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Abstract: Synthetic aperture radar (SAR) images are often disturbed by speckle noise, making SAR
image interpretation tasks more difficult. Therefore, speckle suppression becomes a pre-processing
step. In recent years, approaches based on convolutional neural network (CNN) achieved good
results in synthetic aperture radar (SAR) images despeckling. However, these CNN-based SAR
images despeckling approaches usually require large computational resources, especially in the
case of huge training data. In this paper, we proposed a SAR image despeckling method using a
CNN platform with a new learnable spatial activation function, which required significantly fewer
network parameters without incurring any degradation in performance over the state-of-the-art
despeckling methods. Specifically, we redefined the rectified linear units (ReLU) function by adding a
convolutional kernel to obtain the weight map of each pixel, making the activation function learnable.
Meanwhile, we designed several experiments to demonstrate the advantages of our method. In
total, 400 images from Google Earth comprising various scenes were selected as a training set in
addition to 10 Google Earth images including athletic field, buildings, beach, and bridges as a test set,
which achieved good despeckling effects in both visual and index results (peak signal to noise ratio
(PSNR): 26.37 ± 2.68 and structural similarity index (SSIM): 0.83 ± 0.07 for different speckle noise
levels). Extensive experiments were performed on synthetic and real SAR images to demonstrate
the effectiveness of the proposed method, which proved to have a superior despeckling effect and
higher ENL magnitudes than the existing methods. Our method was applied to coniferous forest,
broad-leaved forest, and conifer broad-leaved mixed forest and proved to have a good despeckling
effect (PSNR: 23.84 ± 1.09 and SSIM: 0.79 ± 0.02). Our method presents a robust framework inspired
by the deep learning technology that realizes the speckle noise suppression for various remote
sensing images.

Keywords: CNN; ReLU; conifer; broad-leaved; mixed forest

1. Introduction

With the development of radio technology, radar has not only been used in military
fields such as target detection [1,2] and reconnaissance [3,4] but also plays an important
role in weather forecasting [5], environmental protection [6,7], etc. Synthetic aperture radar
(SAR) [8,9] is an efficient type of radar system, which can generate high resolution images
on the moving platform, such as airplanes, satellites, etc. In the process of radar movement,
the ground target is scanned by transmitting electromagnetic waves and reflects the radar
echo signal. Finally, the radar image is synthesized by the collected two-dimensional
echo signal.

Compared with optical and infrared imaging systems, SAR possesses inherent all-
day and all-weather acquisition capability and makes some difficult tasks possible, such

Remote Sens. 2021, 13, 3444. https://doi.org/10.3390/rs13173444 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9859-3232
https://doi.org/10.3390/rs13173444
https://doi.org/10.3390/rs13173444
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13173444
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13173444?type=check_update&version=2


Remote Sens. 2021, 13, 3444 2 of 22

as detecting hidden targets and interferometry [10,11]. However, the SAR images are
often inhibited by speckle, which is formed by the interference echo of each resolution
cell and brings the difficulties for SAR images processing and interpretation. Therefore,
the image despeckling is crucial and is used as a pre-processing step in various SAR
applications [12,13].

For SAR images, the main reason for contamination is multiplicative speckle noise,
and this noise model can be described by the following equation.

Y = XN (1)

where Y denotes the observed intensity image with size of W × H, X is the clean image
with size of W × H corresponding to the Y, and N represents the factor of speckle noise.
Specifically, for SAR amplitude image, N follows a Gamma distribution with unit mean
and variance 1/L and has the following distribution [14]:

P(N) =
LLNL−1 exp(−NL)

Γ(L)
(2)

where L ≥ 1, N ≥ 0, Γ(•) denotes the Gamma function, and L is the equivalent number
of looks (ENL). The purpose of speckle suppression methods based on the convolutional
neural network is to learn the nonlinear mapping relationships between clean images and
corresponding noisy images.

