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Abstract: Satellite observations from the Gravity Recovery and Climate Experiment (GRACE) provide
unique measurements of global terrestrial water storage (TWS) changes at different spatial and
temporal scales. Large-scale ocean–atmosphere interactions might have significant impacts on the
global hydrological cycle, resulting in considerable influences on TWS changes. Quantifying the
contributions of large-scale ocean–atmosphere interactions to TWS changes would be beneficial to
improving our understanding of water storage responses to climate variability. In the study, we
investigate the impact of three major global ocean–atmosphere interactions—El Niño and Southern
Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Meridional Mode (AMM) on interannual
TWS changes in the tropics and subtropics, using GRACE measurements and climate indices. Based
on the least square principle, these climate indices, and the corresponding Hilbert transformations
along with a linear trend, annual and semi-annual terms are fitted to the TWS time series on global
1◦ × 1◦ grids. By the fitted results, we analyze the connections between interannual TWS changes
and ENSO, IOD, and AMM indices, and estimate the quantitative contributions of these climate
phenomena to TWS changes. The results indicate that interannual TWS changes in the tropics and
subtropics are related to ENSO, IOD, and AMM climate phenomena. The contribution of each climate
phenomenon to TWS changes might vary in different regions, but in most parts of the tropics and
subtropics, the ENSO contribution to TWS changes is found to be more dominant than those from
IOD and AMM.

Keywords: GRACE; terrestrial water storage; climate variability; least squares fit; cross correlation

1. Introduction

Terrestrial water storage (TWS) represents the vertical integration of surface water
(e.g., lakes, rivers, wetlands and manmade reservoirs), soil moisture, and groundwater,
and is a key component of global hydrological cycle. TWS has significant links with
and feedbacks to the atmosphere and oceans by exchanging moisture fluxes and surface
energy [1], and plays an important role in the global climate system. TWS changes reflect
the combined effect of all hydrological fluxes (precipitation, evapotranspiration, surface
runoff, and underground flow), and are strongly affected by natural climate variability.
Monitoring and quantifying TWS changes, especially its long-term variability, are important
for characterizing changes in water resources and natural ecosystems.

The Gravity Recovery and Climate Experiment (GRACE), launched in March 2002, has
provided special insights into how global TWS is changing [2]. Earlier hydrology-related
studies mainly focused on seasonal time scales since the short time span of GRACE data
available at that time [3,4]. The GRACE satellites ended operation in October 2017 after
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more than 15 years in orbit, and GRACE Follow-On (GRACE-FO) started measuring TWS
changes in May 2018. With improved data accuracy and nearly 19-years of observations,
GRACE/GRACE-FO data products have enabled the studies of TWS changes at much
broader range, including seasonal, interannual, and long-term time scales. GRACE datasets
have been widely used to analyze global and regional water storage changes and other
hydrological components [3,5–7], and monitor extreme climate phenomena, such as large-
scale droughts and floods [8–10].

The climate variability connected with large-scale ocean–atmosphere interactions
has significant impact on TWS changes [11–13]. At interannual time scales, the globally
dominant ocean–atmosphere interactions are the El Niño and Southern Oscillation (ENSO),
the Indian Ocean Dipole (IOD), and the Atlantic Meridional Mode (AMM), mainly char-
acterized by abnormally cold and warm sea surface temperature (SST) in the tropical
regions. Moisture exchange from the Pacific, Indian and Atlantic oceans to the adjacent
land regions could be regarded as the atmospheric linkage between SST anomalies and
TWS variations [12]. Although the air–sea coupled climate phenomena mainly develop in
the tropics, their influences are not limited to low-latitude regions. Through atmospheric
teleconnections, they would influence moisture transport, precipitation, and eventually
TWS changes in the tropics and subtropics [14], as precipitation is the leading driver of
TWS changes at mid-low latitudes [15,16].

For the recent decades, large parts of the tropics and subtropics have suffered se-
vere extreme climate variability, which strongly affects TWS changes in these regions.
For example, due to the influence of ENSO, the Amazon River basin experienced a sud-
den transition from severe drought to flood during 2010–2012, causing significant TWS
deficit and surplus [17]. Large-scale climate changes (e.g., ENSO or IOD) have also led to
severe water storage depletion in many regions, e.g., the multiyear drought in the Murray-
Darling Basin of Australia [18], the drought starting from 2007 in the Middle East [19],
two heavy droughts during 2009–2010 and 2011–2012 in Southwestern China [20], the
2011 extreme drought in Texas [21], and the 2012–2016 drought in California’s Central
Valley [22]. Therefore, the knowledge of large-scale climate variability’s influence on TWS
changes in the tropics and subtropics is critical, and could provide important insights on
drought/flood events and water resource management. In addition, analyzing large-scale
ocean–atmosphere interactions and their contributions to long-term TWS changes would be
beneficial to improving our understanding of water storage responses to climate variability.

