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Abstract: Fine knowledge of the spatiotemporal distribution of the population is fundamental in a
wide range of fields, including resource management, disaster response, public health, and urban
planning. The United Nations’ Sustainable Development Goals also require the accurate and timely
assessment of where people live to formulate, implement, and monitor sustainable development
policies. However, due to the lack of appropriate auxiliary datasets and effective methodological
frameworks, there are rarely continuous multi-temporal gridded population data over a long his-
torical period to aid in our understanding of the spatiotemporal evolution of the population. In
this study, we developed a framework integrating a ResNet-N deep learning architecture, consid-
ering neighborhood effects with a vast number of Landsat-5 images from Google Earth Engine for
population mapping, to overcome both the data and methodology obstacles associated with rapid
multi-temporal population mapping over a long historical period at a large scale. Using this proposed
framework in China, we mapped fine-scale multi-temporal gridded population data (1 km × 1 km)
of China for the 1985–2010 period with a 5-year interval. The produced multi-temporal population
data were validated with available census data and achieved comparable performance. By analyzing
the multi-temporal population grids, we revealed the spatiotemporal evolution of population distri-
bution from 1985 to 2010 in China with the characteristic of concentration of the population in big
cities and the contraction of small- and medium-sized cities. The framework proposed in this study
demonstrates the feasibility of mapping multi-temporal gridded population distribution at a large
scale over a long period in a timely and low-cost manner, which is particularly useful in low-income
and data-poor areas.

Keywords: population mapping; Landsat; deep learning; multi-temporal; ResNet-N; Google Earth
Engine; China; SDGs

1. Introduction

Understanding the spatiotemporal distribution of the population is fundamental in a
wide range of fields, including resource management [1,2], disaster response [3–6], public
health [7–9], and urban planning [10,11]. The United Nations’ Sustainable Development
Goals (SDGs) also require the accurate and timely assessment of where people live to
formulate, implement, and monitor sustainable development policies [12,13].

Census data released by an official body are authoritative and vital data about pop-
ulation distribution [14]. However, census data are based on administrative units; thus,
they have several inherent limitations and are ill-suited to many spatial studies. Firstly,
there is significant spatial heterogeneity in population distribution, which cannot be re-
flected by census data, which assumes a completely uniform distribution of the population
within census units [15]. Secondly, the size of administrative units varies significantly in
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urban and rural areas, which results in the Modifiable Areal Unit Problem [16]. Thirdly,
administrative boundaries may change over time and are seldom compatible with practical
applications, making census data challenging to integrate with other spatial data sets,
preventing interdisciplinary research and temporal dynamic analysis [17]. In order to
overcome the limitations of census data, fine-grained gridded population data, which are
spatially continuous, are produced to supplement census data [18,19].

Several approaches have been developed to produce fine-scale gridded population
data in the past few decades, such as areal weighting [20], spatial interpolation [21–23], and
dasymetric mapping [24–32]. Among them, dasymetric mapping technology [33], which
uses fine-scale auxiliary variables and specific weighting schemes to re-allocate census
counts to grid cells, is the most widely used and effective one [19]. Commonly adopted
ancillary data include land use/cover data [34–36], nighttime light data [26,37], terrain
data [38], and social sensing data (e.g., points-of-interest [39], mobile phone records [40],
and social media data [41]). Multiple methods, including empirical rules [15], statistical
models (e.g., linear regression [34] and geographically weighted regression [17]), and
machine learning models (e.g., random forest [42], expectation-maximization [43], and
neural network [44]), have been proposed to estimate the distribution weight of grid cells.
Various gridded population data at regional and global scales have been produced and
published using the methods mentioned above, including the Gridded Population of the
World (GPW) [45], Global Human Settlement Population layer (GHS-POP) [46], Global
Rural-Urban Mapping Project (GRUMP) [47], WorldPop [48], and LandScan [49].

The accuracy of gridded population data is determined by the quality of auxiliary
data [19]. Numerous previous studies focused on integrating novel auxiliary variables
related to population distribution to improve the quality of the produced population
grids [15,50,51]. The thematic, spatial, and temporal accuracy of auxiliary data themselves
is also crucial to the quality of the final gridded data [19]. For example, classification
error in land use/land cover data will be propagated to the produced gridded population
data. Furthermore, involving more auxiliary variables contributes more uncertainty to the
final result [34]. In order to produce multi-temporal gridded population data, temporally
explicit and consistent auxiliary data are essential, whose availability and sustainability
are questionable, especially at a large scale, precluding the production of continuous
multi-temporal data over a long historical period [34].

Remote sensing (RS) data (e.g., satellite imagery) that can capture the physical char-
acteristics of the ground at low cost, broad coverages, and high spatiotemporal resolu-
tion are becoming increasingly available with improvements in imaging technology over
time [36,52]. The physical characteristics of the ground and human activities interact
with each other. Human activities can lead to distinct spatial landscapes, which inversely
constrain how people live, produce, and travel, providing the possibility of consistent
and sustainable population estimation with RS imagery as auxiliary data without the
problems mentioned above [53]. However, the raw RS imagery is highly unstructured, and
its association with population count is complex and nonlinear, making it challenging to
construct a mapping from raw RS imagery to population count [54]. An emerging super-
vised deep learning approach, convolutional neural networks (CNN), which are capable of
extracting the hidden hierarchical structures of RS images [55], have shown outstanding
performance in obtaining knowledge from RS images in the domain of geography (e.g.,
land use classification [56], spatial interpolation [57], and poverty mapping [58]). Therefore,
it is possible that CNN can form a mapping from RS imagery to population count.

