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Abstract: Synthetic aperture radar (SAR) is an advanced microwave imaging system of great im-
portance. The recognition of real-world targets from SAR images, i.e., automatic target recognition
(ATR), is an attractive but challenging issue. The majority of existing SAR ATR methods are designed
for single-view SAR images. However, multiview SAR images contain more abundant classification
information than single-view SAR images, which benefits automatic target classification and recogni-
tion. This paper proposes an end-to-end deep feature extraction and fusion network (FEF-Net) that
can effectively exploit recognition information from multiview SAR images and can boost the target
recognition performance. The proposed FEF-Net is based on a multiple-input network structure
with some distinct and useful learning modules, such as deformable convolution and squeeze-and-
excitation (SE). Multiview recognition information can be effectively extracted and fused with these
modules. Therefore, excellent multiview SAR target recognition performance can be achieved by the
proposed FEF-Net. The superiority of the proposed FEF-Net was validated based on experiments
with the moving and stationary target acquisition and recognition (MSTAR) dataset.

Keywords: synthetic aperture radar; multiview; automatic target recognition; deep neural network;
feature extraction; feature fusion

1. Introduction

Synthetic aperture radar (SAR) [1–3] is an important modern microwave sensor system,
with powerful capabilities, including high-resolution imaging, day-and-night use, and
all-weather operation. Those qualities make it superior to other sensors, such as infrared
and optical sensors, for some applications. With advances in SAR signal processing and
imaging performance, people have been paying more attention to classifying or recognizing
targets of interest from SAR images. Therefore, automatic target classification or recognition
(ATR) has become an attractive but challenging problem in SAR research and application
areas [4–8].

Generally, an SAR ATR system discovers regions of interest containing potential tar-
gets from the SAR image [9–11] and efficiently assigns those targets reliable and intelligent
category labels [12]. Over the years, researchers focused on this field have proposed many
novel SAR ATR approaches [7,8]. Many SAR ATR methods or algorithms have also been
employed in the past few decades, such as support vector machine (SVM) [13], conditional
Gaussian model (CGM) [14], adaptive boosting (AdaBoost) [15], sparse representation [16],
and iterative graph thickening (IGT) [17].

The SAR ATR methods mentioned above generally perform well in applications. Nev-
ertheless, many of these methods must often extract handcrafted features from SAR targets,
so sophisticated algorithms for ATR must be predesigned. With the rise in machine learning
theory in recent years, ATR methods based on deep learning have quickly advanced [18,19].
They can spontaneously learn hierarchical features from the input data and can achieve

Remote Sens. 2021, 13, 3493. https://doi.org/10.3390/rs13173493 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13173493
https://doi.org/10.3390/rs13173493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13173493
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13173493?type=check_update&version=2


Remote Sens. 2021, 13, 3493 2 of 12

remarkable performance in complex ATR tasks. Many novel works using deep neural
networks have proven to be powerful tools for SAR ATR [20–23].

Most SAR ATR methods focus on single-input SAR images. However, modern SAR
sensors can obtain high-resolution target images from different views in practice. Re-
searchers have indicated that SAR ATR benefits from multiview measurements, since
multiview SAR images contain more abundant classification information than single-view
images [24]. Thus, studies of multiview SAR ATR methods have started in recent years,
achieving good recognition results [25–28].

Although multiview SAR images have more classification information and show
great potential for ATR, two important problems should be solved for ATR performance
improvements. SAR target images are sensitive to their imaging views, and the same target
often has geometric variations in multiview SAR images, such as orientation and shape
variations. Hence, the first challenge is effectively extracting the inherent classification
features from each view of the SAR image while accommodating their geometric variations.
To further exploit the multiview classification information, effective fusion means should be
employed to integrate extracted features from multiple views. Therefore, a valid multiview
SAR ATR approach should be able to extract the inherent classification features from
each view and to fuse these features effectively. Meanwhile, we hope that the processes
of feature extraction and fusion can be carried out spontaneously and without much
manual intervention. Hence, an end-to-end deep learning network with feature extraction
and fusion modules is a perfect choice. It should extract and fuse useful features of the
multiview SAR images through network construction and sample training, and thereby
achieve superior ATR results.

