits such as average
sea ice cover, they are unfit to extract individual ice floes or fine-grained information on
sea ice conditions. In imagery from very-high-resolution sensors such as Worldview-3,
individual ice floes are several pixels large, and the classification and delineation of such
super-pixel features is highly challenging for pixel-based solutions. Moreover, the extra
detail adds a larger breadth of features that can hinder the performance of threshold based
methods. Fortunately, modern computer vision (CV) approaches exploiting deep learning
(DL) are well suited to exactly such problems.

The rise of GPU-accelerated DL, marked by the first Imagenet challenge won by a
Convolutional Neural Network (CNN) [22], has made DL affordable, brought the field
back as a hot research topic and ultimately lead several ground-breaking improvements
to the fields of CV and natural language processing (NLP). With the concomitant popu-
larization of high-resolution sensors, DL solutions have largely replaced methods such as
Support Vector Machines (SVM) and has already become a staple in some areas of remote
sensing [23]. In contrast to other works that use DL for classifying sea ice at medium
resolution (e.g., [20,21]) and segment out sea ice in ship-borne images [24,25], the goal of
the present work is extracting precise ice floe masks from high-resolution imagery. More
specifically, we are targeting ice floes only–a daunting task given the large number of
potentially confounding fine-scale structures (e.g., slush, melt ponds, etc.) that emerge at
very-high spatial resolutions. We do so by training a weakly-supervised CNN that learns
from a small set of hand-labeled sea ice masks and a much larger set of weak annotations
obtained with minimal effort using a watershed segmentation model. A fully automated
pack-ice extraction tool would provide invaluable data for Antarctic ecology given the
large number of ecosystem interactions mediated by sea ice.

2. Materials and Methods
2.1. Imagery and Data Annotation

Our datasets were extracted from a set of 43 multispectral Worldview-3 scenes (Table 1
and Figure 1) covering 730.05 km2 of coastal Antarctic scenery with an on-nadir resolution
of 1.24 m/pixel. We include three distinct types of annotation (Table 2): (1) pixel level sea
ice masks drawn by hand–our “hand-labeled” training set; (2) pixel level sea ice masks
extracted with watershed segmentation–our "watershed" training set; and (3) pixel level
sea ice masks extracted with watershed segmentation and adapted to synthetic sea ice
images–our “synthetic” training set. This multi-dataset design allows us to take advantage
of weak labels from watershed segmentation (watershed and synthetic training sets) during
training but still get validation and test metrics on a set of careful manual annotations.
Each scene consisted of the red, green and blue bands of the WV-3 multispectral image tiled



Remote Sens. 2021, 13, 3562 3 of 15

into 784 × 784 pixel patches with a 50% overlap between neighboring patches. We chose to
extract patches that are bigger than our input size to generate a larger breadth of training
images by leveraging random-crops within our data-augmentation pipeline (described in
the following section). Details on each method are supplied in the following sections.

Table 1. WorldView-3 imagery. We used a set of 43 multispectral WV-3 images to train, validate
and test our ice floe segmentation models. To reduce GPU memory footprint during training and
avoid further modifications to our CNN architectures, all imagery was converted from the native
8-band multispectral channels to three channel images by extracting the red, green and blue bands.
Due to lighting limitations inherent to the poles and to capture the reproductive seasons of Antarctic
megafauna, our imagery was acquired in a period ranging from November 20 to April 7 (summer-
early spring) in the years of 2014–2017. All the imagery used in the study is cloud-free. Repeated
consecutive catalog IDs indicate different scenes within the same strip.