A few studies have tried to estimate population counts from RS imagery directly.
Doupe proposed the use of a VGG-like network to estimate population density in Tanza-
nian and Kenya from Landsat images and achieved remarkable performance and general-
izability [54]. Robinson regarded the population estimation task as a classification problem
and used a similar VGG-like network to classify RS image patches into 14 population den-
sity levels. They produced gridded population data for the United States in 2010, achieved
high performance, and qualitatively explained the predictions in terms of the input RS
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imagery [59]. Xing proposed a Neighbor-ResNet architecture by embedding the neighbor
knowledge into ResNet in order to estimate the volumes of human activity from Google
imagery in 18 cities in China [53]. The attempts mentioned above verify the feasibility
and superiority of integrating CNN and RS imagery for population mapping. However,
the established models have not been used to map historical population distributions and
understand their spatiotemporal evolution.

China is the world’s most populous developing country. Fine-scale population dis-
tribution data are crucial for China’s sustainable development [13]. Numerous gridded
population data of China, with various spatial resolutions, have been developed [25,39]. A
few studies have also used time-invariant and time-explicit auxiliary variables to produce
multi-temporal gridded population distribution data [17,30,60]. However, due to the lack
of appropriate auxiliary datasets and effective methodological frameworks, there are rarely
continuous multi-temporal gridded population data for China over a long historical period
to aid in our understanding of the spatiotemporal evolution of the population.

In this study, we developed a framework integrating a ResNet-N deep learning
architecture with the consideration of neighborhood effects with a vast number of Landsat-
5 images from Google Earth Engine (GEE) [61] for population mapping to overcome both
the data and methodology obstacles of rapid multi-temporal population mapping over a
long historical period at a large scale. Once the framework was constructed, we developed
multi-temporal gridded population data with a 1 km resolution for China (excluding
Taiwan, Hong Kong, and Macao) for the 1985–2010 period with a 5-year interval and
analyzed its spatiotemporal evolution.

2. Materials and Methods

This study aimed to develop a framework integrating a deep learning model with
Landsat-5 RS images from GEE to estimate population count. Once the framework is
established, large-scale population mapping can be achieved only with easily accessible
and regularly updatable RS imagery. Furthermore, we produce multi-temporal gridded
population data (1 km × 1 km) of China for the 1985–2010 period with a 5-year interval
and analyze the spatiotemporal evolution of the population distribution of China in this
period. The flowchart of this study is illustrated in Figure 1, containing three main parts:
(1) we collected ground-truth population count grid cells and corresponding Landsat-5
RS image patches as reference datasets for training, validating, and testing the developed
deep learning model; (2) a ResNet-N architecture considering neighborhood effects was
developed to establish the end-to-end mapping between population count and RS image
patches; (3) based on the trained model, we estimated the gridded population count of
China with corresponding Landsat-5 image patches from GEE as input from 1985 to 2010.
Furthermore, the produced raw estimations were adjusted by available census data to
acquire the final gridded population data. Finally, we validated the produced datasets and
analyzed the spatiotemporal evolution of China’s population distribution.
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Figure 1. The flowchart of the proposed framework for mapping population distribution of China by integrating the
ResNet-N model and Landsat-5 images from GEE.

2.1. Data Sources and Preprocessing
2.1.1. Ground-Truth Population Grid

In order to establish an end-to-end mapping between Landsat-5 RS image patches
and population count by deep learning architecture, it is necessary to collect ground-truth
population grid cells as training samples. However, the ground-truth population grid does
not exist [19]. In this study, an alternative method (Figure 2) was utilized to collect the
closest ground-truth population grid samples with a resolution of 1 km.
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Figure 2. The flowchart of collecting the closest ground-truth population grid cell samples with a resolution of 1 km.

We obtained China’s 2010 population census data at the town level (level 4 adminis-
trative unit), the finest-scale census data publicly available, from China’s Sixth National
Population Census. Towns are the fundamental administrative units in China, with rel-
atively small jurisdiction areas, 58% of which are less than 100 km2, so that the spatial
heterogeneity of population distribution is tiny within towns. However, it is not adequate
to use the average population density of towns as references due to heterogeneity within
towns [62]. We obtained the WorldPop gridded population data [48] with a resolution
of 1 km for China in 2010 to remedy this problem. The WorldPop data are produced by
coupling a random forest algorithm with various auxiliary data to disaggregate county-
level (level 3 administrative units) census data, recognized as some of the finest gridded
population data to date [5]. In this study, we used WorldPop data in 2010 as a weighting
layer to redistribute the total population count of each town to grid cells to account for the
spatial heterogeneity within towns in part. Numerous towns are small in area. Therefore,
this modified population map represents the closest ground-truth population grid that is
available to use as training data. Finally, we sampled 100,000 grid cells from the ground-
truth population grid weighted by the quality of grid cells to tradeoff the reliability and
representativeness of the samples. The administrative areas of towns act as a data quality
metric of grid cells [19]. Let areak represent the area of the kth town; then, the weight of
selecting a grid cell inside the kth town is given as 1