Since the 1980s, different methods for despeckling have been proposed based on
various technologies, such as multilook processing [15–18], spatial domain filters [19–22],
wavelet transform [23–26], nonlocal filtering [27–30], and total variation [31–34]. The
multilook processing can suppress speckle noise simply and effectively, but this leads to
reduction of resolution for SAR image. Spatial domain filtering methods can effectively
suppress noise, but they always have the problem of excessive smoothing of edge and
detail information. Wavelet transform based methods are superior to the spatial domain
filtering methods in speckle suppression. However, these kinds of methods still cannot
save the texture details of the image effectively. The methods based on the non-local idea,
such as probabilistic patch-based (PPB) [28] and SAR block-matching 3D (SAR-BM3D) [29],
can achieve better results for speckle suppression and texture information. The basic idea
is that there are large numbers of similar blocks in the whole image, and the self-similarity
between the blocks is employed. However, the search for similar blocks increases the
computational complexity for non-local methods. Although the above methods have
achieved good results for despeckling, some of these methods still face problems if the
intention is to preserve excellent detailed features in domains of complicated texture.

In recent years, with the development of computer hardware, various methods based
on deep convolutional neural networks were successfully applied in image denoising
tasks [35]. Compared with traditional algorithms for SAR image despeckling, a deep
neural network is more powerful to solve complex non-linear problems. Chierchia [36] used
homomorphic processing and residual learning [37] to train a convolutional neural network,
in which the log-transformed images were trained in the neural network. Wang proposed
a despeckling network named image despeckling convolutional neural network (ID-CNN)
by using a component-wise division-residual layer to estimate speckle [38]. Zhang [39]
combined skip connection [40] and dilated convolution [41] to achieve SAR despeckling.
Similarly, Gui [42] proposed a network using dilated convolution and a densely connected
network [43]. Lattari [44] successfully used the U-Net CNN architecture for SAR image
speckle suppression. Moreover, some scholars also proposed the SAR image despeckling
schemes by combining CNN with other methods, such as nonlocal methods [45–47] and
guided filtering (GFF) methods [48–50]. Although CNN based methods have achieved
successful despeckling application, one problem is that the despeckling network becomes
deeper and wider, which leads to large computation in both network training and the
despeckling process. In order to reduce network parameters, we proposed a method using
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a new learnable spatial activation function based on xUnit [51]. In the case of the same
parameter quantity, the activation function can obtain better despeckled results than the
commonly used functions such as the rectified linear unit. Moreover, the function can
achieve the same performance as the original structure with fewer layers so that more
complex network structural characteristics can be avoided.

In this study, we aimed to use a better convolutional neural network method for
speckle suppression of SAR images. Therefore, a speckle suppression method of SAR
images based on a learning activation function was introduced. In order to improve the
speckle suppression performance and reduce the occupancy rate of computing resources
as much as possible, an activation function with learnable parameters was proposed from
the perspective of the threshold unit of ReLU, a common activation function. In order
to analyze the performance of the activation function, comparative experiments were
designed. The innovation of this paper is as follows: firstly, a novel algorithm is proposed
to achieve speckle suppression; secondly, a complete set of experimental methods and
systems is formed from theory to simulation and then to the application of real SAR images;
thirdly, the method proposed in this paper not only is applicable to SAR images but also
introduces forest image denoising for comparison.

The rest of the paper is organized as follows. Section 2 introduces the proposed scheme,
including the network architecture, the modified xUnit (M-xUnit), and the evaluation index
of SAR image speckle suppression. The results on synthetic and real SAR images are shown
and compared with other state-of-art methods in Section 3. Section 4 derives the discussion
and the conclusion in Section 5.

2. The Theory and Method
2.1. Structure Design of Learnable Activation Function

Convolution operation and pooling operation in convolution neural networks are
linear operations, which only can solve linear problems. However, most of the practical
problems are nonlinear. If just stacking the convolution layer and the pooling layer directly,
the neural network will only be suitable for the linear problem. This is why CNN needs to
add an activation function layer whose role is to inject nonlinear factors into the neural
network so that the network can fit all kinds of curves and be able to handle practical
problems. The common activation functions are as follows: logistic function (also known
as Sigmoid function) [52], hyperbolic tangent function (Tanh) [53], and rectified linear units
(ReLU) [54]. The expressions of the three functions are as follows:

fSigmoid(x) = 1
1+exp(−x) ,

fTanh(x) = 1−exp(−2x)
1+exp(−2x) ,

fReLU(x) = max(0, x).