Catalog ID Lat-Lon Cloud Cover Total Area Date

1040010005B62F00 −69.3327 158.4884 0.0 263.1 km2 20 November 2014
1040010013346700 −76.9427 166.8715 0.0 212.6 km2 26 November 2015
10400100156E6500 −63.1618 −54.9593 0.0 268.8 km2 01 January 2016
10400100156E6500 −63.8006 −54.959 0.0 202.7 km2 01 January 2016
10400100156E6500 −63.2718 −54.959 0.0 265.3 km2 01 January 2016
10400100156E6500 −63.599 −54.9589 0.0 259.3 km2 01 January 2016
1040010016234E00 −67.256 45.9485 0.0 266.5 km2 02 January 2016
1040010016234E00 −67.668 45.9477 0.0 172.8 km2 02 January 2016
1040010016234E00 −67.0437 45.9485 0.0 244.6 km2 02 January 2016
1040010016234E00 −67.1471 45.9486 0.0 265.0 km2 02 January 2016
1040010016234E00 −67.3652 45.9489 0.0 268.2 km2 02 January 2016
1040010016234E00 −67.4748 45.9489 0.0 269.9 km2 02 January 2016
1040010017265B00 −76.0 −26.6717 0.0 224.5 km2 07 January 2016
1040010017A12200 −67.4771 164.6313 0.0 168.7 km2 12 January 2016
10400100167EC800 −63.4564 −56.8695 0.0 282.7 km2 17 January 2016
10400100167EC800 −63.3475 −56.8686 0.0 281.0 km2 17 January 2016
10400100167EC800 −63.6757 −56.8695 0.0 287.3 km2 17 January 2016
10400100167EC800 −63.2385 −56.8685 0.0 279.2 km2 17 January 2016
10400100178F7100 −63.4235 −54.669 0.0 186.1 km2 21 January 2016
104001001762AC00 −66.2365 110.1896 0.0 191.1 km2 21 January 2016
10400100175A5600 −66.6168 −68.2485 0.0 122.0 km2 25 January 2016
10400100175A5600 −67.575 −68.25 0.0 269.3 km2 25 January 2016
104001001747E000 −64.2565 −56.6693 0.0 291.3 km2 26 January 2016
104001001777C600 −69.0697 76.7836 0.0 220.4 km2 28 January 2016
1040010018447F00 −67.6175 66.5771 0.0 296.5 km2 28 January 2016
104001001844A900 −66.5325 92.5386 0.0 208.0 km2 28 January 2016
1040010017764300 −74.7749 164.0267 0.0 225.3 km2 29 January 2016
1040010017823400 −72.3657 170.2705 0.0 207.9 km2 04 February 2016
1040010018694800 −72.0 170.5882 0.0 170.7 km2 04 February 2016
10400100196BE200 −65.4111 −64.3911 0.0 274.8 km2 25 February 2016
10400100196BE200 −65.4984 −64.3908 0.0 191.9 km2 25 February 2016
10400100181F9B00 −66.8013 50.5412 0.0 215.6 km2 27 February 2016
1040010018755100 −67.4705 61.0185 0.0 221.4 km2 05 March 2016
1040010018046800 −65.938 110.2305 0.0 207.7 km2 07 March 2016
1040010019529D00 −77.7016 −47.6769 0.0 183.9 km2 13 March 2016
1040010019417700 −76.1377 168.3823 0.0 243.9 km2 15 March 2016

104001001A625A00 −70.0097 −1.4187 0.0 163.3 km2 16 March 2016
104001001A8FF900 −67.3803 63.9762 0.0 237.1 km2 16 March 2016
104001001A27CC00 −64.5113 −57.4442 0.0 264.6 km2 23 March 2016
104001001B448400 −69.9403 8.3095 0.0 163.1 km2 25 March 2016
104001001A896700 −67.8698 69.7022 0.0 181.1 km2 30 March 2016
104001001A6C8C00 −70.5887 −60.5685 0.0 234.1 km2 07 April 2016
1040010028CD9C00 −73.2326 −126.7786 0.0 162.3 km2 25 January 2017
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Figure 1. Training set scenes. Dark squares denote the location of each of the 36 scenes in our training
set. Scene squares are marked with a light dot whenever we drew annotations by hand for that
specific scene. Imagery copyright Maxar, Inc., Westminster, CO, USA, 2021.