areak . We discarded the grid cells with
a population count of less than 10. It is unnecessary and intractable to distinguish the
subtle change in population count via RS images in a 1 km2 area [59]. The distribution of
ground-truth population samples is heavily tailed, with kurtosis of 1312.41 and skewness
of 26.31. To balance the dataset and ease the training of the deep learning model, the
population count was logarithmized [53]. The collected samples were randomly divided
into three groups: training (70%), validation (10%), and testing (20%). Figure 3 presents the
spatial distribution of the collected population samples.
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Figure 3. The spatial distribution of the ground-truth population samples.

2.1.2. Landsat-5 RS Imagery

This study used RS images from Landsat-5 collected by the Thematic Mapper (TM)
sensor, covering the 1985–2010 period [52]. The full Landsat-5 L1T-level surface reflectance
archive [63] covering China with a cloud score of less than 60 was preprocessed and
downloaded effortlessly from GEE, a cloud-based platform for processing petabyte-scale
geospatial datasets [61]. The L1T-level products have undergone geometric, radiation, and
atmospheric corrections and are ready for use [64,65]. After masking clouds and shadows
using Landsat quality flag information [66], a composite for a given year was produced
in the form of a median mosaic of all available Landsat scenes. To address the shortage
of cloud-free images, we included the Landsat scenes of the year before and the year
after the target year in the composite. By referring to previous research, six bands were
retrieved, i.e., Band 1 (blue), Band 2 (green), Band 3 (red), Band 4 (near-infrared), Band 5
(shortwave infrared 1), and Band 7 (shortwave infrared 2), all with a spatial resolution of
30 m [65]. Figure 4 presents the cloud-free Landsat composites with standard false-color
band combination from 1985 to 2010. Due to the shortage of cloud-less images, there are
missing data in western areas of China in some target years. As these areas are usually
sparsely populated with slight variation, we used the valid data in the nearest adjacent
year to supplement these areas.

Previous studies have revealed that the detailed characteristics of various landscapes
can be well reflected by these 6 visible and invisible bands [54]. Figure 5 presents the
probability density distribution of population count in the ground-truth samples and
the example RS image patches that correspond to various population counts. Obviously,
different magnitudes of population count correspond to distinct landscape characteristics
in the RS image patches. The interplay between population count and RS images indicates
the potential of estimating population count based only on RS images from Landsat-5 via a
deep learning architecture.
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Figure 4. Cloud-free Landsat-5 composites of China from 1985 to 2010.

Figure 5. Probability density distribution of population count in the ground-truth samples and example RS image patches
that correspond to various population counts.
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2.2. Methods
2.2.1. Building a Mapping from RS Image Patches to Population Counts via ResNet-N
Model

In this study, we view the gridded population estimation task as a regression problem.
The method framework is shown in Figure 6. Given an image patch θi of the grid cell i
and the corresponding logarithmized population count pi, we express our learning task as
building a mapping function:

pi = f (θi) (1)

where f (·) is the mapping function to be learned by deep learning models. Acknowledging
the highly nonlinear and complex relationship between RS images and population count,
a ResNet (specifically, ResNet-50 was adopted) model considering neighborhood effects
(ResNet-N) was utilized to approximate such a complex mapping relationship [53]. The
ResNet model is one of the state-of-the-art CNN architectures and has been widely adopted
to mine geographical knowledge from RS images [55,56]. The fundamental building block
of Resnet-50 is the bottleneck, a convolution layer with an identity shortcut connection,
which solves the problem of gradient vanishing [55]. As shown in Figure 6, ResNet-50
contains 7 layers (groups). Conv1 is a plain convolution layer with 64 convolution kernels
of size 3 × 3, which slide on the RS image to extract hidden features and output 64 feature
maps. Conv2 contains 3 bottleneck blocks, each with 128 convolution kernels of size
3 × 3, which slide on the feature maps generated by Conv1 to extract higher-level features.
Likewise, Conv3 contains 4 bottleneck blocks, each with 512 convolution kernels; Conv4
contains 6 bottleneck blocks, each with 1024 convolution kernels, and Conv5 contains
3 bottleneck blocks, each with 2048 convolution kernels. In the network, deeper layers
excavate more abstract and informative features related to the task from previous feature
maps. Between each convolution layer (or bottleneck block), the feature map is reduced
by half to aggregate information. Finally, the average pooling layer squeezes the feature
map to 1 dimension, which is inputted into the fully connected layer (fc) to regress the
population count. The ReLU activation function and batch normalization are used in all
convolution layers to facilitate the training of networks [67]. Figure A1 illustrates how
the input RS image evolves to the output population count in the network. Because of
the autocorrelation of population distribution, the center grid cell population count may
be affected by landscapes in the neighborhood. Hence, we constructed extended image
patches by extending the center image patch to include its 3 × 3 neighboring patches to
embed neighborhood knowledge [53,68]. Hence, the layer-wise convolutional operations
of the ResNet model can extract interior and neighborhood and integrate latent features for
population estimation when sliding on the extended image patches. In order to regress the
population count directly, the softmax activation function in the final fully connected layer
was removed. We used the log-cosh function for back-propagation training:

