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Abstract: Northeast China lies in the transition zone from the humid monsoonal to the arid conti-
nental climate, with diverse ecosystems and agricultural land highly susceptible to climate change.
This region has experienced significant greening in the past three decades, but future trends remain
uncertain. In this study, we provide a quantitative assessment of how vegetation, indicated by the
leaf area index (LAI), will change in this region in response to future climate change. Based on the
output of eleven CMIP6 global climates, Northeast China is likely to get warmer and wetter in the
future, corresponding to an increase in regional LAI. Under the medium emissions scenario (SSP245),
the average LAI is expected to increase by 0.27 for the mid-century (2041–2070) and 0.39 for the
late century (2071–2100). Under the high emissions scenario (SSP585), the increase is 0.40 for the
mid-century and 0.70 for the late century, respectively. Despite the increase in the regional mean, the
LAI trend shows significant spatial heterogeneity, with likely decreases for the arid northwest and
some sandy fields in this region. Therefore, climate change could pose additional challenges for long-
term ecological and economic sustainability. Our findings could provide useful information to local
decision makers for developing effective sustainable land management strategies in Northeast China.

Keywords: vegetation change; climate change; CMIP6 models; GWR model

1. Introduction

Global climate change can significantly alter vegetation dynamics by modulating key
land–atmosphere interactions and other related processes [1]. It has the potential to cause
further land degradation, particularly in arid and semi-arid regions [2]. Northeast China
(NE China) lies in the transition zone from the humid monsoonal climate in the east to the
arid continental climate to the west, with ecosystems highly susceptible to climate change,
such as temperate desert steppes and warm shrubs [3]. This region also contains important
farm and pastureland supporting the livelihood of hundreds of millions of people. Future
climate change is projected to have a large impact on the terrestrial ecosystem in NE China,
with significant social and economic consequences [4]. However, how vegetation will
respond to future climate change remains uncertain, and detailed studies for projecting
future vegetation in this highly vulnerable region are limited. Therefore, the goal of this
study is to characterize potential future vegetation changes in NE China in this century.

The greening of terrestrial ecosystems has been reported at both global and regional
scales, usually based on long-term satellite-derived vegetation indexes compiled over the
past several decades [5,6]. Previous studies have shown a general greening trend since
the 1980s in NE China as a result of both a shift toward a warmer and wetter climate and
human efforts, such as widespread restoration projects [7–10]. However, great uncertainties
still exist as to whether this greening trend will continue in the future under projected
climate change [11,12].
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There are two major approaches for projecting future vegetation: direct vegetation
output, e.g., leaf area index (LAI), from Earth system models (ESMs) [1], and statistical
models using climate output, e.g., temperature and precipitation, from global climate
models (GCMs) [13]. The advantage of using ESMs directly to simulate future vegetation is
that they have built in biophysical, biogeochemical and carbon cycle processes to account
for mechanisms of vegetation change under global warming. However, due to the limited
understanding and difficulties in the quantification of many of these processes, there is
great uncertainty in ESM-derived LAI projections [14,15]. The statistical approach for
projecting future vegetation is based on statistical models built on observed relationships
between vegetation and climate drivers. Such statistical models then use the more reliable
climate GCM output, such as temperature and precipitation, to derive future vegetation.
Although statistical models do not consider mechanisms for vegetation change, they are
built upon the observed relationships, and could avoid the uncertainties associated with
the poorly constrained parameterizations used in ESM LAI simulations [16]. In addition,
statistical models have high spatial resolution, and can reveal detailed local relationships.
This approach is commonly used in many previous studies [17–19].

Given the limitations of ESM LAI simulations, particularly at the regional level, and
their lack of local detail, this study primarily applied a statistical approach to project future
vegetation changes (as indicated by LAI) for the study area, a socio-economically important
region with ecosystems vulnerable to climate change. It has two specific objectives. First,
we developed a statistical model from historical data to quantify the LAI response to
climate drivers. Most existing statistical studies use a single model for the entire study
area and fail to consider the spatial heterogeneity of correlations between vegetation and
climate factors. In this study, we used a local regression technique that accounts for spatial
non-stationarity in the relationship. Second, we projected future LAI change based on
the statistical model and future climate projections from 11 models in the Coupled Model
Intercomparison Project Phase 6 (CMIP6) for both the mid- and late century under two
future emissions scenarios. The findings of this study could provide useful information for
decision-makers in land and resource management to prevent future land degradation.