This paper proposes an end-to-end deep feature extraction and fusion network (FEF-
Net) to address these two problems and to improve the multiview SAR ATR performance.
Its network architecture is based on a type of multiple input topology for multiview SAR
ATR. Some specific modules, such as deformable convolution and squeeze-and-excitation
(SE), are embedded in this network. The deformable convolutional layer can extract
inherent classification information and can accommodate the geometric variations of SAR
target well, whereas the SE module fuses the features from the multiview SAR images
together. Thus, these two problems in multiview SAR ATR, classification feature extraction
and fusion of input multiview SAR images, can be effectively resolved with FEF-Net.
Therefore, the proposed network can exploit classification information from multiview
SAR images and can achieve satisfactory ATR performance.

The main contributions of FEF-Net compared with existing SAR ATR methods are
the following: (1) We designed a new deep neural network based on a multiple-input
topological structure that can significantly improve SAR ATR performance; (2) the helpful
classification features of the input multiview SAR images can be extracted and fused
thoroughly through the implantation of distinct network modules; and (3) the proposed
FEF-Net achieves excellent recognition performance compared with the available SAR
ATR methods.

The remainder of this paper is organized as follows: Multiview SAR ATR is modeled
and formulated in Section 2. Section 2 also details the proposed FEF-Net for multiview SAR
ATR. The ATR performance of FET-Net is evaluated in Section 3, and Section 4 provides
the conclusion.

2. Materials and Methods
2.1. Problem Formulation

Figure 1 shows the multiview SAR ATR geometric model of a ground target. In a
practical multiview SAR ATR pattern, the SAR system receives its returns and obtains mul-
tiview images of the ground target from different aspects and depressions. For simplicity,
the depression is set as a constant here. When the view interval θ and view number k are
provided, SAR can collect the ground target images in multiview imaging mode. Using
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these multiview SAR images, more classification information can be obtained than from
the single-view pattern.

Depression φ

View Intervalθ 

z

y
x

View #k

Ground Target

SAR Platform
View #3 View #2 View #1

Figure 1. Multiview SAR ATR geometric model of a ground target.

Hence, the multiview SAR target recognition problem requires a valid multiple input
classifier to determine the most probable classified label for the interested target, which
can be formulated as follows:

f : f (x#1, x#2, · · · , x#k)→ yi ∈ Y (1)

In Equation (1), f is the classifier with multiview SAR images as the input, yi is the
assigned target label, Y is the class label set, and x#k is the kth view of the SAR image target
with its aspect angle ϕ(x#k), which satisfies the following conditions.{

ϕ(x#1) < ϕ(x#2) < · · · < ϕ(x#k)
|ϕ(x#1)− ϕ(x#k)| ≤ θ

(2)

or {
ϕ(x#1) > ϕ(x#2) > · · · > ϕ(x#k)
|ϕ(x#1)− ϕ(x#k)| ≤ θ

(3)

FEF-Net was designed to solve the ATR problem with multiview SAR images based
on this formulated model. The FEF-Net method is explained in the following subsection.

2.2. Proposed Method

This subsection proposes FEF-Net to solve these two difficulties and to improve the
performance of multiview SAR ATR. The architecture of the FEF-Net for multiview SAR
ATR is provided, along with details on specific modules of the network.

2.2.1. Network Framework

The basic framework of the FEF-Net instance with three inputs is shown in Figure 2.
This deep neural network is based on a multiple-input topological structure. The inputs
are merged into a certain layer, extracting and fusing the classification information from
the multiview SAR images.
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Figure 2. The basic architecture of FEF-Net for multiview SAR ATR.

As mentioned in Section 1, the key point in multiview SAR ATR is an effective
extraction and fusion classification feature. Hence, the proposed FEF-Net begins with a
deformable convolutional layer in each branch to extract the inherent classification feature
from each view and to accommodate the geometric variations in the SAR target. Alternate
pooling and convolutional layers are present within each branch to further extract the
features from each view and to reduce the feature dimensions. After the feature extraction
from each view, the three branch feature maps are concatenated. These merged feature
maps are linked to an SE network module to further recalibrate the feature responses
and to fuse the concatenated features of the multiview SAR images together. Finally, the
FEF-Net instance ends with a fully connected layer, and the softmax classifier performs the
recognition decision.

From the basic architecture of the instance, we can see that the proposed FEF-Net can
effectively extract and fuse the classification information from the input multiview SAR
images, which benefits multiview SAR ATR. Specific modules in the proposed network are
provided in the following discussion.