Loss( p̂, p) =
s

∑
i=1

log10(cos h( p̂i − pi)) (2)

where Loss( p̂, p) is the log-cosh loss function, pi is the ground-truth population count of
grid cell i, p̂i is the estimated population count of grid cell i, and cos h(·) is the hyper-
bolic cosine function [68]. The log-cosh loss is similar to the L1 loss, commonly used in
regression problems, but is more tolerant of anomalous estimations and achieves better
performance [68]. Hyperparameters were tuned empirically based on 1/10 of the available
samples. A stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a
learning rate of 10−4 was used for weight updating. The batch size and the maximum
number of epochs were set to 32 and 1000, respectively. The framework was implemented
using the Tensorflow 2.0 library on a Linux server with a 2.50 GHz Intel Xeon E5-2680 CPU,
an NVIDIA GTX 2080Ti GPU, and 128GB RAM.
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Figure 6. An end-to-end ResNet-N model to estimate population count from RS images by embedding the neighbor
knowledge into ResNet.

2.2.2. Mapping Multi-Temporal Population Distributions in China via ResNet-N Model
and Landsat-5 RS Images

This study aims to produce multi-temporal gridded population maps with 1 km spatial
resolution for China via establishing a framework integrating a deep learning model with
Landsat-5 RS images from GEE. Our research area, mainland China, is covered by a grid of
7346× 4507 consisting of 1 km× 1 km cells. We excluded grid cells with a population count
of <10 in the ground-truth population grid in 2010, which can be regarded as uninhabited
areas, to reduce the computational burden, resulting in 5,508,904 grid cells being retained.
A 1 km × 1 km cell in the population grid approximately covers a 34 × 34 image patch
with a spatial resolution of 30 m on Landsat-5 composites. To consider the contribution of
neighborhood effects on population count, we constructed extended image patches with
a width and height of 102, including the center patch and its 3 × 3 neighboring patches.
The extended image patch was then resized to a fixed size of 129 × 129 for inputting into
the deep learning model. We obtained a centroid for each cell in the population grid
and extracted a 102 × 102 image patch center around the obtained centroid from the
Landsat-5 composites for each target year from 1985 to 2010. A total of 33,053,424 RS
image patches were extracted and normalized to 0–1. Among them, the image patches
that corresponded to the 2010 ground-truth population samples were utilized for training,
evaluating, and testing the deep learning model. Once the model was trained, all RS image
patches were inputted into the model to measure the population count of each position of
each target year.

2.2.3. Modifying Raw Population Estimation via Census Data

Ensuring that the aggregated grid population counts at census units match the known
official total population count is necessary. The dasymetric mapping method is used to
achieve this goal. For a census unit s with a known official total population count ps, the
following equations are used to modify the raw population estimations:

wi =
pr

i
∑i∈S pr

i
(3)

pm
i = pS × wi (4)

where pr
i is the raw population count of cell i estimated by the deep learning model, wi

is the distribution weight of cell i, and pm
i represents the modified population count of

cell i. In 2010, we used county-scale census data from the National Bureau of Statistics of
China to modify the estimation. Due to data limitations, we used the city-scale (level 2
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administrative unit) total population count from WorldPop generated using the dasymetric
method based on county-scale census data to modify estimations for 2005 and 2000 [48].
For 1995 and 1990, we used the city-scale total population count from GPWv3 produced
by the areal weighting method based on official census data at the county scale to modify
the estimations [45]. For 1985, due to the unavailability of census data, a single country-
wide population count from the World Bank Database was used for modification. The
data source and administrative unit level of the census data or total population count are
summarized in Table A1.

2.2.4. Accuracy Assessment

We used six quantitative metrics to assess the performance of the proposed population
mapping framework and the produced multi-temporal gridded population data, including
Pearson’s correlation coefficient (R), the coefficient of determination (R2), mean absolute
error (MAE), percentage mean absolute error (%MAE), root mean squared error (RMSE),
and percentage root mean squared error (%RMSE):

R = ∑n
i=1

(pi,o − po)(pi,s − ps)√
∑n

i=1(pi,o − po)
2
√

∑n
i=1(pi,s − ps)

2
(5)

R2 =
n ∑n

i=1 pi,o pi,s −∑n
i=1 pi,o ∑n

i=1 pi,s√
n ∑n

i=1 pi,o
2 − (∑n

i=1 pi,o)
2
√

n ∑n
i=1 pi,s

2 − (∑n
i=1 pi,s)

2
(6)

MAE =
1
n ∑n

i=1|pi,o − pi,s| (7)

%MAE =
1
n ∑n

i=1
|pi,o − pi,s|

pi,o
(8)

RMSE =

√
1
n ∑n

i=1(pi,o − pi,s)
2 (9)