2. Materials and Methods
2.1. Study Area

This study focused on NE China, an area within 105–135◦E and 35–53.6◦N, with
an average growing season mean (GSM: May–September) temperature of 21.5 ◦C and
precipitation of 410 mm (Figure 1). It has diverse land cover patterns and ecosystems
that are very sensitive to climate change [9,20,21]. This region encompasses the largest
agro-pastoral transitional region in China [22], with cropland on the relatively humid east
gradually changing into rangeland (grassland) towards the arid west (Figure 1a). It has
extensive forest in the mountainous northeast (Figure 1c), as well as the four major sandy
fields (Hulunbuir, Horqin, Otindag, and Mu Us) located at the margin of the monsoon
region (Figure 1a). The historical GSM LAI from 1982 to 2013 for the entirety of NE China is
1.44 (Figure 1b), ranging from 0.00 to 3.87. These ecosystems provide crucial ecological and
economic services for the large population living in the area [23,24]. Therefore, it is very
important to establish how future climate change could potentially influence vegetation
cover in this region.
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Figure 1. Study area land cover (a), the growing season mean (GSM) LAI from 1982 to 2013 (b), and the elevation (c) in 
Northeast China. The land cover data come from the MOD12Q1 provided by NASA Land Processes Distributed Active 
Archive Center (LP DAAC). 
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The leaf area index (LAI) is an important vegetation parameter in most ecosystem 

productivity models and global models of climate, hydrology, and ecology [25]. It is 
defined as the green leaf area per unit surface area and can be directly derived from 
satellite images. It has been widely used for monitoring vegetation dynamics under 
climate change [26,27], because it strongly affects land-surface boundary conditions and 
the exchange of matter and energy with the atmosphere [28]. In this study, we used the 
second version of the Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g 
product derived from the Advanced Very High-Resolution Radiometer (AVHRR). These 
bi-weekly data cover the period from 1982 to 2013 with a spatial resolution of 1/12 degrees, 
available at https://doi.org/10.3334/ORNLDAAC/1653 (accessed on 18 August 2020). Fur-
ther details of the AVHRR GIMMS LAI3g product can be found in [29]. It has been widely 
used to monitor the vegetation dynamic and changes [14,30,31]. Here, we focus on the 
changes in the mean state between historical and future LAI in the growing season, de-
fined as May to September in NE China. 

Figure 1. Study area land cover (a), the growing season mean (GSM) LAI from 1982 to 2013 (b), and the elevation (c) in
Northeast China. The land cover data come from the MOD12Q1 provided by NASA Land Processes Distributed Active
Archive Center (LP DAAC).

2.2. Data

The leaf area index (LAI) is an important vegetation parameter in most ecosystem
productivity models and global models of climate, hydrology, and ecology [25]. It is defined
as the green leaf area per unit surface area and can be directly derived from satellite images.
It has been widely used for monitoring vegetation dynamics under climate change [26,27],
because it strongly affects land-surface boundary conditions and the exchange of matter
and energy with the atmosphere [28]. In this study, we used the second version of the
Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g product derived from
the Advanced Very High-Resolution Radiometer (AVHRR). These bi-weekly data cover
the period from 1982 to 2013 with a spatial resolution of 1/12 degrees, available at
https://doi.org/10.3334/ORNLDAAC/1653 (accessed on 18 August 2020). Further details
of the AVHRR GIMMS LAI3g product can be found in [29]. It has been widely used to
monitor the vegetation dynamic and changes [14,30,31]. Here, we focus on the changes in
the mean state between historical and future LAI in the growing season, defined as May to
September in NE China.

https://doi.org/10.3334/ORNLDAAC/1653
https://doi.org/10.3334/ORNLDAAC/1653
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Historical climate data, including monthly mean temperature and accumulated pre-
cipitation, were extracted from the European Centre for Medium-Range Weather Forecasts
(ECMWF, https://apps.ecmwf.int/datasets/data/interim-land, accessed on 21 September
2019) ERA-Interim reanalysis dataset with 0.125◦ spatial resolution for the study area
covering 1982–2013 [32]. The reanalysis data were used because of the uneven distribution
of meteorological station data and a general lack of stations in the major sandy fields. The
ERA-Interim data have been shown to perform well in the study area [33]. Historical cli-
mate and LAI data were used to build the regional regression models. In addition, elevation
data were extracted from the Shuttle Radar Topography Mission Digital Elevation Model
version 3.0 (SRTM30) with a spatial resolution of 90 m (http://glcf.umd.edu/data/srtm,
accessed on 1 September 2019).

