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Abstract: Ground-penetrating radar (GPR) has become one of the key technologies in subsurface
sensing and, in general, in nondestructive testing (NDT), since it is able to detect both metallic and
nonmetallic targets. GPR has proven its ability to work in electromagnetic frequency range for subsoil
investigations, and it is a risk-reduction strategy for surveying underground various targets and
their identification and detection. This paper presents the results of a case study which exceeds the
laboratory level being realized in the field in a real case where the scanning conditions are much
more difficult using GPR signals for detecting and assessing underground drainage metallic pipes
which cross an area with large buildings parallel to the riverbed. The two urban drainage pipes
are detected based on GPR imaging. This provides an approximation of their location and depth
which are convenient to find from the reconstructed profiles of both simulated and practical GPR
signals. The processing of data recorded with GPR tools requires appropriate software for this type
of measurement to detect between different reflections at multiple interfaces located at different
depths below the surface. In addition to the radargrams recorded and processed with the software
corresponding to a GPR device, the paper contains significant results obtained using techniques and
algorithms of the processing and post-processing of the signals (background removal and migration)
that gave us the opportunity to estimate the location, depth, and profile of pipes, placed into a
concrete duct bank, under a structure with different layers, including pavement, with good accuracy.

Keywords: ground-penetrating radar; nondestructive testing; pipelines detection; modeling; signal
processing

1. Introduction

One of the most effective and powerful nondestructive testing (NDT) employed in
road surveys nowadays is the ground-penetrating radar (GPR), due to its high flexibility
of usage and reliability of results. A reliable risk-reduction strategy to pipe examination
is the key for ensuring the sustainable development and improvement of the life time of
urban water supply and drainage system. The drainage pipes are critical endowment for a
smart city as a precursor for reaching a sustainable development and having a limited life
time. The pipes age with functioning time being buried deep underground and can lead
to significant safety hazards as water dissipation and soil contamination. These possible
disadvantages affect day-to-day use and the long-lasting life of urban pipes. Among NDT
inspection techniques is laser scanning, which is geospatial method that can detect only
spatial distribution visible in the acquisition, while ultrasound elastic waves, a geophysical
method, is capable to detect only quantitative data about failures and cannot achieve more
characteristics of pipes [1].

GPR is a geophysical technique based on very short electromagnetic pulses (1–20 ns)
propagation within radiofrequency band, typically between 10 MHz to few GHz, to map
profile and underground features [2,3]. GPR has numerous characteristics, providing a high
resolution, strong anti-interference ability, and high efficiency. It is also a nondestructive
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technique; consequently, GPR has been extensively used in many fields, such as geological
exploration, water conservancy engineering, and urban construction [4,5]. The properties
depending on frequency (dielectric permittivity (ε), electrical conductivity (σ) and magnetic
permeability (µ)) play a significant role in the electromagnetic energy dissipation in a
medium containing complex discontinuities [3–5].

Until now, GPR surveys are widely employed as a noninvasive detection tool to detect
unknown targets in deep underground and is useful in the localization of electromagnetic
(EM) discontinuities in the subsurface with high resolution [6,7].

Interesting applications fields of GPR are measurements for underground targets
location (ex. cables, landmine and UXO, drainage pipes) as in archaeology [8], civil
engineering [9,10], military applications [11–13], etc. The transducers realize the coupling
of energy within the near field by evanescent and propagating waves [14].

The GPR equipment record the time between the sending of the impulse and its receiv-
ing after the scattering the emitted waves which undergo several propagation processes.
The main registered is reflected by interfaces, while some is also scattered and returns to
the surface, and the signals are presented in B-scan radargram [11,15,16].

The main interest is to detect as many characteristics as is possible to image a buried
object [14], and to extract its clear image from ground discontinuities [17,18]. With GPR
technology underground, drainage pipelines can be detected and it has been used also in
civil engineering to evaluate major structural damage, such as holes and cavities in roads,
plates, and bridge decks [19,20]. Estimating the location of damaged pipes is significant for
service performance and sustainable management.