Table 2. Training datasets. Number of scenes and total area covered by positive (i.e., patches with
pack-ice) and negative (i.e., patches without pack-ice) patches within each of our datasets. Image
annotations consisted of binary pixel masks that denote whether a pixel in a patch represents pack-ice.
Number of scenes and areas covered by each of our training sets. Hand-labeled masks were drawn
over 3000 × 3000 m crops at strategic locations whereas watershed derived masks were extracted by
running a sliding window over scene regions marked by irregular polygons. Patches with watershed
derived masks are exclusively used during training, whereas patches with hand-labeled masks are
split equally between training, validation and test sets. Negative training patches were shared across
all three training sets. To avoid inflation in our validation metric scores, we set aside a distinct set of
negative images for validation.

Training Set Scenes Area + Area −

Hand-labeled [train] 19 20.8 km2 240.9 km2

Hand-labeled [valid] 18 20.2 km2 17.85 km2

Hand-labeled [test] 19 20.4 km2 16.8 km2

Watershed [train] 27 393.1 km2 240.9 km2

Synthetic [train] 27 393.1 km2 240.9 km2
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2.1.1. Hand-Labeled Training Set

We employed hand-labeled pixel masks as our main tool to provide out-of-sample
performance measurements to segmentation CNNs. Our hand labeled masks were created
by following steps: (1) extracting three RGB 3000 × 3000 pixel crops containing pack-ice
at random, but with no overlap, from 5 different scenes; (2) opening the crops in Adobe
Photoshop™ and creating a separate channel to store our sea ice mask; (3) using the magic
wand and color selection tools to remove darker regions containing open water from
our sea ice mask; and (4) manually filling holes created by darker areas inside floes. All
our manual annotations were performed by a single individual and included multiple
passes over the dataset to guarantee that annotations were as consistent as possible across
different scenes. Our crops and pixel masks were tiled using a sliding window approach
with a patch-size of 784 × 784 and 50% overlap between neighboring patches. We further
supplemented this dataset by adding hard-negative patches (i.e., without sea ice) at the
same proportion as the following two datasets. The final hand-labeled dataset is drawn
from 45 hand-labeled RGB crops split equally between training, validation and test sets.

2.1.2. Watershed Training Set

We used a watershed segmentation algorithm as an inexpensive strategy to generate a
large number of weak ground-truth masks from raw imagery with sea ice, as follows: (1)
create georeferenced annotation masks by hand-drawing contour polygons over areas with
pack-ice; (2) mask raw imagery and run a sliding window with a patch size of 784 and 50%
overlap between neighboring patches to extract input patches; (3) Create an annotation
mask for each patch by running watershed segmentation sequentially; (4) �draw contours
for objects in the watershed mask and remove objects that are deemed too small to be a
floe from the watershed mask (total area < 15 m2; (5) discard images where more than
15% of the total area has missing data or the watershed mask has a single contour (usually
a contrast aberration around corners). We added extra patches in an equivalent manner
using georeferenced polygons drawn in representative areas outside of pack-ice to serve as
hard-negatives. The final Watershed training set contains a total 6597 patches divided into
4085 pack-ice images and 2512 hard-negative patches.

2.1.3. Synthetic Image Training Set

We built upon the previous dataset by creating synthetic versions of the imagery where
the input image better matches its watershed mask as follows (Figure 2): (1) taking a patch
with pack-ice; (2) applying recursive watershed segmentation to the patch; (3) using the
output of watershed segmentation to mask out all portions of the patch that did not contain
sea ice; (4) pasting the resulting patch on top of an open water background patch to create
a realistic synthetic image; and (5) removing the areas of greatest overlap between masked
RGB channels from the segmentation mask to further individualize floes in the mask. The
final Synthetic dataset has the same number of patches as the original Watershed dataset.
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Figure 2. Synthetic image creation. Five examples of our synthetic image creation pipeline extracted
from our training set images. Our watershed segmentation algorithm in step 2 is applied sequentially
for a total of three times. We fill masked-out areas in step 3 with open water images sampled at
random. We find three channel overlaps in step 4 using an adaptive threshold. Refined masks in
step 5 are obtained by subtracting overlapping areas from step 4 from watershed masks in step 2.
Imagery copyright Maxar, Inc., Westminster, CO, USA, 2021.