Future climate projections were obtained from the output of the latest sixth phase of
the Coupled Model Inter-comparison Project (CMIP6) climate models (https://esgfnode-
.llnl.gov/search/cmip6, accessed on 29 August 2020) [34]. Monthly temperature and pre-
cipitation were extracted from 11 climate models (Table A1) for the historical (1982–2013)
period, the mid-century (2041–2070) and the late century (2071–2100) under two emissions
scenarios (SSP245 and SSP585). The SSP245 and SSP585 scenarios were selected to represent
medium and high emissions scenarios, and they are largely comparable to the Represen-
tative Concentration Pathway RCP4.5 and RCP8.5 used in CMIP5 [35]. Radiative forcing
in the medium and high emissions scenarios peaks at about 4.5 W/m2 (~540 ppm CO2)
and 8.5 W/m2 (~940 ppm) in the year 2100, respectively [36]. For comparison with our
result, the simulated LAI outputs from 11 Earth System Models (ESMs, Table A2) were also
downloaded for both historical and future periods under the SSP245 and SSP585 scenarios.
We resampled all datasets to 0.125 degrees for later analysis.

2.3. Methods
2.3.1. Multivariate Regression Analysis

In this study, we first used the multiple linear regression (MLR) method to establish the
quantitative relationship between GSM LAI and climate factors (temperature, precipitation)
and elevation. The basic MLR can be expressed as follows:

y = β0 + ∑k
i=1 βi xi + ε, (1)

In this model, the dependent variable y is the GSM LAI, and independent variables xi
in our model include GSM temperature, precipitation, and elevation. β0 and βi represent
the intercept and slope coefficients for the independent variables separately, and ε is the
random error.

A single regression model could be fitted with all data in the study area by the ordinary
least squared (OLS) method, a common approach in many previous studies [18,37]. Such a
regression model assumes the LAI–climate relationship to be spatially stationary. However,
previous studies suggested large discrepancies in the response of vegetation to climate
variation at different locations for different vegetation types and/or densities [9,38,39].
Therefore, a single global model for the entire study area could lead to systematic biases in
different regions. This was also noted in some previous studies [40,41]. In order to account
for the spatial variation of the LAI–climate relationship, we developed local MLR models
using the geographically weighted regression (GWR) approach [42].

GWR constructs a separate MLR equation for every location in the dataset, incorporat-
ing the dependent and explanatory variables of locations falling within a neighborhood
of each target location [17]. The size of the neighborhood is typically determined by a
bandwidth that can be set by the user or calculated through some statistical methods
such as cross validation or AICc. In this study, we used an adaptive bandwidth of the
closest 500 grid points (~3.0% of total data), corresponding to a neighborhood of 250 km in
diameter. For our data, we found this size to be a good compromise between using local in-
formation to estimate the model and having sufficient variability within the neighborhood

https://apps.ecmwf.int/datasets/data/interim-land
http://glcf.umd.edu/data/srtm
https://esgfnode-.llnl.gov/search/cmip6
https://esgfnode-.llnl.gov/search/cmip6
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to avoid severe local multicollinearity. Within the neighborhood, the data at each point are
weighted based on its distance to the target point using a spatial weight function, so that
data closer to the target point have more weight than data further away. In this study, a
bi-square kernel-function was used to calculate distance weight. GWR generates layers of
spatially variable model coefficients. The performance of the GWR models is evaluated by
the overall R2, and each local model is evaluated by a local R2.

2.3.2. Climate Model Evaluation and Bias Correction

The Taylor diagram was used to examine the performance of CMIP6 climate models
in simulating monthly mean temperature and precipitation. The Taylor diagram is a useful
visual tool to summarize the degree of similarity between simulated and observed values of
a climate field [43,44]. This diagram displays the centered root-mean-square difference (E),
the correlation coefficient (r), and the ratio of standard deviations (σ) of a pair of simulated
and observed values as a single point on a two-dimensional plot, so that different models
can be compared and evaluated [45]. The multiple model ensemble (MME) mean is also
calculated for all models. MME has been shown to outperform individual models and is
also expected to provide more robust estimates of future changes [46,47].