A new infrastructure has been developed in Iasi, Romania, on the terraces of the
riverbed that crosses the city and includes an upper terrace (underground various targets
and drainage pipes detection in this proposed), a lower terrace (detection of pipes for sewer
leaks [21]), and a medium terrace (investigations related to spill basins and civil protection
dam [22]. The land area along to the riverbed is particularly important, both for the design
of civil constructions and for infrastructure. The problem becomes even more important
given the action of seismic movements, as these lands have different behavior from the
usual situation. Furthermore, for the case of concrete/asphalted tracks, the fatigue life
of the urban pipes located under the road/pedestrian area represents a problem of high
importance, because they are close to urban heating system and utility water ducts.

This paper presents a case study employing GPR signals for detecting and assessing
underground drainage metallic pipes which cross an area with large buildings parallel to
the riverbed. The research exceeds the case study at the laboratory level and was realized in
the field in a real case where the scanning conditions are much more difficult due to the fact
that the area is not perfectly straight and the weather conditions are not always favorable.
Reflections of electromagnetic waves occur and are created in places or layers of the ground
where a variation of electrical or magnetic properties occurs. In areas with different water
content and with buried pipes and tunnels, there is a variation in the speed of propagation
of radar waves, and strong reflections occur. With the help of techniques and algorithms
for processing and post-processing the appropriate signals (migration and background
removal), the noises are eliminated and the shape and depth of the investigated objects
are rendered to a significant extent. The work was performed in the frame of a large
project (starting from 2015 to present) with the aim of transforming the area around river
bank into an ecological agreement park. The project targeted all areas that were at risk
by restoring the infrastructure with different types of buried pipes for water transport or
sewage leakage, overflow basins, and the civil protection dam [21,22].

This paper presents the results recorded with a GPR tool to detect drainage pipes
with unknown approximate position buried under a bike track on the river bank, and
a succession of digital signal processing and post-processing methods applied both to
A-scan and B-scan that provide an easy way to read and interpret the results. The proposed
methods and the algorithms are considered for the recognition and detection of a concrete
duct bank containing two drainage pipes for hot water transportation (turn-return). The
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situation has been simulated using the finite-difference time-domain (FDTD) [2] software
in order to interpret the signals recorded by receiving GPR antenna, bowtie type, working
at 400 MHz [23–25].

2. Materials and Methods
2.1. Generic GPR with Bowtie Antenna and Propagation Waves

The electromagnetic methods as GPR are non-invasive where individual measure-
ments are quasi real-time, and due to the relatively low frequencies used, have the advan-
tage of penetrating electromagnetic waves at great depths in the ground and obtaining
scattering information from buried bodies at great depths. As it is known, the resolution is
defined as the capacity of the measurement system to discriminate individual elements
embedded in a different medium [11]. The penetration depth decreases with the increase
in the conductivity of the medium and, for higher frequency, high resolution and lower
penetration depths are obtained. Figure 1 presents a standard GPR principle consist of a
transmitting (Tx) and a receiving (Rx) antennas placed in a shielded case which is displaced
over the surface to be scanned [26,27]. The GPR emits EM waves that penetrate in the
ground in the form of an ellipse (inset bottom Figure 1).
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Figure 1. Process of a generic GPR system (inset bottom-schematic diagram of GPR reflection hyper-
bola generation and real signal GPR B-scan).

After being recorded and processed by the control unit embedded in a GPR system, the
reflected waves were mixed into a reflection signal A-scan, measuring the interval between
emission and reception of the signal delivered by the reception transducer (Figure 1). It was
predicted that the time of flight t of the GPR signal will be double—forward and backward
to the buried target at z depth, and the remaining constant during the survey [2,28,29]
will increase as the distance between transmitter and receiver increases (x) (inset bottom
Figure 1). Because the area scanned with GPR had mostly multi-layer targets, the speed
had to be calibrated according to layer n [2,30]

The hyperbola in the radar signature when the radar is moving along X-axis (propa-
gating medium is considered homogeneous) [31] is given by

R =
√

z2
0 + (X− x0)

2 (1)

where (xo, zo) is a perfect point scattered in the 2D plane, X is the synthetic aperture
vector, and R is the path length vector (from antenna to scattered). As mentioned in [21],
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simulation techniques that comprise single frequency models, time domain models, ray
tracing, integral techniques, and discrete element methods may be useful in foreseen the
results to be obtained from in-field measurements. The FDTD technique is one of the
simulation methods that is most suitable with GPR surveys [32,33].