2.2. Segmentation CNNs

We use a U-Net variant [26] with a ResNet34 encoder [27] as the down sampling branch
of our CNN architecture for segmentation (Figure 3), trained to create pixel-level binary
masks that represent which areas of a patch are covered by pack-ice. We make this small
modification to make our encoder branch more flexible because of the skip-connections
within ResNet convolution blocks and easily allow experimenting with fine-tuning from
a ResNet classifier. We used Dice coefficient as our validation metric for model selection.
We kept the best performing model for each training set for comparison against the hand-
labeled test dataset to get an out-of-sample measurement of model performance, boosted
by test-time-augmentation [28]. Finally, we took the best performing model according to
test F1 score and retrained it on all samples from the synthetic and hand-labeled dataset to
be used in production.
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Figure 3. CNN architecture. Our CNN architecture borrows from the U-Net architecture, with en-
coder and decoder branches connected by copy-and-concatenate operations, with the sole difference
that the base U-Net encoder is replaced with a ResNet34 encoder. ResNet blocks within the encoder
consist of a set of convolution operators intertwined by batch normalization and rectified linear unit
(ReLU) operations followed by a concatenation with the input features (i.e., skip-connection). After
running through ResNet blocks, features get down-sampled after each ResNet block with a strided
Average pooling layer, reducing the height and width of each channel by a factor of 2. We do not
provide numbers for height and width for input images and CNN blocks in the schematic because
input size is a dynamic parameter in our study design.

2.3. CNN Training and Validation

All our CNN training experiments were run on PyTorch v1.8.0 in Python [29], with
an Adam optimizer [30] and a schedule where the learning rate is reduced by factor of
10 whenever the validation F1 score fails to improve after three consecutive epochs and
training is interrupted after six epochs without improving validation F1. We searched for
optimal combinations of hyperparameters running over 1000 random search experiments
for input size (256, 384 and 512), loss function (see below), data augmentation (simple
vs. complex, see below) and learning rate (log scale, from 1 × 10−3 to 1 × 10−5), using
the greatest batch size allowed by GPU memory (200, 120 and 60 for input sizes 256, 384
and 512, respectively) and validation F1 score as the model selection metric. Our training
images are sampled with replacement to match a predefined ratio of negative to positive
images in training batches, which was also explored as a hyperparameter. To explore the
benefits of fine-tuning from a pre-trained model [31], we repeated our hyperparameter
search experiments initializing model parameter weights to either the weights from one
our best performing models according to validation metrics (picked at random from the
top 100 models) or a CNN trained on binary classification for the presence of pack-ice in
patches. Our experiments were run at the Bridges-2 NSF supercomputer on GPU nodes
with eight Nvidia V-100 GPUs, each with 32 GB of GPU memory. Model weights for our
best-performing segmentation models are available in our GitHub code repository. We
grouped our random search experiments with two options (i.e., data augmentation policy,
fine-tuning and test-time-augmentation), within 12 brackets defined by combinations of
input size and training set and treated them as independent replicates for statistical analyses.
More specifically, we extracted the best performing model within each of our 12 brackets
and tested whether the observed ratio of best performing models given parameter values
falls within the expectations of a binomial experiment with 12 trials and 50% probability
of success.

2.4. Testing

We tested our CNNs using a routine that mimics the functioning of our models in
production consisting of four steps: (1) use a sliding window approach to tile the input
image into patches with a 50% overlap between neighboring patches, where the size of
each patch matches the required input size of the CNN (i.e., 256, 384 or 512); (2) generate
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predictions for each patch by applying a sigmoid transformation and binary threshold to
the model output; and (3) create a mosaic of the predicted tiles and calculate metric scores
by comparing predictions with ground-truth masks. Each of our CNN models from train-
ing were tested with and without test-time-augmentation, using a temperature-sharpen
policy [32] to merge augmented predictions. To get robust out-of-sample performance
estimates, our model selection used a consensus of four different metrics: (1) mean F1
score averaged across test scenes; (2) mean IoU averaged across test scenes; (3) F1 score
across all pixels in the test set; and (4) average between the accuracy on background and
foreground pixels in the test set. For each candidate model, we ran this pipeline over a set
of 12 carefully labeled 3000 × 3000 m areas with pack-ice and seven 3000 × 3000 m areas
of Antarctic scenery without pack-ice.