Due to the uncertainties in model parameterization and calibration, climate model
outputs often have significant biases and should not be used directly for future analy-
sis [48,49]. The simplest and widely used method to correct model biases is to adjust the
future climate projections by the delta change in the reference period, as follows:

xadj− f uture = xobs−historical +
(

xsim− f uture − xsim−historical

)
, (2)

where x is the climate variable from either observed (obs) data or simulated (sim) from
climate models for a historical or future period.

3. Results and Discussion
3.1. GWR Model Performance

In order to project future vegetation change in NE China, it is important to first es-
tablish an accurate historical quantitative relationship between vegetation and climate
drivers [50–53]. In a previous study, we examined the historical correlation between multi-
ple climate variables and vegetation change, and found that temperature and precipitation
are the primary climate drivers for vegetation growth in NE China [9]. However, the exact
relationship between vegetation and these climate factors varies based on a variety of
factors, such as spatial scale, cover density, and climate conditions [9,39,54]. At the global
scale, the rising temperature has extended the growing season and promoted summer
photosynthesis in the northern high latitudes while inhibiting vegetation growth in regions
where water is limited [39]. Although an increase in precipitation promotes vegetation
activity in some arid and semi-arid area [54], it also hinders vegetation growth in wet
and cool regions due to insufficient solar radiation [9]. Such spatial heterogeneity of the
vegetation–climate relationship is also observed in NE China [55]. Most existing studies
used a single global statistical model to describe the entire study region and hence ignored
the spatial variation of the relationship [56]. The local geographically weighted regression
approach adopted in this study could adapt to the spatial variation of this LAI–climate
relationship in NE China.

Before implementing GWR modeling, we conducted a single global OLS regression
model based on historical GSM data to provide a baseline model performance. The global
model performed quite well with a R2 of 0.74, suggesting that the temperature, precipitation
and elevation are major controlling factors for the growing season LAI in NE China.
However, the model also showed significant spatial clustering of residuals, suggesting
systematic biases, owing to the non-stationary vegetation–climate relationship [57]. We
then used GWR to fit a separate MLR model for each grid point in NE China, and the results
are presented in Figure 2, showing the spatial distribution of local R2 value (Figure 2a),
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model residual (Figure 2b), and model coefficients for temperature (Figure 2c), precipitation
(Figure 2d) and elevation (Figure 2e).
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The overall model performance increased significantly with an overall R2 of 0.94,
suggesting that the model could account for 94% of the total variance in LAI. The high
overall R2 is the result of fitting multiple local regression models to account for the spatial
variation of the climate–vegetation relationship. In addition, the spatial distribution of
local R2 was used to indicate how well the local regression model fit the observations, and
the local models with higher R2 values perform better (Figure 2a). The average local R2 is
0.86, meaning that at each point, GSM temperature, precipitation and elevation could, on
average, explain 86% of the variation of GSM LAI within the neighborhood defined by the
bandwidth. Overall, 79% of the local R2 values in NE China are greater than 0.8, particularly
towards the north and west, areas dominated by natural vegetation less affected by human
activities. The local R2 is, in general, high for forest in the northeast (R2 > 0.74), followed
by the grassland in the west (R2 > 0.53). Local R2 is lowest in southeast, ranging from
0.38 to 0.67, an area dominated by cropland intensively managed through irrigation and
fertilization. Therefore, the results in these areas should be treated with caution.

The model residual is defined as the difference between the observed and predicted
LAI values. The global OLS regression model produces residuals that are highly clustered
in space, indicating systematic model biases in different regions. Due to its local fitting,
GWR not only produces smaller residuals, but also reduces such spatial clustering, leading
to more random spatial distribution of residuals. A high level of randomness for model
residuals indicates better performance of the regression model [58]. Model residual values
are presented in Figure 2b. The areas with a residual larger than 0.5 and smaller than
−0.5 only account for 5% for the whole area. In addition, the spatial clustering of model
residuals is significantly reduced (Figure 2b), with 56% of pixels having positive residuals
and 44% pixels having negative residuals. These results indicate the improved performance
of GWR in modeling spatially non-stationary relationships.