The propagating waves (homogeneous waves—the wavenumber is real [34]) in the
near field of the transducer determined the coupling of the energy into the ground. The
nonmagnetic soil (µs = µ0) in which the pipes are buried has electrical properties, relative
permeability (εrs), and conductivity (σs), and the field induced by antenna has the features
of the rectangular coil [7]. For a region free of sources, the Helmholtz equation is useful
according to [35].

The field generated by the emission coil feed by a current with frequency [36] can be
expressed using dyadic Green’s function [37] and integral method

E0(r) = jωµ2

∫
Vsource

↔
G12(r, r′)J(r′)dr′, (2)

where µ2 is magnetic permeability of the medium 2 (soil as Figure 1 depicts),
↔
G12 is

component of dyadic Green’s function matrix. The electric conductivities considered are σf
for the target and respective σ2 for the stratified soil [38] and the total electric field become

E2(r) + jωµ2σ2

∫
Vbody

↔
G22(r, r′)E2(r′)

[
σf (r′)

σ2
− 1

]
dr′ = E0(r), (3)

and perturbation field in air in the presence of conductive target is according with [39]

E1(r) = jωµ2σ2

∫
Vbody

↔
G21(r, r′)E2(r′)

[
σf (r′)

σ2
− 1

]
dr′ (4)

where
↔
G12,

↔
G22 are components of dyadic Green’s function matrix [38].

2.2. Geophysical Surveys in Pavement Assessment and Drainage Water Pipes Detection

The GPR equipment used is Utility Scan Standard System (Geophysical Survey Sys-
tems, Inc. GSSI, Nashua, NH, USA) (Figure 2a) [40], which had a 400-MHz antenna,
allowing a penetration depth until 4.5 m depending on the moisture of soil. The front
wheel of utility scanner had an encoder, allowing a displacement precision determination of
±1 mm, and the scan intervals assured by the GSSI System software was 100 scans/m. The
sampling rate was 0.04 ns, with the quantization of the signal being made on 16 bits [40].
The equipment was set up to record A-scan at each 10 cm, and the time window for which
the signals were obtained is 32 ns. The control unit contained a function that allowed the
testing of the terrain dielectric by recording a data set and then performing its migration.
By knowing the soil permittivity, the penetration depth could also be implicitly known. For
example, the user manual showed that a profile of at least 3 m in length is collected over
well-known objects and that they have to go through those objects at a right angle [40]. By
using the up and down arrows, we could adapt the dielectric value for that hyperbolas
profiles crack-up to points.

The dielectric constant of the soil in the survey area was established at εr = 12, in the
basis of previous investigations [21,22] knowing the exactly type of soil. Due to the weather
conditions (rainy), the value of the dielectric constant was taken from a table from the user
manual of GSSI equipment and tested with TEST_DIEL function [41].

A region of [2000 × 600] cm from the Bahlui river bank was surveyed (Figure 2b)
in the immediate vicinity of the riverbed. The urban drainage pipes for hot water was
taken into study (Figure 3). The pipes had an unknown approximate position, being
buried under a bike track. We assumed that they were buried parallel with the riverbed.
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Due to its orientation and practical survey procedures, the scanning was performed in
3 parallel traces with a 2000-cm length, separated between them with 100 cm, as seen
in Figure 3a. The scanning of directions orthogonal on the direction of riverbank was
facilitated. Figure 3c presents a photo of the testing zone when the new pipes were brought
to be replaced.
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The urban drainage pipes had an approximate 70-cm diameter and, for hot water
transportation, had 15-cm wall thickness of insulation (nonwoven glass fiber). In order to
simplify the data presentation, a zone of [600 × 500] cm was selected and the scanning was
effectuated in 6 transversal traces with 600-cm length, separated between them with 100
cm (the traces were effectuated in both directions, see Figure 3b).