(3)

It can be seen from Figure 1 that the Sigmoid function can compress the input signal
into the interval [0, 1] [52]. Since the data are compressed to the interval [0, 1], this function
is mainly used to transform the input into a form of probability that also ranges from 0 to
1. However, when the input is large or small enough, the output approaches 1 or 0 after
compression, which results in gradient dispersion. The Tanh function can be obtained by
scaling and translating the Sigmoid function [53]. The mean value of the Tanh is 0, and
its convergence speed is faster than that of the Sigmoid function, but it still cannot solve
the problem of gradient vanishing. Therefore, the ReLU function is the most commonly
used activation function, which has strong sparsity and greatly reduces the number of
parameters. In addition, the ReLU function solves the problem of gradient vanishing in the
positive interval, and its convergence speed is much faster than the Sigmoid and the Tanh
functions. However, the ReLU function is difficult to update for some parameters in the
negative interval. To solve the above mentioned problems, there are also some improved



Remote Sens. 2021, 13, 3444 4 of 22

versions of ReLU functions, such as the parametric rectified linear unit (PReLU), ELU, etc.
These improved functions exist to make up for the defects of the ReLU function.

Figure 1. Four kinds of activation function curves: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) ReLU after derivation.

Although there are different kinds of convolutional neural network structures, their
structures are basically similar, mainly composed of convolution and activation functions.
From a mathematical point of view, the relationship between layer k and layer k + 1 is
as follows: {

zk = Wkxk + bk,
xk+1 = f (zk).

(4)

where x is the k-layer input, Wk is the convolution operation, bk is the bias term, f (·) is the
nonlinear activation function, and xk+1 is the layer input.

Taking the ReLU activation function as an example, the nonlinear operation of the
function satisfies f (0) = 0, and the input of layer k + 1 in Equation (4) can be converted into:

xk+1 = zk ◦ gk (5)

The symbol ◦ in the formula is the Hadamard product, that is, the product of the
corresponding elements of two matrices. gk represents the weight mapping related to zk,
which is defined as follows:

[gk]i =
[ f (zk)]i
[zk]i

(6)

where gk is 0 when zk is 0.
The ReLU curve in Figure 1c is derived, and the following formulas can be obtained:{

f (zk) = zk zk > 0,
f (zk) = 0 zk ≤ 0.

(7)

Although the CNNs of various complex structures are proposed to improve the
denoising performance in SAR image speckle suppression tasks, these network structures
cannot avoid a large number of network parameters. Here, a modified xUnit activation
is proposed and incorporated into ID-CNN structure to further improve the denoising
performance. According to the characteristics of the ReLU shown in Figure 1c, a ReLU
derivative curve shown in Figure 1d can be obtained. At this point, the ReLU activation
function can be considered as a threshold unit (0 or 1) shown in Figure 2a, where gk denotes
the threshold unit (0 or 1), and xk and xk+1 respectively represent the ReLU functions
of input and output. By contrast, a learnable spatial activation function is proposed to
construct a weight map in the range [0, 1] so that each element is related to the spatial
neighborhood of its corresponding input element [51].

It can deduce that gk is a threshold unit related to zk. The formula is as follows:

[gk]i =

{
1 [zk]i > 0,
0 [zk]i ≤ 0.

(8)
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Equation (8) represents the redefined ReLU activation function, and its structure is
shown in Figure 2a. Multiplies represents the product of corresponding elements, namely
the Hadamard product.

As can be seen from Figure 2a, the input xk is convoluted to get zk. The ReLU function
can be regarded as setting the threshold unit gk value according to each element value of zk
and multiplying it to get the output xk+1.

Figure 2. Three activation blocks: (a) the ReLU after derivation, (b) the structure of xUnit, (c) the modified xUnit.

According to Figure 2a, the gk value of the M-xUnit function in this section is not
only related to the corresponding element of zk but is also related to the spatial adjacent
elements. The basic idea is to construct a weight mapping in which the weight of each
element depends on the corresponding spatial adjacent input elements. This relationship
can be realized by convolution operation. As shown in Figure 2c, the constructed weight
mapping realizes nonlinear operation through a ReLU activation function, then successively
going through the deep convolution and the Tanh function, and, finally, the weight range
is mapped between [−1, 1]. Among these operations, the employment of deep convolution
ensures that the weight of each element is related to its corresponding spatial adjacent
elements. The introduction of Tanh solves the problem that the output of ReLU is not
zero-centered and makes up for the defect that the element value is zero by ReLU when
it is less than or equal to zero, which avoids the phenomenon that some units will never
be activated.