The coefficients of temperature range from −1.78 to 4.19, with 62% of the region having
negative coefficients for temperature (Figure 2c). The negative values are mostly found
in the relatively dry western part of the region, where increasing the temperature could
lead to higher evaporation and drier conditions, limiting vegetation growth. The positive
coefficients occur more frequently in the relatively humid east, where higher temperature
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could lead to better thermal conditions and longer sun duration for photosynthesis, hence
promoting vegetation growth [59,60].

In contrast to temperature, the coefficients for precipitation are largely positive, rang-
ing from −0.02 to 0.05 (Figure 2d). Overall, 84% of the region has positive values, as more
water can relieve drought in the growing season and promote vegetation growth, especially
in this transition zonal of semi-arid and semi-humid regions in northern China [9]. The
negative coefficients occur mostly in the northern forest region and some cropland regions,
where precipitation could lead to a cloudy and cooler environment with reduced sun
duration, resulting in negative impacts on vegetation, where growth is more limited by
temperature [41,61].

3.2. Future Climatic Change
3.2.1. Climate Model Evaluation

Before projecting future climate change, we first used the Taylor diagram to evalu-
ate the performance of the CMIP6 climate models by comparing their historical simula-
tions with observation. The results are represented in Figure 3 for monthly temperature
(Figure 3a) and precipitation (Figure 3b). The results show that the climate models per-
form well for monthly temperature, as most model simulations are highly correlated with
observed values (with most coefficients close to or above 0.9), and have similar standard
deviation and an average root-mean-square error (RMSE) of less than half of the standard
deviation. For precipitation, the observed and simulated values have correlations mostly
greater than 0.8, a similar standard deviation, and RMSEs less than one standard deviation.
In both cases, the MME performs better than any individual model. Therefore, MME was
used for all following analyses.
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3.2.2. Future Changes in Temperature and Precipitation

Projected regional mean GSM temperature and precipitation during the mid-century
and late century under the SSP245 and SSP585 scenarios are summarized in Table 1 together
with the baseline (1982–2013) values. The four different scenarios are labeled as MidSSP245,
MidSSP585, LateSSP245, and LateSSP585, respectively. The ranges of values are also
provided. Both the regional mean temperature and precipitation are expected to increase,
and this increase is greater for the late century and higher emissions scenario. This is
consistent with previous projection results based on CMIP5 GCMs [62,63]. For SSP245,
the overall temperature for NE China is projected to increase by 2.50 (ranging from 2.20
to 2.86) ◦C in the mid-century and 3.49 (ranging from 3.19 to 3.87) ◦C in the late century.
For SSP585, the overall temperature is projected to increase by 3.38 (ranging from 3.01
to 3.83) ◦C in the mid-century and 5.87 (ranging from 5.17 to 6.59) ◦C in the late century.
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For SSP245, regional mean precipitation is projected to increase by 46 (ranging from 13 to
102) mm in the mid-century and 62 (ranging from 17 to 124) mm in the late century. For
SSP585, it is projected to increase by 65 (ranging from 16 to 125) mm in the mid-century
and 103 (ranging from 37 to 192) mm in the late century. These values represent an 11%
and 16% increase from 2041 to 2070 and a 15% and 25% increase from 2071 to 2100 under
the emissions scenarios SSP245 and SSP585, respectively.

Table 1. Present and future mean values and ranges for GSM temperature and precipitation in NE
China.

Time Period
Mean Value (Spatial Ranges)

Temperature/◦C Precipitation/mm

Baseline 20.50 (14.29–27.56) 419 (66–832)
MidSSP245 23.00 (16.87–29.94) 465 (83–891)
MidSSP585 23.88 (17.86–30.68) 484 (87–925)
LateSSP245 23.99 (17.92–30.94) 481 (89–920)
LateSSP585 26.37 (20.49–33.13) 522 (104–979)

In comparison with the observed temperature range (13.27 ◦C) of NE China between
1982 and 2013, the range of future temperatures becomes slightly narrower as the emissions
scenario increases. For SSP245, the difference between the highest and the lowest value of
GSM temperature in the whole region is 13.07 and 13.02 ◦C for the mid-century and late
century, respectively. For SSP585, the range is 12.82 ◦C and 12.64 ◦C for the mid-century and
late century, respectively. In contrast, the range between the minimum and maximum GSM
precipitation increases with time and emissions scenarios. Compared with the observed
range of 766 mm, for SSP245, the GSM precipitation range in the entirety of NE China is
808 mm for the mid-century and 838 mm for the late century. For SSP585, the range is
projected to be 831 and 875 mm for the mid-century and late century, respectively.