Several previous studies have analyzed the impact of large-scale ocean–atmosphere
interactions on regional TWS changes. For example, using the multichannel singular
spectrum analysis and lagged cross correlations, de Linage et al. (2013) [12] explored the
influence of Pacific and Atlantic SSTs on long-term TWS changes in tropical South America.
Ndehedehe et al. (2017) [13] analyzed the relationship of three climate teleconnections
(ENSO, IOD, and Atlantic Multi-decadal Oscillation (AMO)) with West Africa’s TWS
changes, and found that ENSO and AMO are the two dominant climate factors affecting
West Africa’s TWS. Anyah et al. (2018) [23] employed independent component analysis
(ICA) method to investigate the impact of five climate indices on Africa’s TWS. The
mentioned studies mainly carried out regional analyses, with few focused on global scales.

Using GRACE dataset, Phillips et al. (2012) [24] analyzed the relationship between
global TWS changes and ENSO, and concluded that GRACE could capture most of the
significant ENSO-related patterns around the world. By isolating the ENSO mode from
the GRACE TWS flux, Eicker et al. (2016) [25] investigated the possible impact of ENSO
on the long-term trend of global TWS and total water fluxes. Using multiple sources
of data, Ni et al. (2018) [14] explored the connection between global TWS changes and
ENSO events, and found that the strongest correlations are mainly focused on tropics and
subtropics. Besides ENSO derived from the tropical Pacific, there are many other climate
factors affecting global water cycle, therefore, a more comprehensive analysis should also
take other climate phenomena into consideration, e.g., the ocean–atmosphere interactions
in the Indian and Atlantic Oceans.
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In the study, we investigate the impact of three global ocean–atmosphere interactions
(ENSO, IOD, and AMM) on interannual TWS changes in the tropics and subtropics, using
GRACE measurements and three climate indices. In order to approximately quantify
the contributions of ENSO/IOD/AMM to TWS changes at different spatial scales, we
perform a least-squares fit at global 1◦ × 1◦ grid cells, with the assumption that these
ocean–atmosphere interactions could directly or remotely influence TWS changes. Then,
we estimate the corresponding amplitudes of ENSO/IOD/AMM induced TWS changes
with the fitted results. The amplitude analyses are helpful to identify regions where TWS
changes are strongly influenced by ENSO, IOD, and AMM, and quantify the contributions
of each climate phenomenon. Additionally, through a series of comparisons, we also
analyze contributions of ENSO/IOD/AMM to interannual TWS changes in some selected
regions and river basins to help validate the results.

2. Data
2.1. GRACE Spherical Harmonic Solutions

The GRACE spherical harmonics (SH) monthly solutions used in the present analysis
are the GSM RL06 products from the Center for Space Research (CSR), University of Texas
at Austin. The datasets include 163 monthly solutions from April 2002 to June 2017, with
twenty missing months in total and maximum monthly intervals less than three months.
The Glacial Isostatic Adjustment (GIA) effect on GRACE-observed gravity is removed
using with ICE6G-D model [26]. The C20 coefficients are replaced with monthly estimates
of the satellite laser ranging (SLR) [27]. The GRACE SH solutions lack the degree-1 gravity
coefficients (representing geocenter motion), and we use the degree-1 terms estimated from
Sun et al. (2016) [28]. At high degrees and orders, SH coefficients are contaminated by
noises, including north–south stripes and some other errors [3]. We use a decorrelation
filter [9,29] to suppress the stripe noise, and 300 km Gaussian filter [30] to further reduce
the residual errors. The filtered results are then used to compute TWS changes on global
1◦ × 1◦ grids [31].

2.2. GRACE Mascon Solutions

An alternative to the GRACE SH (or GSM) solutions are the GRACE mascon solutions
considered to have higher spatial resolution with improved signal-to-noise ratio [32,33].
Here we use the RL06 Version 01 mascon product generated by the CSR. These CSR mascon
solutions are computed on an equal area geodesic grid approximately 120 km wide and
estimated completely from GRACE measurements without any other external inputs [32].
These datasets are provided on 0.25◦ × 0.25◦ equiangular grids, and we resample them on
1◦ × 1◦ grids using linear interpolation. The CSR mascon solutions used here cover the
same time span (April 2002 to June 2017) as the GSM solutions.