2.3. Signal Processing: A-Scan and B-Scan

The mean value to A-scan data set were crucially assured to be close to zero, so that
the amplitude probability distribution from A-scan data set was symmetric to the mean
value [2].

A′n = An −
1
N

N

∑
n=1

An, (5)

where An are values of raw data set, A’n are values of processed data set, n is the data set
number, and N represents total number of data sets.
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The filtering operation is given by

A′n = An +
An − A′n−1

K
, (6)

where A’n is averaged value, An is the current value.
The K factor will be chosen to take values from n to N or a fixed value, and will

contribute to the average value. Averaging has no effect on discontinuities.
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Thus, a window of L pixels was defined, and the mean of the pixels in it from all
the pixels in this window was subtracted. The window advanced and the procedure was
repeated until the entire image is solved, as

g(x, y) = f (x, y)− 1
L

i=L/2

∑
i=−L/2

f (x + i, y), (7)

where g is filtered image, f is raw data, and L is the window size.
Using nonlinear optimization of the decomposition technique, [41] improves GPR imag-

ing by simultaneously determining spatial variations in size and delaying soil reflection.
Considering Ai(x), the spatially soil reflection amplitude, and Bi(x), the time delay

of the soil reflection apex over segment ith, then Ai(x) and Bi(x) could be approximated
as a sum

Ai(x) =
4
∑

n=0
ain Tn(x); Bi(x) =

4
∑

n=0
bin Tn(x) , (8)

where Tn(x) are the Chebyshev polynomials established by the recursive relation.

Tn+1(x) = 2Tn(x)− Tn−1(x), n > 1 , (9)

with T0(x) = 1 and T1(x) = x.

3. Results
3.1. Application of GPR Data Raw and FDTD Simulations in the Detection and Replace of
Water Pipes

As we showed in previous researches [11,21,22], a GPR device with the corresponding
control unit can record a continuous image of the subsurface, which indicates the presence,
depth, and the layout of soil features required in classification, characterization, and
surveying of soil as well as detection and identification of various buried targets.

GPR waves are modified by the subsurface layer and the recorded radar data sets a
contrast in electrical and magnetic properties; those changes can then be detected, repre-
sented, and characterized. A GPR data set recording delivers high-resolution information
that is able to use at the interpretation and the extrapolation of information obtained with
algorithms and pre-processing techniques. Figure 4 presents the scan on longitudinal direc-
tions of a zone where two urban drainage pipes with known diameter placed in a concrete
duct are buried. Only one reflection peak can be seen, given by direct-coupling by the
A-scan raw, which takes place when the antenna is lightly displaced from the soil [42–44].
In this case, the direct waveform transmitting and receiving antenna in connected with the
surface to produce a mixed waveform. A signal (A-scan) with a deep reflection to record
above concrete described in Figure 4a. It can also be seen that, in the case of real data set,
the signal is very noisy, including clutters [21]. B-scans were obtained from 55 raw A-scan
types, using the specific signal processing, similar to those of ultrasound examinations, as
presented in Figures 4 and 5.

Figure 4 shows the results which were divided by subheadings to assure a succinct and
accurate evaluation of the data set recording, their interpretation, as well as the preliminary
conclusions that could be drawn. At the distance of 44 m from the starting point (Figure 4b),
a signal with the form of a distorted hyperbola and a peak pointing upwards is observed
at the depth of 20.2 ns. This is indicating the fact that the drainage pipes with the axes
parallel with the scanning direction change their orientation.