The spatial distribution of the future changes for GSM temperature and precipitation
relative to the baseline (1982–2013) are presented in Figure 4. Despite the differences in
magnitudes, different scenarios exhibit similar spatial patterns for changes in temperature
and precipitation. Temperature tends to increase more in the west and less in the east,
whereas precipitation is projected to increase more in the relatively humid east and south-
east, and less in the semi-arid west. This largely contributes to the increasing range of GSM
precipitation in the region. The spatial variations of climate change will have significant
yet differentiated impacts on vegetation growth in NE China.

3.3. Future GSM Vegetation Changes
3.3.1. Future Vegetation Changes Predicted by GWR Models

The differences between the historical observed and future projected GSM LAI are
presented for MidSPP245, MidSSP585, LateSSP245, and LateSSP585 in Figure 5. Regional
mean change values are presented at the upper right corner for each plot. Overall, the GSM
LAI in NE China is expected to increase throughout this century. However, the magnitudes
of increase are dependent on both the future periods and the emissions scenarios. The
increase is less for the near term (mid-century) and the lower emissions scenario (SSP245),
and tends to rise in the longer term (late century) and the higher emissions scenario
(SSP585). At the mid-century, the average GSM LAI in NE China is projected to increase by
0.27 for SSP245 and 0.40 for SSP585. By the late century, the expected GSM LAI increase is
about 0.39 for SSP245 and 0.70 for SSP585. These results seem to suggest that the present
greening trend is likely to continue in NE China in future, which is similar to the projected
vegetation changes in some previous studies [1,64,65].
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Despite the overall LAI increase in future scenarios, its spatial distribution is far
from even. Figure 5 shows a greater LAI increase in the relatively humid eastern part
of the region, where climate models project a greater precipitation increase and a lower
temperature increase (Figure 4), as higher temperature could promote vegetation growth
with sufficient precipitation in the future. However, LAI is projected to decrease in the
largely arid western part of the region, where climate models project a greater temperature
increase and a lower precipitation increase. As a result, the future precipitation increase is
not enough to offset the negative impacts of increasing temperature, leading to a decline
in LAI. In addition, some studies suggest that forests in the northern mountainous area
are less adaptable to changes in climate conditions, and are set to decline in the future,
based on ecosystem process models [66]. The magnitude for change, both increases and
decreases, varies among different time periods and scenarios. These results are largely



Remote Sens. 2021, 13, 3531 10 of 18

consistent with recent studies [64,67]. For example, using multiple linear regression and
12 CMIP5 climate models, Zhou et al. [64] predicted an increased NDVI over mainland
China in the period of 2020–2100. Spatially, around 37% of China will experience an NDVI
decrease, and much of the decrease will occur in NE China under some emissions scenarios.
They also reported degraded growing conditions in parts of NE China using the Vegetation
Condition Index, largely due to the environmental stress of drought, which is projected to
occur more frequently in NE China from 2041 to 2100 [68].
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3.3.2. Future LAI Changes in Sandy Fields

There are four major sandy fields in the transition zone from the humid east to the
arid west (Figure 1a), surrounded by intensively used agricultural land with a mixture of
pasture and crops. During the past few decades, the areas have been subjected to intensive
land management measures to increase vegetation cover and prevent desertification [69–71].
Previous studies have shown that whereas the overall effectiveness of these measures remains
uncertain, they were more likely to succeed under favorable climate conditions [72,73].