2.3. El Niño and Southern Oscillation

ENSO is a climate phenomenon characterized by abnormally warm and cold SST
in the equatorial Pacific [34]. El Niño refers to the ENSO negative phase with unusually
warm SST along the equatorial Pacific, whereas the opposite phase La Niña is characterized
by unusually cold SST in this region. In this research, we use the Niño 3.4 index from
the National Oceanic and Atmospheric Administration’s (NOAA) website (ftp.cpc.ncep.
noaa.gov/wd52dg/data/indices/sstoi.indices, accessed on 30 April 2019) as a measure
of ENSO strength. The Niño 3.4 index is calculated as the departure of monthly SST
from the base period climatology of 1950–1979 over the region between 5◦ N–5◦ S and
170◦ W–120◦ W [35]. The El Niño and La Niña could be identified when the 5-month
moving average of SST anomalies in the Niño 3.4 index exceed ±0.4 ◦C for more than
6 consecutive months [35]. A 5-month running mean (i.e., moving average) is used to
suppress intra-seasonal SST variations in the tropical ocean.

ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/sstoi.indices
ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/sstoi.indices
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2.4. Indian Ocean Dipole

IOD is mainly caused by ocean–atmosphere interaction in the Indian Ocean, which
leads to anomalous cooling/warming of eastern/western tropical Indian Ocean [36]. The
Dipole Mode Index (DMI), an indicator of the IOD strength, is the SST gradient between
the western (50◦ E–70◦ E and 10◦ S–10◦ N) and eastern (90◦ E–110◦ E and 10◦ S–0◦ S)
tropical Indian Ocean. Here we use the DMI time series (http://www.jamstec.go.jp/frsgc/
research/d1/iod/iod/dipole_mode_index.html, accessed on 30 April 2019) provided by
the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The 5-month
moving average is also applied to the DMI to smooth out high frequency SST variations.

2.5. Atlantic Meridional Mode

AMM is defined as the dominant mode of non-ENSO coupled ocean–atmosphere
variability in the tropical Atlantic. It is characterized by an abnormal meridional SST
gradient across the mean intertropical convergence zone (ITCZ) and cross-equatorial
boundary layer winds toward the warmer hemisphere [37,38]. Due to the meridional
movement of the ITCZ, significant convergence (divergence) of surface winds and more
(less) precipitation might occur in the warmer (colder) hemisphere [38]. The real-time
AMM index (http://www.aos.wisc.edu/~dvimont/MModes/Data.html, accessed on 30
April 2019) is defined via the statistical analysis of tropical Atlantic surface temperature
and 10 m winds over ocean regions between 75◦ W–15◦ E and 21◦ S–32◦ N [38]. The AMM
index used in this study is also smoothed with 5-month running mean.

3. Method

In order to estimate the quantitative contributions of ENSO/IOD/AMM to TWS
changes, we perform a least squares fitting at each geographic location (i.e., 1◦ × 1◦ grid
cell) using ENSO, IOD, and AMM climate indices and their Hilbert transformed time series
(Equation (1)). Hilbert transformations of the climate indices are used here in consideration
of the phase lag [24], since different phases of ENSO/IOD/AMM might affect TWS changes.
In addition, there are several missing months in GRACE datasets, the time series of gridded
TWS changes are interpolated to uniform monthly intervals with a cubic spline prior
to analysis.

TWS(i, j, t) = a1 + a2·t + a3· sin(2πt) + a4· cos(2πt) + a5· sin(4πt) + a6· cos(4πt) + a7·N(t)+

a8·H(N(t)) + a9·D(t) + a10·H(D(t)) + a11·A(t) + a12·H(A(t)) + ε(t)
(1)

where (i, j) is the geographic location of grid cell, t is the time in years, a1 to a12 are the
fitting coefficients, N(t), D(t) and A(t) are the normalized Niño 3.4, DMI and AMM indices,
and ε(t) is residual error. These climate indices are shifted by π/2 in the frequency domain
with Hilbert transformation (H(.), [39]) to capture the out of phase pattern of TWS changes
driven by ENSO/IOD/AMM [24,40]. For example, if there is no phase lag between the
Niño 3.4 index and TWS changes at a given location, a8 approaches zero. The time series
of Niño 3.4, DMI, and AMM along with the corresponding Hilbert transformations are
shown in Figure 1.