2.5. Loss Functions

We experimented with a variety of loss functions that focus on different aspects of
the segmentation output, largely borrowing from a recent comprehensive survey on loss
functions for semantic segmentation CNNs [33]. Since the choice of loss function can have
dramatic, non-obvious impacts in model performance [33], we chose to start with a broad
set of candidate loss functions and use validation F1 scores during the hyperparameter
search to find the ideal candidate for our use case. We initially used two pixel-based
approaches, namely binary cross-entropy and Focal loss [34]. While the former represents
the simplest available loss function and is ideal for a baseline, the latter is often used for
imbalanced datasets, as it puts more weight into pixels that are harder to classify. We then
tested a number of region-based approaches that build upon the Dice coefficient [35] as
they tend to preserve the shape of superpixel structures better than pixel-based solutions.
In the context of semantic segmentation models, the Dice coefficient, a harmonic mean of
precision and recall, is turned into a loss function by subtracting the Dice coefficient for
a patch from 1, so that models can improve by minimizing it through gradient descent
optimization. Besides the original Dice Loss, we used three variants: (1) Log-Cosh Dice
loss [33], an attempt to improve the original Dice loss by smoothing out its loss function;
(2) Dice Perimeter loss [36], a variation of Dice loss that uses the difference in the total
perimeter of the predicted and ground truth masks as a regularization factor to the loss
function; and (3) a weighted mixture of Dice and Focal Loss. Whenever available, we used
native PyTorch implementations of our loss functions.

2.6. Data Augmentation

To add more breadth to our training sets, and consequently make make our model
more robust to changes in scale, rotation, illumination and position, we employed data
augmentation pipelines tailored for satellite imagery, taking full advantage of rotations and
random crops that would otherwise be unsuitable for non-aerial images. We use two data
augmentation strategies: (1) a simple approach with random-crops, vertical and horizontal
flips, random shifts in position, random re-scaling, random 90-degree rotations (i.e., 90,
180, or 270 degrees), and brightness and contrast shifts; and (2) a more complex approach
using the same transforms listed above plus noise reduction, RGB shifts, and random
distortion effects. Our data augmentation pipelines are applied continuously during
training and use transforms implementations from the Albumentations package [37]. The
exact specifications for each can be found in our GitHub code repository (accessed on 15
August 2012).

2.7. Model Baselines

We evaluated our sea ice extraction models using 4 baselines of increasing complexity:
(1) watershed: extract directly with watershed segmentation (identical implementation
from our watershed training set extraction); (2) basic U-Net: use the best performing U-Net
constrained to the simplest settings in our hyperparameter search (hand-labeled training
set, binary cross-entropy loss, simple augmentation pipeline, no model fine-tuning, no

http://github.com/bentocg/seaice_deeplearning
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test-time augmentation, validation F1 score as model selection); (3) U-Net best validation:
the best performing U-Net from the hyperparameter search according to validation F1
scores; and (4) U-Net best test: the best performing U-Net according to an ensemble of
4 different metrics measured after mosaicing model output. We obtained an out-of-sample
performance estimate for each baseline as described in Section 2.4.

3. Results
3.1. Model Performance

Our first baseline, applying watershed segmentation to input images, attains a 0.464
F1 score in the test set after output mosaicing (Table 3). The simplest possible CNN-based
model improves performance by >50%, reaching a test F1 score of 0.698. Adding more
complex features and the synthetic dataset to the hyperparameter search (Figure 4) model,
obtained by adopting a more elaborate model selection approach that mimics production
settings, provides another modest improvement in terms of test F1 score, reaching 0.753.