Figure 5a,b shows the presence of the two drainage pipes for hot water transportation,
with an 85-cm diameter (70-cm diameter of the pipe and 15-cm protective layer), both
buried in concrete duct (εs = 8) [41], the top of pipes being at a 20.2-ns depth. It first uses
the GPRMax software to produce GPR synthetic datasets through FTDT simulations [31].
The simulated data was processed with a code in Matlab 2020b (MathWorks, Inc., Natick,
MA, USA). In Matlab, we used functions for removing noise by adaptive filtering, for
example, “wiener2”, which filters the grayscale image using a pixel-wise adaptive low-pass
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Wiener filter, and a pixelwise adaptive Wiener method based on statistics estimated from a
local neighborhood of each pixel. The waves penetrating the ground are propagated along
the scanning line and produce EM pulses at manually chosen intervals and detect buried
targets. The next reflected EM pulse can be incorporated within a radargram B-scan to
produce an underground 2D image. Figure 6 presents the simulation of the experimental
set-up and surveying conditions using GPRMax 2D. The layout of the survey is previewed
with GPRMaxGV—Gnuplot viewer—a free plot script auto formatter developed by Goran
Bekic [45]. The pipelines are difficult to identify in noisy profiles, which means that
their GPR patterns are sensitive to noises. Introducing the raw radargrams as the test
set into the simulation model, a positive section, corresponds favorable with the object
locations. A reliable detection depth of GPR is determined by the central frequency of
the electromagnetic wave and the attribute of the subsurface formation, while detection
resolution is limited by the wave frequency and signal bandwidth [7].
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3.2. A-Scan and B-Scan Results

An original A-scan is presented in Figure 7a, while Figure 7b presents the processed A-
scan where the mean value was zero and the noise was decreased according to Equation (6).
The value of K was selected as 1.02 according with [21] on the basis of probability of detec-
tion principle and of the characteristics of reception, where K is a measure of interpretation
to eliminate the conflict between two sequential acquisition of data and to keep at least
2% error, according to [6]. Considering a set of five samples containing a B-scan, a se-
ries of techniques of signal processing can be taken into account. Usually, the clutters
hamper the imaging of GPR data. In order to make the evaluation of GPR radargrams as
accurate and correct as possible, extraction of no-longer-desired signals as retransmission
of wave from Tx to Tr or reflections in the air–soil interface must be effectuated. This is
named background removal; good results can be obtained using a subtract mean trace
procedure [46].
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After the weighting coefficients (ai, bi) was calculated, the amplitude Ai(x) and the
delay Bi(x) of segment ith were determined with Equation (5). Parameter calculation was
carried out with a nonlinear least square error minimization function, in the Matlab 2020b
Optimization Toolbox. If the optimization does not converge for a data set, we must use a
recursive approach. Imaging procedures can be used to concentrate the energy existing in
a point target’s hyperbolic arc which returns to a unique point [41]. This technique, named
migration, allows the establishment of the depths of underground objects. Figure 8 present
B-scan results processing of one file over the scanned area. For a B-scan original image
from the inspected area, the algorithm presented above [21] is applied. Figure 8a shows the
results after background removal with L = 20 pixels (length of sliding Hanning window).
Figure 8b presents the result after application of migration technique using the Kirchhoff
method with 0.15 m/ns. Top and bottom reflections of concrete duct bank, in which the
two drainage pipes are located, could be remarked at approximately 20.2 ns, 30.8 ns from
the data set. The parallel line with scanning direction at 30.8 ns describes the reflections
on the remnant water from the pipes and can be seen on the processed image from the
experimental data. The rest of parallel lines were due to numerous reflections from the
soil scanned zone and on the interface concrete duct bank of the urban drainage pipes. In
the same area, we can notice the signals whose shape may indicate the presence of buried
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electrical cables (for example, at 98.6 m, 128.5 m, 153.3 m, 169 m, etc.). On the basis of
raster scan results, the GPR-slice function from matGPR software (open-source software)
was used to obtain a 3-D volume of GPR data and to enable its visualization in the form
of opaque or translucent slices [47,48] In GPR operation, the high resolution in depth is
obtained by utilizing a transmitted signal of wideband. The high resolution was obtained
by coherently processing scattered electromagnetic waves which were measured while the
device scanned along a line of terrain. The resolution after the postprocessing depended
on the focusing capacity of the migration algorithm.
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Figure 8. B-scan raw data processed after using both techniques: (a) ground removal; (b) migration.