In Equation (1), the coefficients a1 to a12 can be determined using the least squares
fit, where a1 is the constant term, a2 is the linear rate, and a3 and a4 represent the annual
amplitudes for the sine and cosine components, while the semi-annual signals are described
by a5 and a6. Interannual TWS variations (TWSinter) can be computed as the residuals after
removing the linear trend, annual, and semiannual cycles in Equation (1) and smoothing
with a 5-month running mean:

TWSinter = TWS− a1 − a2·t− a3· sin(2πt)− a4· cos(2πt)− a5· sin(4πt)− a6· cos(4πt) (2)

http://www.jamstec.go.jp/frsgc/research/d1/iod/iod/dipole_mode_index.html
http://www.jamstec.go.jp/frsgc/research/d1/iod/iod/dipole_mode_index.html
http://www.aos.wisc.edu/~dvimont/MModes/Data.html
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The coefficients a7 and a8 in Equation (1) represent the TWS changes affected by ENSO;
the variabilities due to IOD are described by a9 and a10, and that of AMM by a11 and a12.
We calculate the corresponding amplitudes of TWS changes associated with these climate
indices using these coefficients (a7 to a12) via Equations (3)–(5). The amplitude represents
estimated magnitude of the influence of each of the three climate indices (i.e., contribution
of a given climate index to TWS changes).

ENSOAmplitude =
√

a72 + a82 (3)

IODAmplitude =
√

a92 + a10
2 (4)

AMMAmplitude =
√

a11
2 + a12

2 (5)

The TWS changes associated with ENSO, IOD, and AMM climate indices (here-
after called climate-induced TWS changes, and noted by subscript climate) can be com-
puted from:

TWSclimate = a7·N(t) + a8·H(N(t)) + a9·D(t) + a10·H(D(t)) + a11·A(t) + a12·H(A(t)) (6)

Here we use the root mean square (RMS) reduction [41] to investigate the degree of
agreement between TWSinter and TWSclimate:

RMS Reduction =
RMS(TWSinter)− RMS(TWSinter − TWSclimate)

RMS(TWSinter)
(7)

4. Results
4.1. ENSO/IOD/AMM Induced TWS Changes

Using GRACE observations and three climate indices (i.e., Niño 3.4, DMI, and AMM
indices), we obtain the fitting coefficients a1 to a12 in Equation (1), and then compute
the ENSO/IOD/AMM amplitudes according to Equations (3)–(5). Figure 2 shows the
ENSO/IOD/AMM amplitudes from the GRACE SH and mascon solutions, illustrating the
possible connections of these climate phenomena with TWS changes. In each grid cell, the
amplitude represents quantitative contribution of each phenomenon to the observed TWS
changes (i.e., the larger the amplitude, the greater the contribution). For the GRACE SH
solutions, the maximum ENSO/IOD/AMM amplitudes in global grid cells are ~11.1 cm,
~4.3 cm, ~4.4 cm, respectively; while ~27.5 cm, ~11.5 cm, and ~15.2 cm for the GRACE
mascon solutions. In Figure 2, despite the amplitudes of mascon solutions show relatively
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higher spatial resolution and larger signal magnitudes, the spatial patterns of two GRACE
solutions generally agree well at global scale. The differences in the signal magnitudes are
mainly attributed to the leakage errors in the GRACE SH solutions, which are caused by
both the truncation of SH coefficients and the 300 km Gaussian filter applied.
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Figure 2. ENSO, IOD, and AMM amplitudes from GRACE spherical harmonics (SH) and mascon solutions. (a,b) show
ENSO amplitudes from GRACE SH and mascon solutions computed with Equation (3); (c,d) show IOD amplitudes from
GRACE SH and mascon solutions computed with Equation (4); (e,f) show AMM amplitudes from GRACE SH and mascon
solutions computed with Equation (5).