2.2.2. Deformable Convolution

The convolution operation is inspired by the process of the biological neuron in the
visual cortex [29]. Supposing that the grid Ω represents the receptive field size and dilation,
the convolution operation can be written as follows:

z(p) = ∑
pn∈Ω

w(pn) · a(p + pn) (4)

where z(p) represents the intensity of each location p on the output feature map z, w
denotes the convolution kernel, pn enumerates the locations in Ω, and a is the input
feature map. An activation function, such as the rectified linear unit (ReLU), follows the
convolution to enhance the nonlinear representation of the network.

The diagram for deformable convolution is shown in Figure 3a, which can be formu-
lated as follows:

z(p) = ∑
pn∈Ω

w(pn) · a(p + pn + ∆pn) (5)
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where ∆pn represents the additional offsets learned using a convolutional operation over
the same input feature. Thus, the sampling of the deformable convolution is from the
irregular and offset locations pn + ∆pn.

Since the offset ∆pn is typically fractional, the deformable convolution should be
performed based on the interpolation:

a
(
p′
)
= ∑

q
B
(
q, p′

)
· a(q) (6)

where q enumerates all integral spatial locations in a, p′ = p + pn + ∆pn, and B(·, ·)
denotes the interpolation kernel.

By augmenting the spatial sampling locations with additional offsets, the deformable
convolution can enhance the modeling of targets’ geometric variations and can effectively
extract the inherent features of the SAR images.

Offsets

(a)

Global pooling

Fully-connected

Sigmoid

Input feature map

Output feature map

H x W x C

1 x 1 x C

H x W x C

(b)

Figure 3. A basic architectural diagram of deformable convolution and SE. (a) Deformable convolu-
tion. (b) SE.

2.2.3. SE Module

The classification features extracted from multiple views are different. Thus, we
employ an SE module [30] to adaptively recalibrate and fuse those concatenated feature
responses from the multiview SAR images. Figure 3b shows a basic block diagram of the
SE module. Let A = [a1, a2, · · · , aC] denote the input feature maps of the SE module and
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al ∈ RH×W , l = 1, 2, · · · , C. The SE module squeezes the global spatial information of the
input into a channel descriptor d ∈ RC with a global average pooling operation:

dl =
1

H ×W ∑
i

∑
j

al(i, j) (7)

A fully connected layer is employed to exploit the aggregated information in the
squeeze step and adaptively learn the recalibration, formulated as follows:

s = σ(Wd + b) (8)

where s = [s1, s2, · · · , sC]. W and b are the weight matrix and bias of the fully connected
layer, which are the trainable parameters and can be computed by the network training
method [31]. The sigmoid activation is denoted by σ(·).

The final fused feature A′ = [a′1, a′2, · · · , a′C] of SE is obtained by recalibrating the
input feature maps A as follows:

a′ l = F(al , sl) = sl · al (9)

Through dynamic recalibration and fusion of the features from different views, the SE
module can effectively help improve the feature discriminability and ATR performance
of FEF-Net.

2.2.4. Other Modules

Other helpful modules or operations, such as pooling, dropout, and softmax, are also
necessary for FEF-Net. As an important module in FEF-Net, the pooling layer can extract
the prominent features from the input feature map while reducing its dimensions. Here,
we use a max-pooling operation in the proposed neural network.

Dropout is an operation widely used to reduce the overfitting of the neural network.
It enhances the robustness of the network’s learning ability with random active neuron
combinations. Dropout is used after the last convolutional layer in FEF-Net to increase
the generalization.

After all of the features of the multiview SAR images are extracted and fused, the
feature maps are transformed and connected to a fully connected layer. Finally, the softmax
classifier [32] provides the accurately classified attributes of the target, as follows:

p
(

yi|z(L)
)
=

exp
(

z(L)
i

)
∑K

j=1 exp
(

z(L)
j

) (10)

where z(L) is the input feature vector to the softmax classifier, and K denotes the class number.