%RMSE =

√
1
n ∑n

i=1(pi,o − pi,s)
2

po
(10)

where pi,o is the ground-truth population count of the ith sample, pi,s denotes the esti-
mated population count of the ith sample, n represents the total number of samples, po
is the average of the ground-truth population count, and ps is the average of the esti-
mated population count. The indicator R, ranging from −1 to 1, measures the linear
correlation between actual values and estimated values to evaluate the relative magnitude
fitting performance [62]. The indicator R2, with a value from -infinity to 1, measures how
much variance in actual values is captured by the predicted values, assessing the absolute
magnitude fitting performance [53]. R and R2 evaluate the explainability of estimated
values to actual values. MAE designates the average absolute error between actual values
and estimated values. In order to highlight large errors, absolute errors are squared in
RMSE. Since MAE and RMSE are not as understandable, the percentage errors (%MAE and
%RMSE) assessing the proportion of the error to the actual value are also presented [54].
These 4 error metrics evaluate the absolute and percentage estimation error together. The
mentioned 6 metrics complement each other and provide a comprehensive assessment of
the proposed framework and the produced data [69].

3. Results
3.1. Accuracy Assessment of ResNet-N Model for Population Estimation

In this study, a ResNet-N model with neighbor augmentation was utilized to estab-
lish the end-to-end mapping between Landsat-5 RS image patches and population count.
The model’s performance of directly estimating the population count from RS images
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was evaluated by the collected 20,000 testing samples. Figure 7 shows the scatterplots of
ground-truth population count (p) and estimated population count (p̂) with their proba-
bility density distributions. As shown in Figure 7, the scatterplots of p and p̂ present a
clustered distribution pattern along the 1:1 reference line, validating that the deep learning
architectures can effectively establish the mapping from RS image patches to population
count. The probability density distributions of p and p̂ exhibit similar shapes and also
confirm this conclusion. Compared to the ResNet model without neighbor augmentation,
the ResNet-N model with neighbor augmentation used in this study displays superior
performance in terms of the six evaluation metrics. ResNet-N (R = 0.84, R2 = 0.70) exhibits
higher explainability of landscape characteristics extracted from the RS images on popu-
lation count compared to ResNet (R = 0.70, R2 = 0.56). The R2 indicates that 70% of the
variance population count can be explained by the ResNet-N, compared to 56% by the
ResNet. ResNet-N (%MAE = 13.63%, %RMSE = 15.91%) also has higher absolute accuracy
than ResNet (%MAE = 16.06%,%RMSE = 19.35%). The %RMSE of ResNet -N is lower than
that of ResNet by 21.62% and %MAE by 17.93%. The comparatively low %RMSE and
%MSE of both models reveal the capacity of the deep learning model to capture the hetero-
geneity in population distribution from RS images, and improved estimation performance
can be achieved considering neighbor effects.

Figure 7. Scatterplots and probability density distributions of ground-truth population count and estimated population
count from ResNet-N and ResNet.

For true population count (p) and estimated population count (p̂), an investigation
of the relationship between p and p̂ − p was conducted to explore the systematic bias
of estimating population count from RS images via deep learning technologies. Figure 8
shows the scatterplots of p and p̂ − p from ResNet-N and ResNet. The results reveal
that both models tend to underestimate densely populated samples and overestimate
sparsely populated samples, evidenced by the significant negative correlation coefficient
and the negative slope. The observed bias can be ascribed to the inherent limitations of
multispectral RS images, which cannot identify the social–economic factors that affect
population distribution (i.e., the high utilization efficiency of space in densely populated
areas). However, consideration of neighbor effects leads to reduced biases and better
estimation performance [53].
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Figure 8. Scatterplots of test samples between p and p̂ − p from ResNet-N and ResNet. (p: true population count;
p̂: estimated population count).

Interpretability is a critical aspect of a model [53,59]. A model with good interpretabil-
ity usually has good performance. In this study, the ResNet-N model considers only RS
images as input to estimate population count. Therefore, all estimations can be explained in
terms of the landscape details from RS images. We used gradient-weighted class activation
mapping (Grad-CAM), a visual explanation technology for deep learning models, to figure
out what features our model learns to estimate population count [70]. Grad-CAM can
output a heatmap for an RS image patch. The heat value quantifies the relative contribution
of input pixels in the original patch to the estimated population count [70]. For analysis,
we selected 12 typical grid cells with different magnitudes of population count. Figure 9
presents the RS image patches in the top rows and corresponding heatmaps in the bottom
rows. As shown in Figure 9a, built-up areas are highlighted in heatmaps when they border
natural areas. The explanation for this is that built-up areas are usually more densely pop-
ulated than natural areas. Figure 9b proves the ability of our model to recognize different
buildings by capturing hidden hierarchic features of RS images in the interior of the built-
up area to estimate population count. As densely populated buildings (i.e., residential) and
sparsely populated buildings (i.e., factories) are staggered in the built-up area, distinguish
different buildings contributes to accurate population estimation. The heatmaps offer
insights into how human activities interact with the underpinning physical environment
and prove that our model can learn valuable features for population estimation.



Remote Sens. 2021, 13, 3533 13 of 25

Figure 9. RS image patches (top row) and corresponding heatmaps (bottom row) produced by Grad-CAM in 12 typical
grid cells. (a) Built-up areas border natural areas; (b) Interiors of built-up areas.