The significant influence of ENSO/IOD/AMM on TWS changes in the tropics and sub-
tropics is clearly reflected in the relatively large amplitudes (e.g., greater than ~3 cm) shown
in Figure 2. The spatial patterns of ENSO/IOD/AMM amplitudes indicate that ENSO,
IOD, and AMM are three important climate factors affecting the TWS changes in South
America, southeast region of North America, central Africa, southern Asia, and northern
Australia. The contributions of each climate phenomenon to TWS changes in different
regions vary substantially, and different climate indices show significantly different impacts
on TWS changes. In most parts of the tropics and subtropics, the ENSO contribution to
TWS changes is found to be more dominant than IOD and AMM. Additionally, due to the
low water storage (and thus small fluctuations in water storage) in the Sahara Desert, the
amplitudes in northern Africa are relatively small (close to zero).

At interannual time scales, TWS changes in the tropics and subtropics are strongly
influenced by ENSO, IOD, and AMM. Therefore, in this study, we compare climate-induced
TWS changes (defined in Equation (6)) and interannual TWS changes to investigate the
total contributions of ENSO, IOD, and AMM climate phenomena. Figure 3a–d show the
comparisons between climate-induced TWS changes and interannual TWS changes from
GRACE SH and mascon solutions. The standard deviations for Figure 3a–d are in the range
of 0.2–11.8 cm, 0.1–27.6 cm, 0.6–12.8 cm, and 0.4–33.7 cm, respectively, further indicating
the larger signal magnitudes in mascon solutions compared to SH solutions. The spatial
patterns of climate-induced TWS changes and interannual TWS changes are generally in
good agreement, while in most cases, the signal magnitudes of the former are significantly
smaller than the latter.
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of interannual TWS changes from GRACE SH and mascon solutions, and (e,f) RMS reductions between climate-induced
TWS changes and interannual TWS changes from GRACE SH and mascon solutions.

In order to approximately quantify the degree of agreement between climate-induced
TWS changes and interannual TWS changes, we compute the RMS reductions according to
Equation (7), and the results are shown in Figure 3e,f. The percentages of RMS reduction
are in the range of 0–60%, with the maximum located in the Amazon basin. Larger RMS
reduction values indicate better agreement. Therefore, the areas with larger interannual
TWS changes exhibit larger RMS reduction values, which suggests that climate-induced
TWS changes and interannual TWS changes in these regions are in better agreement. In
addition, the highly consistence (correlation coefficients ~0.90) of RMS reductions for the
two GRACE solutions could verify the reliability of fitted results.

4.2. Correlation Analysis between TWS Changes and ENSO

The fitting coefficients a7 to a12 in Equation (1) not only provide quantifications of
ENSO/IOD/AMM contributions to TWS changes, but also represent the connections
between interannual TWS changes and these climate phenomena. To better understand the
meaning of these fitting coefficients, we take coefficients a7 and a8 as examples to illustrate
the possible correlation between TWS changes and ENSO.

In Equation (1), a7 is the least squares fitting coefficient for normalized Niño 3.4 index.
Figure 4 shows spatial distribution of coefficients a7 and cross correlation coefficients
between interannual TWS changes and Niño 3.4 index for GRACE SH (left two panels)
and mascon solutions (right two panels). The spatial patterns of coefficients a7 presented
in Figure 4a,b generally agree well with those of GRACE-ENSO correlation in Figure 4c,d,
while in northern Africa, the absolute value of a7 is relatively small. This is mainly because
the northern Africa is mostly covered by deserts with low water storage. Therefore, to a
certain extent, the coefficients a7 are “equivalent” to the cross correlations (without lag)
between interannual TWS changes and Niño 3.4 index. Results indicate that the interannual
TWS changes in most tropical and subtropical regions are strongly connected with ENSO.
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In addition, the good agreement of spatial patterns in Figure 4a–d also validates the least
squares fitting results.
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respectively; (c) shows correlation coefficients between TWS changes from GRACE SH solutions and Niño 3.4 index; and
(d) shows the cross-correlation coefficients between TWS changes from GRACE mascon solutions and Niño 3.4 index.

In Equation (1), a8 represents the fitting coefficients for Hilbert transformation of
normalized Niño 3.4 index (i.e., N(t)). The Hilbert transformation of N(t) is given by:

H(N(t)) = h(t) ∗ N(t) =
1
π

∫ ∞

−∞

N(τ)

t− τ
dτ (8)

This means that Hilbert transformed time seriesH(N(t)) is related to the time integral
of Niño 3.4 index. Therefore, coefficients a8 could reflect the connection between TWS
changes and the time integral of Niño 3.4 index.