In Figure 2c, gk of M-xUnit activation unit is defined as:{
[gk]i = Tanh([dk]i),
[dk]i = Hk(ReLU([zk]i)).

(9)

where Hk represents deep convolution, while dk represents the output of deep convolution.
To enable xUnit shown in Figure 2b to perform better in the ID-CNN architecture

and the task of SAR despeckling, the Gaussian function was replaced with a hyperbolic
tangent function (Tanh), and two batch normalization (BN) [55] layers were removed.
Tanh function can map the dynamic range to [−1, 1] so that the mean value of the output
distribution is zero and resembles the identity function when input remains around zero.
As shown, the BN layers cannot improve the denoising performance of the SAR image,
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and the possible reason is that the output of the hidden layer is normalized by BN, which
destroys the distribution of the original space [39,56]. The modified xUnit is shown in
Figure 2c, where Conv2d represents the operation of convolution, and Conv2d Depthwise
denotes deep convolution [57] whose kernel size is set as 9 × 9.

Figure 3 shows the difference between deep convolution and ordinary convolution.
One convolution kernel of deep convolution corresponds to one channel, and each channel
can only be convoluted by one kernel. The number of output channels generated in this
process is the same as the number of input channels. Compared with ordinary convolution,
deep convolution has lower parameters and lower operation cost, which is the main reason
why M-xUnit has fewer parameters. Although the number of parameters for a function
increases, compared with the parameters of the whole network, the increase of parameters
is quite limited. At the same time, the speckle suppression performance of the network is
also improved.

Figure 3. The difference between two convolution operations: (a) ordinary convolution operation,
(b) deep convolution operation.

Assume the size of the input image is M× N with m channels, the size of the convo-
lution kernel is k× k, and the number of kernels is n. As is shown in Figure 3, for ordinary
convolution, each output channel is convoluted by m kernels, thus the computational
complexity is M× N × k× k×m× n, while for deep convolution, each output channel is
convoluted by only one kernel, thus its computational complexity is M× N × k× k× n.
It can be seen that the computation cost of deep convolution is 1/m times that of ordi-
nary convolution.

However, deep convolution cannot expand the feature maps, and because the input
channels are convoluted separately, it cannot effectively use the feature information of dif-
ferent channels in the same spatial position. Therefore, it is necessary to employ pointwise
convolution to combine the feature maps generated by deep convolution into a new feature
map. The combination of the two convolutions forms a deep separable convolution, which
is very suitable for the lightweight network of the mobile terminal. This is also the core
of Mobilenet [57] and Xception [58]. However, the basic idea of the M-xUnit activation
function in this section is to correlate the weight mapping with the corresponding spatial
adjacent elements of the input elements. This only requires a convolution operation and
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does not need to consider whether or not to effectively use the feature information of the
same spatial position between channels. Therefore, this section only adds one layer of deep
convolution to the M-xUnit activation unit.

2.2. Loss Function

Loss function is the basic and critical factor and can measure the prediction effect of
a model [59,60]. It can be effectively applied to various tasks of deep learning through
the definition and the optimization of loss function. In Section 2.2, the combination of
Euclidean loss and TV loss as a loss function is used. Specifically, the Euclidean loss is used
to minimize the error between the estimated image and the target image. Moreover, the TV
loss is used to smooth the predicated image. They are defined as:

LE =
1

WH

W

∑
w=1

H

∑
h=1

∥∥∥X̃w,h − Xw,h
∥∥∥2

2
(10)

LTV =
W

∑
w=1

H

∑
h=1

√(
X̃w+1,h − X̃w,h

)2
+
(

X̃w,h+1 − X̃w,h
)2

(11)

L = LE + λTV LTV (12)

where LE is Euclidean loss, LTV is TV loss, and W and H respectively represent the width
and the height of the image. Xw,h and X̃w,h respectively represent the pixel values of
the clean image and the estimated image. In particular, LTV is set as 2 × 10−7 to make
Euclidean loss dominant in this network.

2.3. Evaluation Index of SAR Image Speckle Suppression

It can be carried out from two aspects—subjective evaluation and objective evaluati
on—to judge the quality of the denoised images. Subjective evaluation is to observe,
analyze, and judge the result of speckle suppression from human vision, which is mainly
reflected in the preservation of image texture and detail information. Objective evaluation
uses undistorted images as evaluation, and the commonly used indexes are peak signal
to noise ratio (PSNR) [61], structural similarity index (SSIM) [62], equivalent numbers of
looks (ENL) [63], mean value [64], and standard deviation [65]. In this paper, PSNR and
SSIM are used to evaluate the simulated SAR experiment, and ENL is used to evaluate the
real SAR image experiment.