3.2. Validating Multi-Temporal Gridded Population Data via Census Data

A stable end-to-end mapping from RS image patches to population count was estab-
lished by the ResNet-N model. It is promising that population distribution mapping can
be achieved with only the formed mapping and RS images. However, it is necessary to
ensure that the aggregated grid population counts at census units match the known official
total population count. Furthermore, the grid cell estimation will be more accurate when
scaled to match the true population value [59]. We used county-level census data to modify
the raw population count estimated from RS images by the model in 2010. Validation
of the modified population map was conducted using town-level census data. It is a
common practice in dasymetric mapping to use census data of a finer scale to evaluate the
accuracy of the produced gridded population data [39]. Two well-known gridded popula-
tion datasets, WorldPop [48] and GPWv4 [45], were selected as baselines to highlight the
performance of the produced data. We collected towns with a population of >100 to assess
the comparative performance of the produced gridded data. As shown in Table 1, our new
population map produced by coupling RS images and deep learning technologies (referred
to as RSPop) achieved the best performance, with the lowest absolute and relative errors
and the highest explainability and correlation with the true population count. Figure 10
presents scatterplots of the true population count and estimated population count of each
town from RSPop, WorldPop, and GPWv4. Compared to other gridded population data,
the scatterplot of RSPop presents a more concentrated distribution pattern along the 1:1
reference line, with the highest accuracy. In contrast, points are scattered and distributed
away from the 1:1 reference line in GPWv4, which has the lowest accuracy.
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Table 1. Accuracy assessment of RSPop at town scale comparing WorldPop and GPWv4.

RSPop WorldPop GPWv4

R 0.89 0.87 0.82
R2 0.77 0.69 0.61

MAE 7846.62 8138.20 9463.33
%MAE 46.21 51.19 62.48
RMSE 15,686.74 18,277.52 20,448.11

%RMSE 56.03 65.28 73.03

Figure 10. Scatterplots of the true population count and estimated population count from RSPop, WorldPop, and GPWv4 at
town scale.

The gridded population data in 2010 produced by the proposed framework were
validated and achieved the highest performance compared to other datasets. Due to the
consistency of Landsat-5 images and the relative stability of human activity patterns, it
can be expected that accurate gridded population data from 1985 to 2005 can be produced
by the same framework, using corresponding RS images at target years as input. For the
period of 1990–2005, because town-scale census data are challenging to collect, we used the
city-scale total population count to modify the estimated population count and applied
the county-scale total population count to verify the accuracy of the data. Total population
counts at city scale and county scale in 2000 and 2005 were obtained from WorldPop, while
total population counts at city scale and county scale for 1990 and 1995 were obtained
from GPWv3. Both WorldPop and GPWv3 were produced based on county-scale census
data [45,48]. Therefore, it would be impractical to use them for comparative analysis.
Instead, as the accuracy of the gridded population data in 2010 has been verified, the
population estimation in 2010 modified by city-scale census data was used for comparison
at the county scale. As shown in Table 2, overall performance reductions exist for each
target year in 1990–2005 compared to 2010. For example, the R2 is reduced from 0.93 in
2010 to 0.91 in 2005, 0.88 in 2000, 0.73 in 1995, and 0.74 in 1990, with an average reduction of
12.37%. Figure 11 shows scatterplots of the true population count and estimated population
count at the county level, which present clustered patterns along the 1:1 reference line.
These results imply that the model trained in 2010 is generalizable to other years.

Table 2. Accuracy assessment of RSPop at county scale from 1990 to 2010.

1990 1995 2000 2005 2010

R 0.86 0.86 0.94 0.95 0.97
R2 0.74 0.73 0.88 0.91 0.93

MAE 93,260.92 103,362.10 83,413.22 77,668.16 69,052.32
%MAE 30.68 28.48 22.11 19.67 16.64
RMSE 163,431.57 182,624.46 127,106.24 116,733.57 105,319.00

%RMSE 38.45 40.74 27.43 24.47 21.49
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Figure 11. Scatterplots of the true population count and estimated population count at county scale from 1990 to 2010.

For 1985, as the corresponding census data were unavailable, we used a single country-
wide population count from the World Bank Database to modify gridded population data
and have not verified it. Due to the consistency of the proposed population mapping
framework, we argue that data accuracy in 1985 is comparable to that in other years.