Based on the principle of water balance, TWS changes (∆TWS) over a time period (∆t)
reflect the sum of precipitation (P), evapotranspiration (E) and runoff (R) as:

∆TWS
∆t

= P− E− R (9)

ENSO events are characterized by anomalous SST and trade wind changes in the trop-
ical Pacific, which could significantly impact the energy exchange and moisture advection,
and might eventually cause precipitation anomalies in different areas around the globe [14].
Therefore, Equation (9) suggests that the time derivative of TWS changes (i.e., TWS flux) is
expected to connect with ENSO. At global 1◦ × 1◦grid, we compute monthly TWS flux as
the quantitative difference of TWS changes between two adjacent months, and then apply
the usual data processing method to obtain the interannual TWS flux. Finally, we analyze
the relationship of interannual TWS flux and Niño 3.4 index.

Figure 5 shows the least squares fitting coefficients a8 and the zero-phase-lag cross
correlation coefficients between interannual TWS flux and Niño 3.4 index. The spatial
patterns of coefficients a8 presented in Figure 5a,b are similar to those of GRACE-ENSO
correlation in Figure 5c,d. This is reasonable, considering if TWS flux is related to Niño
3.4 index, and then TWS changes, which means the integral of TWS flux over time, might
be correlated with the time integral of Niño 3.4 index. Therefore, the coefficients a8 could
reflect the correlation between interannual TWS flux and Niño 3.4 index. It is interesting to
note that in many parts of the world, the ENSO coefficients a7 and a8 show substantially
different spatial patterns (e.g., Figures 4a and 5a), and the coefficients a8 appear to show
more pronounced and spatially correlated patterns (e.g., in the broad Amazon basin). The
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TWS flux also shows notably stronger cross correlation with Niño 3.4 index in certain
regions (e.g., Amazon and La Plata basins). This illustrates the closer connections between
TWS flux changes and precipitation anomalies tied to the ENSO events in related regions.
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Figure 5. The same as Figure 4, but for ENSO coefficients, a8 and cross correlation coefficients between interannual TWS flux
and Niño 3.4 index. It should be noted that the TWS flux in this study means the quantitative difference of TWS changes
between two adjacent months.

4.3. Regional Analysis

In Section 4.1, the contributions of ENSO/IOD/AMM to interannual TWS changes
have been discussed in the spatial domain. To investigate the degree of agreement between
climate-induced TWS changes and interannual TWS changes in the time domain, three
regions (circled by the white/black boxes in Figure 3a) are selected for further analysis.
Figure 6 shows the time series of both interannual and climate-induced TWS changes
and their linear relationship in these regions, and the related statistics are summarized
in Table 1. Here, we only provide the results computed from SH solutions, and mascon
solutions were also used for computation and showed similar results (not shown in this
study). The good agreements among signals in Figure 6 suggest that interannual TWS
changes of these regions are strongly influenced by ENSO, IOD, and AMM. Additionally,
the dominant contribution of ENSO to interannual TWS changes is clearly reflected in the
larger amplitudes in Table 1.

Table 1. Statistics of interannual and climate-induced TWS changes in the three selected regions.

Regions
Standard Deviations/cm

Coefficients of
Determination 1

Amplitudes/cm

Interannual Climate
Induced ENSO IOD AMM

Region 1 9.00 8.24 0.76 8.05 1.48 0.97
Region 2 6.26 4.70 0.51 4.65 0.81 2.26
Region 3 5.12 4.25 0.62 4.20 2.43 1.82

1 The coefficient of determination (denoted by R2 shown in Figure 6d–f) is the square of the correlation between
the red and blue curves in Figure 6a–c.
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Figure 6. The interannual and climate induced TWS changes from GRACE SH solutions in the three selected regions shown
in Figure 3a. (a–c) show the interannual TWS changes (blue curves) and climate induced TWS changes (red curves) for
Regions 1–3. (d–f) show the corresponding linear fitting relationship between the two curves in the three regions.

Due to the special hydro-climatic and economical importance of river basins, several
major river basins in the tropics and subtropics are also selected for similar analysis. The
geographic locations of these river basins are shown in Figure 7, and the statistics about
interannual and climate-induced TWS changes are summarized in Table 2. Similar to the
spatial patterns in Figure 2, the contribution of each climate phenomenon to TWS changes
might vary in different river basins. For example, the ENSO contribution to TWS changes
is likely more dominant than those from IOD and AMM in the Amazon, La Plata, Orinoco,
Zambezi, and Ganges River basins. The AMM amplitudes in the Mississippi, Congo,
Nile and Mekong basins are larger than those of ENSO and IOD. Despite the different
contributions of these climate phenomena, the total contributions of ENSO/IOD/AMM to
interannual TWS changes in these basins are clearly significant (with maximum percentages
up to ~90%).
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Figure 7. Selected major river basins in the tropics and subtropics (1—Amazon, 2—La Plata, 3—
Orinoco, 4—Colorado, 5—Mississippi, 6—Congo, 7—Zambezi, 8—Niger, 9—Nile, 10—Ganges,
11—Yangtze, 12—Mekong).