Table 3. Model performance. We show the F1 scores on validation and test sets of the best performing
model iteration across brackets input size and dataset as well as the number of random search
experiment runs within each bracket trained from randomly initialized parameter weights (i.e., from
scratch) or fine-tuning from a previous model, respectively. Validation F1 scores are obtained by
averaging out the F1 scores from individual patches in the validation set. Test F1 scores reported
are averages across the F1 score for all 19 test scenes obtained after output patches were merged
into a mosaic, more akin to production settings, with the standard error as a measurement of spread.
Test F1 scores from the same watershed segmentation approach we used to extract weakly-labeled
images are provided as a baseline for U-Net based models. Our watershed segmentation model is
implemented in Python using the numpy and OpenCV libraries and our U-Net CNN is implemented
in PyTorch by swapping the original U-Net down-sampling layer for a ResNet34 encoder.

Model Input Size Dataset F1 (Val) F1 (Test) N

U-Net 256 hand 0.842 0.727 ± 0.132 34, 12
U-Net 256 hand + synthetic 0.824 0.713 ± 0.87 36, 16
U-Net 256 hand + watershed 0.855 0.628 ± 0.174 34, 12
U-Net 256 synthetic 0.732 0.739 ± 0.126 42, 17

Watershed 256 - - 0.464 ± 0.139 -
U-Net 384 hand 0.736 0.747 ± 0.142 31, 16
U-Net 384 hand + synthetic 0.822 0.713 ± 0.162 41, 19
U-Net 384 hand + watershed 0.848 0.633 ± 0.180 33, 10
U-Net 384 synthetic 0.769 0.727 ± 0.135 46, 21

Watershed 384 - - 0.460 ± 0.141 -
U-Net 512 hand 0.776 0.733 ± 0.158 40, 13
U-Net 512 hand + synthetic 0.850 0.753 ± 0.113 32, 14
U-Net 512 hand + watershed 0.839 0.696 ± 0.176 39, 14
U-Net 512 synthetic 0.830 0.734 ± 0.133 37, 14

Watershed 512 - - 0.459 ± 0.136 -

3.2. Hyperparameter Search

Our hyperparameter search experiments (Figure 4) unanimously favored the use
of test-time-augmentation (ρ = 0.00024, best performance in 12 out of 12 brackets), and
showed a slight, non-significant support for the use of our simple data augmentation
pipeline over the complex one (ρ = 0.07299, best performance in 9 out of 12 brackets) and
training from scratch instead of fine-tuning (ρ = 0.07299, best performance in 9 out of
12 brackets). In general, F1 score differences between different parameter choices were
much smaller when fine-tuning from previous models.
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Figure 4. Hyperparameter tuning experiments. Validation F1 scores of 623 random search experiments across six different
hyperparameters. We test the influence of input size, training set choice, data augmentation routine, ratio of negative to
positive images within mini-batches, choice of loss function and learning rate on model performance, measured as the
F1 score in the validation set. Our training sets consist of combinations of a small set of hand-labeled images (“manual”),
a larger set of images annotated using a watershed segmentation algorithm (“watershed”) and a set of synthetic input
images created by modifying images from the previous set to be more consistent with their watershed-derived masks
(“synthetic”). For loss functions, we tested binary cross-entropy loss (BCE), Focal Loss, three variants of Dice loss, and a
weighted mixture of Dice and Focal losses. For each experiment, we split our runs between models trained from scratch and
models fine-tuned from a previous experiments, in which case initial parameter weights would be drawn from one of the
top 100 models trained from scratch, selected at random. All our fine-tuning experiments were trained with manual labels,
as the annotation masks within are closer to the output than we would wish during inference. The learning rate scatter plot
shows each experiment as a dot and trend lines for models trained from scratch (continuous line) and fine-tuned models
(dashed line).