3.3. Accuracy Analysis of Gridded Population Data to Scales of Census Data

The availability of census data restrains the production of gridded population data,
and fine-scale census data benefit accurate population mapping [48]. However, census
surveys are time-consuming and labor-intensive, and, in many cases, only coarse-grained
census data can be obtained [71]. Here, we utilized the population distribution in 2010 to
investigate the difference in the accuracy of gridded population data based on census data
of different scales. The true population and the estimated population at the town scale were
compared to evaluate the accuracy of the modified data. Figure 12 shows scatterplots of
the true population count and estimated population count at the town scale from gridded
population data based on county-scale, city-scale, province-scale, and country-scale census
data. The points of true and estimated values present clustered distribution along the 1:1
reference line at all scales, suggesting that the produced gridded population data based
on all census scales can capture the heterogeneity in population distribution. Figure 13
shows the variation in the accuracy of gridded population distribution based on census
data of four different scales in terms of six accuracy metrics. It is shown that with the
increase in the scale of census units, data accuracy decreases. Therefore, when census data
are available, it is necessary to use them to modify the raw estimations and obtain better
accuracy. Comparable to GPWv4 (R2 = 0.61, %RMSE = 73.03), based on county-census
data, the R2 and %RMSE of gridded population data based on a single country-wide
population count is 0.55 and 79.14, with a difference of 9.84% and 8.37%, respectively.
As the difference is relatively low and a single country-wide population count is easily
accessible, it is promising that the constructed framework can generate reliable gridded
population data from RS images without census data efficiently.
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Figure 12. Scatterplots of the true population count and estimated population count at town scale based on county-scale,
city-scale, province-scale, and country-scale census data.

Figure 13. Variation in the accuracy of gridded population data based on county-scale, city-scale, province-scale, and
country-scale census data in terms of 6 accuracy metrics.

3.4. Evolution of China’s Population Distribution from 1985 to 2010

Figure 14 shows the produced gridded population maps of China with the resolution
of 1 km for the years 1985, 1990, 1995, 2000, 2005, and 2010. Although the total population
of China grew from 105,104,000 in 1985 to 133,770,500 in 2010, the pattern of population
distribution has not changed significantly. The famous Hu-Line pattern [72], characterized
by a dense population in the southeast part and a sparse population in the northwest
areas of China, remains. From 1985 to 2010, the population gravity center [73] of China
lay roughly at the point (113.89◦ E, 32.97◦ N), which showed a slight movement to the
southeast, with a moving distance of fewer than 33 km (Figure A2), suggesting that China’s
population and economic center was moving towards the southeast area. In line with
previous studies, China’s population density is classified into eight levels in this study [34].
Among them, grid cells with a population density greater than 1500 persons/km2 are
regarded as high-density regions, cells with a population density between 200 and 1500
are regarded as medium-density regions, and cells with a population density less than 200
are regarded as low-density regions. Table 3 lists the percentage values of the area and
population for different levels, reflecting the evolution of China’s population distribution
from 1985 to 2010.



Remote Sens. 2021, 13, 3533 17 of 25

Figure 14. Gridded population data (1 km × 1 km) of China from 1985 to 2010.

Table 3. Percentage values of area and population for different density levels.

Density
1985 1990 1995 2000 2005 2010

Area Population Area Population Area Population Area Population Area Population Area Population

Low 83.19 22.49 82.33 20.48 82.76 19.46 83.79 18.26 83.97 17.62 83.91 16.44
Medium 16.40 61.18 17.2 60.54 16.64 56.21 15.42 50.96 15.12 48.22 15.07 47.66

High 0.42 16.33 0.48 18.98 0.61 24.33 0.79 30.78 0.92 34.17 1.02 35.90

From 1985 to 2010, the area proportion of high-density regions increased from 0.42% to
1.02%, increasing by 145%, and the population proportion increased from 16.33% to 35.90%,
increasing by 119.84%. Previous researches have suggested that high-density regions with
a population density of >1500 persons/km2 can be regarded as urbanized regions [34]. The
expansion of regions with high population density can be ascribed to rapid urbanization
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and the emergence of megacities due to China’s reform and opening-up policy. The area
proportion of medium-density regions decreased from 16.40% in 1985 to 15.07% in 2010,
a decrease of 4.46%, and the population proportion decreased from 61.18% to 47.66%,
decreasing by 22.09%. The expansion of megacities can explain the reduction in regions
with medium population density as the concentration of the population in megacities
leads to the contraction of small- and medium-sized urban regions. The area proportion of
low-density regions increased from 83.19% in 1985 to 83.91% in 2010, while the population
proportion decreased from 22.49% to 16.44%. The expansion of low-density regions may
be attributed to immigration measures in some mountainous areas to protect the ecological
environment and alleviate poverty [24]. However, with urbanization, the population
becomes gradually concentrated in urban regions, leading to a reduced population in
low-density regions.

Figure 15 shows the population distributions and landscape variations of three regions
in large urban agglomerations in China from 1985 to 2010: (a) Beijing-Tianjin-Hebei,
(b) the Yangtze River Delta, and (c) the Pearl River Delta. During this period, these areas
experienced rapid urban expansion and consequent population growth, which further led
to the transformation of the urban landscape. The produced continuous multi-temporal
gridded population data with high spatial resolution provide support to track the co-
evolvement of the human population and physical landscape.

Figure 15. Population distributions (bottom row) and landscape variations (top row) of three regions
in large urban agglomerations in China from 1985 to 2010. (a) Beijing-Tianjin-Hebei; (b) The Yangtze
River Delta; (c) The Pearl River Delta.
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4. Conclusions and Discussion

China, as the most populous developing country in the world, has experienced rapid
economic development, population growth, and urbanization in recent decades. Fine-
scale population distribution data and their dynamics are a crucial component in many
fields, including resource management, disaster response, public health, urban planning,
and climate change; they are also fundamental in monitoring and achieving sustainable
development goals (e.g., SDG 11.6.2—annual mean levels of fine particulate matter (e.g.,
PM2.5 and PM10) in cities (population-weighted)) [74]. However, due to the lack of
adequate methodology and appropriate data, there are rarely continuous multi-temporal
gridded population data available for China over a long historical period to aid in our
understanding of the evolution of population distribution.