Table 2. Statistics of interannual and climate-induced TWS changes for selected major river basins.

River Basins

Standard Deviations/cm
Coefficients of
Determination

Amplitudes/cm

Interannual Climate
Induced ENSO IOD AMM

Amazon 4.70 4.29 0.75 3.87 0.50 0.79
La Plata 2.95 2.35 0.47 2.11 0.33 0.81
Orinoco 4.65 4.20 0.75 2.95 1.09 1.97

Colorado 2.58 1.94 0.52 0.76 1.29 1.22
Mississippi 2.89 1.58 0.27 0.48 0.36 1.36

Congo 2.62 2.02 0.53 0.87 1.45 1.86
Zambezi 3.95 2.95 0.59 2.89 2.01 1.29

Niger 1.21 0.71 0.31 0.56 0.36 0.42
Nile 1.52 1.11 0.35 0.57 0.16 1.00

Ganges 2.37 1.55 0.39 0.96 0.27 0.85
Yangtze 1.53 0.77 0.22 0.51 0.52 0.14
Mekong 2.61 1.52 0.30 0.58 0.36 1.29

5. Discussions

The focus of this study is to investigate the connections between interannual TWS
changes and ENSO/IOD/AMM climate indices, which relies on the assumption that these
climate indices are linearly independent:

(a) According to Saji et al. (1999) [36], IOD is inherent and unique in the Indian Ocean,
and is likely to be independent of ENSO in the Pacific Ocean. They have demonstrated
that the relationship between DMI and Niño 3 SST anomaly is weak (<0.35). Similarly,
we also computed the correlation coefficient between DMI and Niño 3.4 index used in
this study, and found their correlation is also quite weak (~0.27). Therefore, we could
conclude that ENSO and IOD climate indices are mostly linearly independent.

(b) According to the definition of AMM index, a commonly used ENSO index (cold
tongue index averaged over 6◦ S–6◦ N and 180◦–90◦ W) has been removed from
all fields before the calculation of AMM time series [38]. Thus, the AMM index
represents the dominant mode of non-ENSO coupled ocean–atmosphere variability in
the tropical Atlantic. Furthermore, the correlation between AMM index and Niño 3.4
index used in the study is not significant (−0.28). Therefore, AMM index is considered
as independent of ENSO index.

(c) The correlation coefficient between DMI and AMM index approximately equals to
zero, which suggests that IOD and AMM climate indices are also independent.

In summary, ENSO/IOD/AMM climate indices are linearly independent of each other.
Therefore, to some extent, the fitting coefficients a7 to a12 obtained from Equation (1) would
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not influence each other too much. That is to say, the fitting results of Equation (1) are
reasonable and interpretable.

The ENSO/IOD/AMM amplitudes in Figure 2 are relatively significant (generally
greater than ~3 cm), indicating ENSO, IOD, and AMM are important climate factors
affecting TWS changes in the tropics and subtropics. However, the contribution of each
climate phenomenon to TWS changes might vary in different regions. For example, the
ENSO contribution to TWS changes is found to be more dominant than IOD and AMM in
the Amazon, Orinoco, and La Plata River basins of South America. This is likely due to
that these basins are close to tropical Pacific, where abnormal SSTs and trade wind changes
associated with ENSO events would significantly influence the moisture exchange with
neighboring continent. In addition, the AMM amplitudes in the Mississippi, Congo, Nile,
and Mekong basins are larger than those of ENSO and IOD. Therefore, the amplitude
analyses are helpful to identify regions over the world where interannual TWS changes are
closely related to ENSO, IOD, and AMM, and which kind of climate variability plays the
leading role.

According to Equation (6), we quantify the total contributions of ENSO/IOD/AMM
to interannual TWS changes in the tropics and subtropics (Figure 3). The spatial patterns
of climate-induced TWS changes and interannual TWS changes are generally in good
agreement. The climate-induced TWS changes are especially significant in the tropics
such as northern South America and central Africa. The climate variability in the above
regions is mainly driven by the seasonal and interannual migrations of ITCZ, resulting in
significant precipitation anomalies related to ENSO, IOD, and AMM.