(1) PSNR

PSNR is the most widely used objective evaluation index based on the error between
corresponding pixels, which is often defined by mean square error (MSE). MSE is defined
as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖X(i, j)−Y(i, j)‖2 (13)

where X and Y represent two images of m × n sizes, respectively.
The PSNR formula is defined as follows:

PSNR = 20• log10

(
MAX
MSE

)
(14)

where MAX represents the maximum pixel value of the image. The higher the PSNR value
is, the better the effect of noise suppression is.

(2) SSIM

SSIM mainly measures the similarity between the denoised image and the reference
image, which is mainly reflected in brightness, contrast, and structure. The interval range
of SSIM value is generally between 0 and 1. The closer it is to 1, the higher the similarity
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between the two images is, which results in better image processing. The calculation
method is as follows:

SSIM(m, n) =
(2µmµn + c1)(2σmn + c2)

(µ2
m + µ2

n + c1)
(

σ2
x + σ2

y + c2

) (15)

where m and n are two images, µm and µn are the mean values of image m and image n, σ2
x

and σ2
y are the variances of image m and image n, and σmn is the covariance. c1 and c2 are

constants to avoid division by zero.

(3) ENL

ENL is a generally accepted speckle reduction index in the field of SAR image speckle
suppression. It can measure the smoothness of the homogeneous region. The larger the
value is, the smoother the region is and the better the noise suppression effect is as well.
The formula can be defined as:

ENL = FC

(
µ2

σ2

)
(16)

where FC is a constant related to the SAR image format, and if it is a SAR image with
intensity format, FC = 1. If the SAR image is in amplitude format, then FC = 4/π − 1. µ
and σ2 represent the mean and the variance of the region, respectively.

3. Results

A series of experiments are set to evaluate the performance of the proposed model
in Section 3. The despeckled results on synthetic SAR images are shown in this section.
Additionally, the despeckling performance with the changing of network parameters
numbers is investigated. Finally, the real SAR images are used to test the effectiveness of
the proposed method, and the performance evaluated by the ENL is compared with some
state-of-the-art methods, including PPB, SAR-BM3D, and ID-CNN. Besides, this section
uses forest images to verify the effectiveness of the method. Specially, it is shown that
ID-CNN outperforms PPB and SAR-BM3D in ref. [38].

3.1. Performance Analysis of M-xUnit Activation Function

In these experiments, the NWPU-RESISC45 dataset [66] was used for training and
testing. In the dataset, 400 images with sizes of 256 × 256 pixels were chosen for training,
and 10 images with sizes of 256× 256 pixels were selected to test. These images cover more
than 100 countries and regions all over the world, including developing, transitioning, and
highly developed economies. This dataset was also collected by the experts in the field
of remote sensing image interpretation from Google Earth (Google Inc.). These training
images and test images are shown in Figures 4 and 5, respectively. In order to enhance
the training data, these images were scaled in proportion to 1, 0.9, 0.8, and 0.7, and the
scaled images were randomly flipped and rotated. The patches with sizes of 40 × 40 were
extracted from training images with a step size of 10, and 547,584 patches were obtained.
Finally, these patches were synthesized with speckle noise to obtain the synthetic SAR
images. Figure 6a shows the process of simulated SAR images. A speckle noise was
generated by Equation (2). Then, a multiplicative noise model was established between the
noise and the clean image.



Remote Sens. 2021, 13, 3444 9 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 22 
 

 

In these experiments, the NWPU-RESISC45 dataset [66] was used for training and 
testing. In the dataset, 400 images with sizes of 256 × 256 pixels were chosen for training, 
and 10 images with sizes of 256 × 256 pixels were selected to test. These images cover more 
than 100 countries and regions all over the world, including developing, transitioning, 
and highly developed economies. This dataset was also collected by the experts in the 
field of remote sensing image interpretation from Google Earth (Google Inc.). These train-
ing images and test images are shown in Figures 4 and 5, respectively. In order to enhance 
the training data, these images were scaled in proportion to 1, 0.9, 0.8, and 0.7, and the 
scaled images were randomly flipped and rotated. The patches with sizes of 40 × 40 were 
extracted from training images with a step size of 10, and 547,584 patches were obtained. 
Finally, these patche. 