We summarized the LAI changes for the four major sandy fields (Figure 6) to examine
their future vulnerability to desertification. Among them, Horqin, located furthest to
the east, is likely to experience a significant increase in LAI, especially under the higher
emissions scenario and in the longer term (LateSSP585). The GSM LAI in Horqin is expected
to increase by 0.46 and 0.57 for the mid- and late-century under SSP245, and by 0.61 and
0.83 for the mid- and late-century under SSP585. The other three sandy fields are located
further to the west, along the margin of the monsoon reach. Otindag is likely to see a small
LAI increase. Mu Us, on the other hand, is likely to experience a small decrease in the GSM
LAI. The largest decrease will occur in Hulunbuir, and the decrease is more significant for
the higher emissions scenario in the longer term. This spatial pattern suggests that in the
relatively arid west, the benefits of a moderate increase in precipitation on vegetation could
be offset by a significant increase in temperature. Therefore, future climate change is likely
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to cause further land degradation in some of these sandy fields, and will pose additional
challenges for land management in areas where desertification remains a long-term threat
to the livelihoods of millions of people.
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3.3.3. Comparison with ESMs LAI Output

We compared the GWR-based LAI projections with the direct LAI output from 11
CMIP6 ESMs that include the coupled carbon model experiments (Table A2). The Taylor
diagram (Figure 7) shows the inferior performance of climate models in simulating LAI
in comparison with temperature and precipitation (Figure 3). The correlations between
simulated and observed LAI are lower than 0.7 for most models, whereas such correlations
are mostly above 0.8 for precipitation and 0.9 for temperature. The RMSEs are mostly
between 0.5 and 1 standard deviation. Models tend to underestimate the spatial variation
of the LAI, as indicated by the smaller standard deviation of the simulated LAI than that
of the observed LAI. As with temperature and precipitation, the MME outperformed all
individual models, and was used for comparison with the observed LAI. In general, ESMs
tend to overestimate LAI. The regional average LAI is 2.10 for the simulated MME, in
comparison to 1.44 for the observed values. Spatially, the climate model MME overestimates
LAI in most (85%) of the study region, except for the forested area in the north and northeast
(Figure A1). In addition, during the same historical period (1982–2013), almost all models
showed a uniform increase in LAI in the entirety of the study area, whereas our previous
study found a decreasing trend in about one third of the study region [9]. Based on the
assessment of historical LAI simulations, ESMs tend to overestimate LAI and LAI increase
in the study area.
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CMIP6 ESMs project a nearly uniform increase for all future periods and emissions
scenarios (Figures 8 and 9). The overall LAI increases are, in general, consistent with our
GWR projections (Figure 8), with a greater increase under the higher emissions scenario and
for the late century. In terms of the magnitude of overall LAI change values, ESMs project
a slightly higher increase than GWR model results, similar to the overestimation of LAI
observed in their historical simulations [29,74]. Previous studies suggest that this is likely
caused by the models’ overestimation of physiological response to CO2 fertilization [1].
In fact, the exact effect of CO2 fertilization on vegetation growth remains uncertain, and
past assessment varies depending on the attribution approaches and ecosystem models
used [11,75,76]. Recently, the dominant global-scale effect of CO2 fertilization has also been
questioned [11,12,30,76]. Winkler et al. [30] suggested that the effect of CO2 fertilization
is only an important driver of greenness in some biomes, but is not important globally.
Regional vegetation cover is often vulnerable to changes in environmental conditions and
extreme climate events. By using the fingerprinting method and factorial simulations,
Zhu et al. [11] quantified the intersecting contributions of multiple drivers around whole
world. They concluded that vegetation increase is likely attributed to factors other than
CO2 concentration in areas of intensive ecosystem management, such as NE China. Based
on these observations, we believe that the GWR-based method is likely to provide more
detailed and realistic future projections.

The largest difference between ESMs and GWR projections lies in the spatial variation
of future LAI change. Whereas ESMs project an almost uniform LAI increase, the GWR-
based results show spatial heterogeneity, with 62–65% of the area showing increasing trends
and the rest showing decreasing trends. In addition to ESMs’ propensity to overestimate
LAI and LAI increase, this could also be attributed to the low resolution of most ESMs,
which range from 100 to 500 km. By comparison, the statistical models are constructed
with much more detailed spatial data, and are therefore able to capture local processes and
variations. Our projected results show that despite the overall LAI increase, areas with
sparse vegetation (LAI < 0.2) are still likely to get larger in all time periods and scenarios
(Figure A2). Spatially, arid land, which is concentrated in the southwest at present, is
expected to expand northward and eastward under the future climate change conditions
(Figure 5). This expansion is more significant for the late century and under the high
emissions scenario. This spatial expansion of barren land is likely caused by future climate
change for this part of the study region, which is expected to become a lot warmer but only
slightly wetter (Figure 4). Therefore, our study suggests that despite an overall vegetation
increase, parts of the region are still vulnerable to land degradation in the future, where
active land management is necessary to meet the future challenges.
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3.4. Research Limitation