As we mentioned in Section 3, different phases of ENSO/IOD/AMM might affect TWS
changes. Therefore, the time lag information has important implications for monitoring
water storage response to climate variability and predicting global and regional TWS
changes. For example, in a region with large ENSO amplitudes like the Amazon basin,
if ENSO events occur before TWS anomalies for several months, the typical phase shift
(when climate variability leads TWS changes) can be used to forecast major drought and
flood events.

It should be pointed out that there are numerous factors impacting GRACE TWS
estimates and the computation results in this study. The spatial filters applied in GRACE SH
solutions are considered to have removed the most of small-scale signals, and have reduced
the magnitudes of TWS changes at the same time. Residual errors in GRACE observations
and uncertainty in low-degree SH coefficients also influence the computation results. Since
the focus of this study is to analyze the relative contributions of ENSO, IOD and AMM to
TWS changes at global and large regional scales, the attenuation effect in GRACE estimates
would not significantly impact the results, which can be proved by the comparisons of
similar results from GRACE SH and GRACE mascon solutions in Figures 2–5. Furthermore,
the main interest in this study is to analyze TWS changes at relatively large scales, so lack
of small-scale signals should not influence the main conclusions.

Several previous studies have analyzed the impact of large-scale ocean–atmosphere
interactions on TWS changes. These studies mainly carried out regional analysis, with
few focused on global scales. In recent years, a few studies investigated the influence
of ENSO on global TWS changes (e.g., [14,24,25]). However, ENSO is mainly based on
SST variability in the tropical Pacific, contributions of other large-scale ocean–atmosphere
interactions from the Indian and Atlantic Oceans should also be taken into account. In this
study, we mainly investigate the impact of ENSO, IOD, and AMM on interannual TWS
changes. However, anthropogenic activities (e.g., groundwater pumping for irrigation
and domestic consumption) might also impact water storage changes in many parts of
the world (e.g., [5,42–44]). Therefore, a more comprehensive analysis would consider the
anthropogenic influence, which is beyond the scope of the present study.
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6. Conclusions

This study provides a comprehensive investigation of connections between interan-
nual TWS changes in the tropics and subtropics and large-scale climate variability (i.e.,
ENSO, IOD, and AMM) in the Pacific, Indian, and Atlantic Oceans. GRACE measurements
and three climate indices (i.e., Niño 3.4, DMI and AMM indices) are used to explore the im-
pacts of ENSO, IOD, and AMM on interannual TWS changes in the tropics and subtropics.
Based on the least square principle, these climate indices, and the corresponding Hilbert
transformations, together with a linear trend, annual, and semi-annual terms, are fitted to
the TWS time series on global 1◦ × 1◦ grids. The fitting coefficients a7 to a12 can not only
quantify contributions of ENSO/IOD/AMM to TWS changes, but also represent connec-
tions of interannual TWS changes with these climate phenomena. In this study, we take
the ENSO coefficients a7 and a8 as examples to illustrate the possible correlation between
TWS changes and ENSO. To a certain extent, the ENSO coefficients a7 are equivalent to the
cross correlations (without lag) between interannual TWS changes and Niño 3.4 index, and
coefficients a8 reflect the correlations between interannual TWS flux and Niño 3.4 index.

Using the fitting coefficients, we compute the ENSO/IOD/AMM amplitudes from
GRACE SH and mascon solutions. The spatial patterns of two GRACE solutions generally
agree well, whereas the amplitudes of mascon solutions have relatively higher spatial
resolution and larger signal magnitudes. At interannual time scales, TWS changes in the
tropics and subtropics are strongly affected by ENSO, IOD, and AMM. The contribution
of each climate phenomenon to TWS changes might vary in different regions, while in
most parts of the tropics and subtropics, ENSO contribution to TWS changes is found to
be more dominant than those from IOD and AMM. In addition, the total contribution of
ENSO/IOD/AMM to interannual TWS changes is clearly more significant (with maximum
percentages up to ~90%), than individual contributions from these climate phenomena.
The climate-induced TWS changes and interannual TWS changes generally agree well at
both temporal and spatial scales, indicating that interannual TWS changes in the tropics
and subtropics are significantly correlated with ENSO, IOD, and AMM.
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