The continuously improving remote sensing technology provides low-cost, broad-
coverage, and high spatiotemporal resolution ground information, which, in conjunction
with deep learning technology that can mine hidden geographical knowledge, enables
continuous population distribution mapping. We introduced a framework integrating
a ResNet-N deep learning architecture with the consideration of neighborhood effects
with a vast number of Landsat-5 images from GEE for rapid multi-temporal population
mapping over a long historical period in this study. The ResNet-N model was developed
to establish the end-to-end mapping between population count and RS image patches.
Based on the trained model, we estimated the gridded population count (1 km × 1 km) of
China with corresponding Landsat-5 image patches from GEE as input from 1985 to 2010.
The produced raw estimations were adjusted by available census data to acquire the final
gridded population data.

The ResNet-N model with neighbor augmentation achieved R2 0.70 and %RMSE
15.91%, with a better explainability and higher absolute accuracy than ResNet, which
can model the interaction between the physical environment and population and capture
the heterogeneity in population distribution from RS images. An interpretation analysis
revealed that the constructed deep learning model could provide valuable features for
population estimation since it can distinguish the differences between natural and built-up
areas and between densely populated and sparsely populated buildings. The produced
gridded population data in 2010 was validated via town-scale census data and showed
higher accuracy than WorldPop and GPWv4. The produced gridded population data
from 1990 to 2005 were validated via county-scale total population count and achieved
comparable performance to data in 2010, suggesting that the produced gridded population
map can analyze spatiotemporal characteristics of China’s population distribution over a
long period with acceptable accuracy.

The spatiotemporal analysis of multi-temporal gridded population data showed
that China’s population distribution pattern did not change significantly from 1985 to
2010, and the famous Hu-Line pattern remains. With China’s urbanization process and
the emergence of megalopolises, the high-density population regions have dramatically
expanded, with the area expanding by approximately 145% and the population expanding
by approximately 120%. The concentration of the population in big cities has led to the
contraction of cities with medium and small sizes. China’s medium-density regions have
shrunk by around 4.46%, and their population has decreased by approximately 22.09%.
China’s low-density regions have expanded slightly with China’s poverty alleviation and
mountain migration strategy [24], but the population has decreased.

The coupling of deep learning technologies and easily accessible, regularly updated,
and analysis-ready remote sensing data from GEE unquestionably establishes a novel
avenue that promotes multi-temporal population mapping over a long period at a large
scale. However, there are several limitations of this framework. First, although informative
knowledge of the population distribution can be extracted from RS images directly, so-
cioeconomic information cannot be identified. For example, the vacancy rate of buildings
is difficult to capture, making it impossible to distinguish between vacant buildings and
occupied buildings [54]. Especially in China, unreasonable urban expansion has led to
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the appearance of ghost cities characterized by high vacancy rates of buildings, which
cause overestimation of the population [75,76]. Social sensing data and nighttime light
data can depict multiple facets of human society, capturing related socioeconomic in-
formation [69,75]. In the future, integrating multi-source RS data and time-series social
sensing data can further improve the framework [23]. Second, we produced the gridded
population data for each target year independently. However, as population distribution
is continuous in the time dimension, specific time-series analysis techniques are needed
to stabilize temporal variation in population distribution [17]. Third, the deep learning
model ResNet-N was trained based on samples collected from the entirety of China in
2010. Although the generalization performance to other years of the model trained in 2010
has been validated, further efforts are needed in considering generalization errors. As
China has a large territory and exhibits significant internal variations, in the future, we will
investigate whether using regionally parameterized models will improve the performance
of population mapping [59].

The framework proposed in this paper demonstrates the feasibility of mapping multi-
temporal gridded population distribution at a large scale over a long period in a timely
and low-cost manner, which is particularly useful in low-income and data-poor regions.
The framework can also be easily extended to a global scale or to map other gridded socioe-
conomic variables (e.g., GDP) for monitoring and assessing progress toward fulfillment of
the SDGs [12].
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Appendix A

Figure A1. Illustration of how the input RS image evolves to the output population count in the ResNet-N by an example
image patch. The activations of the first three and the last feature map of each network layer were visualized. The principal
component analysis (PCA) dimension-reduction technique [77] was used to compress all feature maps of each layer to 3 RGB
channels for visualization. It is shown that the shallow neural layers (Conv1 and Conv2) excavate concrete features such as
texture, shape, and edge from natural landscapes. Then, the deep layers (Conv3, Conv4, and Conv5) extract informative
abstract features based on the shallow features for population estimation.

Table A1. Source and administrative unit level of census data or total population count for modifying
raw population estimation of each year.

Year Administrative Unit Level Source

1985 Country World Bank Database
1990 City GPWv3
1995 City GPWv3
2000 City WorldPop
2005 City WorldPop
2010 County National Bureau of Statistics of China
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Figure A2. The movement path of population center in China from 1985 to 2010.
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