3.3. Qualitative Model Output

Model predictions obtained with watershed segmentation produce several false-
positive and false-negative errors in scenes with pack-ice and produces an abundance of
false-positive errors in background scenes (Figure 5). Our most basic CNN model has a
greater recall than the previous baseline, at the cost of a lower precision in the third pack-ice
scene, and successfully discards some icebergs and rocks from the predicted mask. Though
it incurs substantially fewer false-positive errors than the previous baseline in background
scenes, it does generate artifacts around edges for those. The best model according to
validation metrics produces sharp prediction masks inside pack-ice scenes but largely fails
to discard icebergs and rocks from the predicted mask. Though this baseline achieves
a higher overall F1 score than the previous one, it largely fails to ignore background
imagery, incurring substantial false-positive errors at those. Our final model, picked by our
enhanced model selection scheme, has a lower recall but higher precision in pack-ice scenes
when compared to the previous baseline and consistently discards icebergs and rocks from
the predicted mask. Unlike the other three baselines, our final model generates little to no
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false-positives when predicting outside of pack-ice (7 out of 7 background scenes had less
than 0.5% false-positives).

Figure 5. Output visualization. Model output at test scenes from 4 different sea ice extraction models,
left to right: watershed segmentation, a basic U-Net, the best U-Net according to validation metrics,
and the best U-Net according to test metrics. Test scenes are 3000 × 3000 m WV03 multispectral
scenes from the Antarctic coastline tiled with a 50% overlap at the input size required by each model.
Scenes (a–c) were chosen to illustrate model performance when ice floes are present, whereas scenes
(d,e) illustrate the amount of false-positives generated by each model when predicting outside of
pack-ice. True positives, false-positives and false-negatives shown in transparent green, purple and
pink, respectively. Our final model generates few if any false-positive errors in land and fast-ice
imagery, consistently avoids rock formations and icebergs, does not create artifacts at tiles edges,
while capturing the majority of pack-ice within predicted masks. Imagery copyright Maxar, Inc.,
Westminster, CO, USA, 2021.
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4. Discussion
4.1. Model Out-of-Sample Performance

Even with a modest-sized hand-labeled training set, our CNN-based method largely
outperforms threshold based methods, represented here by a sequential watershed segmen-
tation algorithm, quantitatively (Table 3) and qualitatively (Figure 5). Even after running
a comprehensive hyperparameter search (Figure 4), experiments using direct outputs of
watershed segmentation as weak-labels (i.e., training set = hand + watershed) underper-
formed those with hand-labeled data only (Table 3). This result is expected if we take
into account situations where there is lighter and darker pack-ice within the same patch,
in which case the watershed algorithm will only retrieve the lighter-colored floes (e.g.,
Figure 2, patches 2 and 4), creating misleading annotation masks. Using our synthetic
image approach (Figure 2), however, adds valuable supervision to our semantic segmen-
tation CNNs, improving test F1 score by a considerable margin (Table 3), but incurring
more false-positive errors when predicting outside of pack-ice (Figure 5). With evaluation
metrics to further penalize poor performance in background scenes and provide a better
representation of true out-of-sample performance, we improved our test F1 score even
further (Table 3), reaching over 0.75 in our comprehensive hand-labeled test set. Besides
generating better prediction masks for ice floes, CNN based methods are particularly
advantageous because they are able to understand context, and thus produce considerably
fewer false-positives than threshold-based methods in at least three scenarios: (1) outside
of pack-ice (Figure 5d,e); (2) in coastal areas; and (3) when icebergs are abundant. As one of
our main goals was to evaluate CNNs as sea ice extraction tools, we did no post-processing
on the output. There are several post-processing steps developed to improve the output
from threshold-based or clustering-based methods that could also be beneficial if applied to
our CNN-based pipeline (e.g., [16,17]), especially with obtaining better ice floe boundaries
when floes are tied together [38].