2.2.5. Loss Function and Network Training

The loss function used in FEF-Net is the cross-entropy loss [33]:

L = −
K

∑
i=1

yi log p
(

yi|z(L)
)

(11)

The training process of FEF-Net is similar to that of a standard SAR ATR neural
network, although it has a complex network structure. The back propagation algorithm
can be used to calculate the gradients and update the network parameters to effectively
train the network.
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3. Results and Discussion
3.1. Dataset

We selected raw SAR images from the moving and stationary target acquisition and
recognition (MSTAR) dataset [34] to assess the proposed FEF-Net ATR performance for
our experiments. The MSTAR program collected a significant quantity of SAR images to
evaluate the performances of advanced SAR ATR methods. The MSTAR dataset includes a
large number of 0.3 m× 0.3 m resolution SAR images processed with an X-band spotlight
SAR sensor. Ten classes of targets were used in this experiment. The optical images and
the corresponding SAR images of these targets are shown in Figure 4.

(a) (b)

(c) (d)

Figure 4. Optical and SAR images of targets in MSTAR dataset. Optical and SAR images for targets
of (a,b) BMP2, BTR70, T72, BTR60, and 2S1; (c,d) BRDM2, D7, T62, ZIL131, and ZSU23/4.

Only part of the raw SAR images were selected from these ten class targets with a
depression of 17◦ to generate multiview SAR image samples for training the network in this
experiment. The azimuth angles of the selected images for each class all ranged 0◦−360◦.
All raw images in the dataset with a depression of 15◦ were used to generate testing
multiview SAR images. The usage of raw SAR images is listed in Table 1. Additionally,
the gray enhancement method with a power function [35] was employed to enhance the
scattering information of the SAR target images.

Table 1. Raw SAR image selection from the MSTAR dataset.

Training Testing

Target Types Raw Images Target Types Raw Images

BMP2sn-9563 78 BMP2sn-9563 195
BTR70 78 BTR70 196

T72sn-132 78 T72sn-132 196
BTR60 86 BTR60 195

2S1 100 2S1 274
BRDM2 100 BRDM2 274

D7 100 D7 274
T62 100 T62 273

ZIL131 100 ZIL131 274
ZSU23/4 100 ZSU23/4 274

The view interval θ was set as 45◦. The data augmentation method [27] gener-
ated many multiview training samples from the selected raw SAR images. There were
48,764 multiview SAR image samples with a depression of 17◦ for deep network training.
The samples were randomly selected from the generated multiview SAR images with a
depression of 15◦ for testing.

3.2. Network Configuration

The input SAR image size for the network instance was 80× 80, and the probability
of dropout was set to 0.5 during the training phase. Table 2 lists the hyper-parameters of
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the FEF-Net instance in our experiment, which were determined by statistical validation
and trials.

Table 2. FEF-Net instance configurations. Convolutional layers are represented as Conv. and their hyper-parameters denote
as (number of feature maps)@(kernel size in convolution). “La_#b” represents the bth branch of ath layer. “WS,” “SS,” and
“NN” denote window size, stride size, and number of neurons in network, respectively.

Layer L1_#1, #2, #3 L2_#1, #2, #3 L3_#1, #2, #3 L4_#1, #2, #3 L5 L6 L7 L8 L9 L10

Module Deformable Conv. Max-Pool Conv. Max-Pool SE Conv. Max-Pool Conv. Fully-Connected Softmax

Configuration 8@5× 5 WS: 2× 2 16@6× 6 WS: 2× 2 NN: 48 96@5× 5 WS: 2× 2 128@4× 4 NN: 64 NN: 10SS: 1× 1 SS: 2× 2 SS: 1× 1 SS: 2× 2 SS: 1× 1 SS: 2× 2 SS: 1× 1

3.3. Performance Analysis

Table 3 shows the proposed FEF-Net recognition result with a confusion matrix. The
rows of the matrix are ground truths, and the columns are the predicted class labels. Each
element in the confusion matrix denotes the recognition rate of FEF-Net for a specific
target class.

Table 3 shows that the recognition rate of the proposed FEF-Net was higher than
99.00% in ten classes of the ATR problem. We can infer from this experimental results that
the multiview SAR images of the same target contained large amounts of classification
information. The proposed FEF-Net can effectively extract and fuse the classification
features of the input multiview SAR images using only a few raw data for generating
training samples. Therefore, it can exploit recognition information well from multiview
SAR images and can achieve an excellent ATR performance.

Table 3. The confusion matrix of the proposed network instance (recognition rate: 99.31%).