We acknowledge several limitations in our study. First, as with all statistical models,
we assumed that the observed relationship between vegetation and climate will remain
constant in the future. Second, we only used temperature and precipitation to project future
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vegetation, without considering the other factors such as CO2 fertilization, and nitrogen
deposition. However, as we demonstrated above, climate factors are the predominant
controls for vegetation in our region, and other factors play at most only minor roles. This is
not only supported by other studies [11,64], but also by the high R2 values of our statistical
models, which suggest that temperature and precipitation could explain the majority of
the variation in vegetation. Third, our model did not include anthropogenic impacts on
vegetation, as such impacts are notoriously hard to project for the future. On the one hand,
increasing population and economic development could lead to more intensive utilization
of land. On the other hand, improved land management could reduce the negative impacts
of human activities on vegetation growth. Given such uncertainties, for this study, we
assumed that the level of human impact on vegetation (as represented by model residuals)
will remain constant in the future. Despite these limitations, we believe that this study
contributes to our understanding of climate impacts on vegetation changes in NE China.
Compared with future LAI changes projected by multiple CMIP6 ESMs for NE China, our
results provide additional spatial details on future vegetation change.

4. Conclusions

In this study, we used the geographically weighted regression to model the spatially
non-stationary relationship between LAI and major climate drivers of temperature and
precipitation. The model could explain 94% of total variance in LAI over the entirety of NE
China, with an average local R2 of 0.86. Coefficients for temperature are mostly negative in
the relatively arid west and positive in the humid east, whereas coefficients for precipitation
are mostly positive, except in the northern region, where increased precipitation could
limit vegetation growth due to shortened sun duration and cooler temperature. Using
the ensemble results from multiple CMIP6 models, we then determined future changes in
temperature and precipitation for the mid-century (2041–2070) and late century (2071–2100)
under the medium (SSP245) and high (SSP585) emissions scenarios. For the entire region,
the climate is expected to get warmer and wetter, and the magnitude of such changes
is larger for the longer term (late century) and high emissions scenario. Spatially, the
arid western part of the region is expected to experience greater temperature increase
and lower precipitation increase than the humid eastern part of the region. Combining
climate projections and the GWR model, we established future LAI under different future
periods and emissions scenarios. Our results show an overall increase in LAI for NE
China. This increase is higher for the longer term and under the higher emissions scenario.
This suggests that the greening trend observed in recent decades is likely to continue,
but this trend is not spatially uniform in NE China. Despite the general increase in LAI,
the expansion of arid land is likely to occur in the northwest part of the region, where
temperature increase could outpace the precipitation increase. Therefore, land degradation
remains a long-term challenge for this region under future climate change conditions.
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Table A1. CMIP6 models used in this study.

Source ID Institution ID Resolution Country

BCC-CSM2-MR BCC 100 KM China
CAMS-CSM1-0 CAMS 100 KM China

CanESM5 CCCma 500 KM Canada
EC-Earth3 EC-Earth-Consortium 100 KM Europe

EC-Earth3-Veg EC-Earth-Consortium 100 KM Europe
IPSL-CM6A-LR IPSL 250 KM France

MIROC6 MIROC 250 KM Japan
MRI-ESM2-0 MRI 100 KM Japan

CNRM-CM6-1 CNRM-CERFACS 250 KM France
CNRM-ESM2-1 CNRM-CERFACS 250 KM France
UKESM1-0-LL MOHC 250 KM UK
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Table A2. CMIP6 Earth system models (ESMs) used to provide LAI output in this study.

Source ID Institution ID Resolution Country

ACCESS-ESM1-5 CSIRO 250 KM Australia
BCC-CSM2-MR BCC 100 KM China

CESM2-WACCM NCAR 100 KM USA
CIESM THU 100 KM China

CMCC-CM2-SR5 CMCC 100 KM Italy
CanESM5 CCCma 500 KM Canada

EC-Earth3-Veg EC-Earth-Consortium 100 KM Sweden
FIO-ESM-2-0 FIO-QLNM 100 KM China
INM-CM5-0 INM 100 KM Russia

IPSL-CM6A-LR IPSL 250 KM France
MPI-ESM1-2-LR MPI-M 250 KM Germany
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