4.2. Hyperparameter Search

Given the vast room for design choices with model architecture, loss functions, data
augmentation routines and training schedule and recent breakthroughs in GPU-accelerated
parallel computing, the hyperparameter search has become a key step in developing ML
pipelines and an active research field (e.g., [39,40]). To allow an adequate exploration of
design choices in a feasible time-frame, our hyperparameter search (Figure 4) focused
on experimenting with input size, data augmentation routines, choice of loss function,
choice of training set, ratio of negative to positive samples on training batches, and wether
to fine-tune from a previous model. Surprisingly, with a few exceptions such as the
underperforming LogCosh loss function [33] and the success of our mixture of Focal
loss and Dice loss, there were no significant effects from our design choices in terms of
validation F1 score (Figure 4, mid panel in the lower part of the figure). Some settings,
in particular data augmentation, would merit more experimentation, both in terms of
further exploring the transformations adopted in this study by experimenting with their
hyperparameters, and experimenting with novel transformations (e.g., [41,42]). Another
promising direction with further hyperparameter studies is testing larger input sizes, as
there seems to be an increasing trend in the median validation F1 score as we increase input
size (Figure 4, left panel in the upper part of the figure). We did not pursue that, however,
because that would drastically reduce the size of our training batches since increasing input
size has a quadratic effect on GPU memory usage. One design aspect that we did not touch
in the present work and is particularly of interest to DL-based remote sensing applications
is taking full advantage of multispectral bands. Apart from having a similar effect to GPU
memory utilization as adding larger input sizes, taking 8-band images as inputs to our
CNN model would require a series of modifications to the CNN architecture, making it
less preferable than other important design choices included in our hyperparameter search
when taking into account developer time allocation and computing resource utilization.
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4.3. Fine-Tuning Experiments

Fine-tuning a model from previous model weights [31] obtained from training with a
large, general purpose dataset like the Imagenet challenge dataset [22] has become a staple
when training computer vision CNNs. Such an approach is grounded on the generality of
low-level structures like edges and simple shapes across applications, and often focuses
on re-training only the last few layers in the CNN [43], which focus on more high-level
structures. Fine-tuning is especially useful when there is a scarcity of labeled data. Existing
model weights, however, are largely based on natural images from frontal angle, hindering
their usability aerial or satellite imagery based computer vision solutions, where the camera
is always at an approximately 90°angle and the scale at which objects are presented is
more or less fixed. Alternatively, fine-tuning for semantic segmentation models can be
achieved by using patch-level labels to train a classifier model and swapping the weights
from the original model backbone by the classifier parameter weights. Another approach
is to fine-tune from a model trained at a different input size, aiming to be more scale-
invariant. We experimented with both approaches, and failed to obtain any improvement
when fine-tuning from a classification model, while obtaining some sparse improvements
when fine-tuning from previous semantic segmentation models (best performing models
in 3 out of 12 of our hyperparameter brackets used fine-tuning from previous models).
Interestingly, the trend line for the effect of learning rate in validation F1 scores changes
sign for fine-tuning experiments (Figure 4), potentially meaning that high learning rates
could be breaking low-level feature representations from loaded model parameter weights.
Since we decreased our learning rate during training whenever validation performance
reached a plateau, results on the latter could have arisen by allowing the model to get out
of a local minima, similar to a warm-restart learning rate scheduling policy [44].

4.4. Conclusions

Though sea ice models at course resolution following the plastic continuum approach [45]
can generate sensible predictions of several key features (e.g., sea ice thickness, sea ice
cover) and will remain useful for climate modelling [46], their assumptions do not hold at
finer scale [47]. The added granularity provided by our solution allows a better treatment
of important phenomena such as the formation of fractures and leads that can substan-
tially alter the structure of sea ice as it allows more short-wavelength absorption by the
ocean [48]. Additionally, since tasked high-resolution satellite imagery (e.g., WV-3) can be
retrieved at specified locations within hours, our approach can enhance sea ice detection for
shipping and logistics with a broader range of action than ship-based camera approaches
(e.g., [24,25]). Because of its reliability outside of pack-ice areas (e.g., Figure 5), our pipeline
is capable not only of producing sharp ice floe segmentation masks but detecting the
presence of floes in very-high resolution imagery. Our fully automated, context-robust
approach allows us to leverage modern GPUs to monitor fine-scale sea ice conditions
at continental level. Finally, our semantic-segmentation approach could be expanded to
segment and classify different fine structures in Antarctic and Arctic landscape provided
we have plenty labeled images at a passable quality standard.
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