Class BMP2sn-9563 BTR70 T72sn-132 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4

BMP2sn-9563 99.10 0.00 0.10 0.00 0.65 0.00 0.00 0.15 0.00 0.00
BTR70 0.00 99.95 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00

T72sn-132 0.75 0.00 99.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BTR60 0.25 0.65 0.00 98.10 0.10 0.65 0.00 0.25 0.00 0.00

2S1 0.00 0.05 0.00 0.00 99.85 0.10 0.00 0.00 0.00 0.00
BRDM2 0.00 0.00 0.00 0.00 0.25 98.85 0.00 0.00 0.90 0.00

D7 0.00 0.00 0.00 0.00 0.00 0.00 98.90 0.00 1.05 0.05
T62 0.00 0.00 0.00 0.10 0.05 0.00 0.00 99.85 0.00 0.00

ZIL131 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 99.40 0.00
ZSU23/4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 99.90

To visually show the classification capabilities of FEF-Net, some of the input multiview
SAR samples and their output vectors in the fully connected layer were mapped into two-
dimensional Euclidean space by the t-distributed stochastic neighbor embedding (t-SNE)
algorithm [36], as shown in Figure 5.

Figure 5a shows the input multiview SAR samples, and Figure 5b illustrates the
corresponding outputs. We can observe that the visualization results of the original
samples are mixed in Figure 5a and were difficult to classify. After being processed by
FEF-Net, the samples with the same class label became closer, whereas the different class
samples tended to end up far away from each other, as shown in Figure 5b. That allowed
for easier classification and led to effective recognition results.
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Figure 5. Visualization of classification results of FEF-Net. Points with the same color belong to the
same target class. (a) Input multiview samples and (b) corresponding output.

Although the proposed network instance has only three branches in Figure 2, the
architecture of FEF-Net is flexible and can have a different number of input branches.
We conducted a group of experiments to test the recognition performances of FEF-Net
instances with different views. Similarly to the previous experiment, some of the raw SAR
images were selected to generate multiview samples for training the networks, and the
testing samples were randomly selected for recognition result evaluation. Table 4 shows the
raw SAR images, generated training samples, and recognition results of FEF-Net instances
with two, three, and four input views.

Table 4. Recognition performances of network instances from different views.

Network Instances Raw SAR Images Generated Training Samples Recognition Rates

2-Views 1377 21,834 98.42%
3-Views 920 48,764 99.31%
4-Views 690 43,533 99.34%

We can see from the experimental results that the recognition rates of FEF-Nets with
two, three, and four views were all higher than 98.00%, but only using a few raw data
for training sample generation. As the number of input views increased, the recognition
rate rose as well, and could reach more than 99.30%. These experimental results indicate
the flexibility and potential applications of FEF-Net for SAR ATR tasks with different
input views.

We compared the target recognition performance of FEF-Net with the performances of
five other methods, including adaptive boosting (AdaBoost) [15], iterative graph thickening
(IGT) [17], conditional Gaussian model (CGM) [14], multiview deep convolutional neural
network (MDCNN) [27], and sparse representation-based classification (SRC) [25], which
are all typical or recently published methods for SAR ATR.

The recognition rate for each ATR method is shown in Figure 6. Although the recog-
nition rates of all the methods were more than 92.00%, their performances were different.
The comparisons indicate that FEF-Net had superior recognition performance compared
with the other five SAR ATR methods, demonstrating the reasonability and validity of
FEF-Net.
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Figure 6. Recognition performances of various methods.

4. Conclusions

Inherent classification feature extraction from each view and multiview feature fusion
are two important issues for improving the performance of multiview SAR ATR. We
presented a novel ATR approach based on FEF-Net with multiview SAR images. FEF-Net
was designed with a multiple-input topological structure, including specific modules, such
as deformable convolution and SE, and it has the capability of learning useful classification
information for multiview SAR images. Thus, the two key problems, classification feature
extraction and fusion, are solved with the proposed FEF-Net. Extensive experiments on
the MSTAR dataset were conducted, which showed that the proposed multiview FEF-Net
can achieve excellent recognition performance. Its top recognition rate was more than
99.00% in a ten class problem. Additionally, it achieved superior recognition performance
compared with the existing SAR ATR methods.

The proposed method attained satisfactory recognition results in SAR ATR because
of its effective extraction and fusion of classification features. Although we used helpful
learning modules in our network for this study, other promising feature extraction and
fusion methods may also work, such as the spatial transformer technique and self-attention
mechanism. Hence, these alternative methods are important issues worth studying in
subsequent research.
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