It can be observed that, with each processing step, an improvement of resolution was
obtained, helping to emphasize the delimitation of bottom and upper level of the pipes.

B-scan radargrams were concatenated as a result of the parallel line positioned at
20.2 ns, allowing the representation of a 3D dataset under the form of planes (isometric
surfaces) [49–52] with equal signal, generating and displaying an orthographical designing
of the subsurface equal to 55% of the maximum signal included in the 3D data set volume
(Figure 9).
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4. Discussions

Most researches [12,13,15] on object detection only determined whether the objects
were detectable and where the objects were. Other researches have determined the sizes
of rebars and small-scale voids [3,5,8,42] inside concrete, but investigations inside the
complicated underground sections become difficult. Giannikis et al. [33] attempted to
estimate the buried object size (buried ammunitions, including landmine), but they only
utilized numerically produced data. Elsewhere, Grimberg et al. [11] determined the
location and size subsurface buried ammunitions, including antitank mines. Jin et al. [20]
developed a machine learning framework based on wavelet scattering networks to analyze
GPR data for subsurface pipeline identification with smaller diameters. In our previous
works, we also detected pipes for sewer leaks [21] and investigated spill basins and civil
protection dams [22]. This paper presents the results of a case study employing GPR
signals for detecting and assessing underground drainage metallic pipes which cross an
area with large buildings parallel to the riverbed. The research exceeds the case study at
the laboratory level, which is accomplished in the field in a real case where the scanning
conditions are far more difficult. After surveying the zones, the GPR radargram recording
signals of drainage pipes with an unknown approximate position were buried under a bike
track on the river bank. It used a succession of digital signal processing and post-processing
methods applied both to A-scans and B-scans which provide an easy way to read and
interpret the results. The simulations were made with FDTD software to aid interpretation
of the signals recorded by receiving a GPR antenna. The profile of the drainage pipes was
obtained and their diameters could then be estimated. Numerical modelling and signal
post-processing algorithms of GPR can lead to a better understanding of the operating
principle of the radar detection tools [47,53]. GprMax allows the simulation of real cases
of GPR in order to gain an idea of what is expected during surveys and to improve
complex signal processing and interpretation skills until receiving the real data [9,10]. The
propagation waves theory is applied to the GPR detection of drainage pipes, and the signal
processing technique is used for A-scans and B-scans of recorded dataset [21,22]. In our
study, simulations were made with FDTD software and survey data were recorded by
GPR system, working at 400 MHz where the location, depth, and profile of pipes could
be determined.

5. Conclusions

Using GPR raw data and techniques and algorithms of processing and post-processing
of the signals (background removal and migration), the obtained results provided the
opportunity to estimate the location, depth, and profile of pipes, placed into a concrete
replaceable duct bank. High-frequency electromagnetic waves can recognize underground
objects in depth due to sharp energy attenuation. Accepting the noise sensitivity of
pipelines and the failure in recognizing the deep pipeline, the techniques and algorithms
used in these study case presents promising applicability in both simulated and practical
GPR signals. The ground removal and migration methods were introduced and evaluated
for comparison study of GPR B-scan image processing and gave us the opportunity to
estimate location, depth, and profile of pipes. Processing of the acquired data was carried
out with Matlab software, which is in the endowment of our laboratory and not in a
standard application of a commercial software suite available and used by geophysicists,
because of the technical features of our survey. Based on Matlab software, the B-scan
data were converted into images, thus highlighting the depth and position of the buried
pipes and the shape that can be evaluated with good accuracy. Future research will focus
on the knowledge of the physical, mechanical, and chemical properties of the lands in
the investigates area as well as the analysis of environmental pollution risks by testing
areas, including runways, platforms, perimeter road, and road handling, which represent
decisive factors both in the design of civil engineering and for infrastructure works.
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