 

      
farmland sparse residential baseball diamond 

      
beach buildings chaparral 

      
dense residential storage tanks freeway 

      
golfcourse harbor intersection 

      
medium residential mobilehomepark overpass 

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 22 
 

 

      
parkinglot river runway 

Figure 4. In total, 18 kinds of images from the NWPU-RESISC45 dataset in different situations were selected as train-
ing sets, including farmland, sparse residential, baseball diamond, beach, buildings, chaparral, dense residential, 
storage tanks, freeway, etc. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

  

 

(i) (j)  

Figure 5. The 10 testing images marked in order from (a) to (j). (a) and (b) are golf course, (c) and (d) are basketball 
court, (e) and (f) are beach, (g) and (h) are bridge, (i) and (j) are medium residential. 

The training process of this model took a total of 60 epochs with a mini-batch size of 
128. The Adam method [67,68] with the default setting of the gradient descent optimiza-
tion method was used. The initial learning rate was 0.001 and was multiplied by the decay 
factor 0.1 after 30 epochs. The proposed method was implemented in Pytorch, and all 
experiments were tested in the Windows 10 environment with an Intel Core CPU 3.7 GHz 
and an NVIDIA RTX 2080 GPU. 

Figure 4. In total, 18 kinds of images from the NWPU-RESISC45 dataset in different situations were selected as training
sets, including farmland, sparse residential, baseball diamond, beach, buildings, chaparral, dense residential, storage tanks,
freeway, etc.



Remote Sens. 2021, 13, 3444 10 of 22

Figure 5. The 10 testing images marked in order from (a) to (j). (a,b) are golf course, (c,d) are basketball court, (e,f) are
beach, (g,h) are bridge, (i,j) are medium residential.

The training process of this model took a total of 60 epochs with a mini-batch size of
128. The Adam method [67,68] with the default setting of the gradient descent optimization
method was used. The initial learning rate was 0.001 and was multiplied by the decay
factor 0.1 after 30 epochs. The proposed method was implemented in Pytorch, and all
experiments were tested in the Windows 10 environment with an Intel Core CPU 3.7 GHz
and an NVIDIA RTX 2080 GPU.

Inspired by the principle of xUnit [51], the M-xUnit was applied in the SAR image
despeckling task. In this paper, ID-CNN [38] was used to test the performance of this
spatial learnable activation. The noise estimation part of the network consisted of eight
convolutional layers. The main reason for choosing the ID-CNN structure was that the
network structure is not affected by some structures such as dilated convolution, skip
connections, and densely connected networks. The proposed CNN architecture is shown
in Figure 6b, and the detailed configurations of the structure are described in Table 1.
Differing from ID-CNN, a series structure with convolution operation, batch normalization
(BN), and M-xUnit was employed in L2 to L7.
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Figure 6. The process of the proposed method: (a) the process of simulated SAR image, (b) the proposed CNN architecture
for SAR image despeckling.

Table 1. The network configurations.

Layers Configurations Filter Size Filters Output Size

L1
Conv 3 × 3 × 1 64 256 × 256 × 64
ReLU / / 256 × 256 × 64

L2–L7
Conv 3 × 3 × 64 64 256 × 256 × 64
BN / / 256 × 256 × 64

xUnit / / 256 × 256 × 64

L8
Conv 3 × 3 × 64 1 256 × 256 × 1
ReLU / / 256 × 256 × 1

Figure 7a,b shows the average PSNR results of two different denoisers whose activa-
tion functions were M-xUnit and ReLU, respectively. Figure 7a shows the denoising results
of ID-CNN with different numbers of M-xUnit. M-xUnit-1 meant that only one layer of
“Conv + BN + M-xUnit” was added in the middle of the network, and the total number of
network layers was three. Figure 7b presents the denoising results of ID-CNN with regular
ReLU activation function; the layer setups were the same as Figure 7a for comparison. We
can see that ID-CNN with M-xUnit outperformed the original ID-CNN for all six different
layer setups.



Remote Sens. 2021, 13, 3444 12 of 22

Figure 7. The performance analysis: (a) simulation curves of different “Conv + BN + M-xUnit” layers when L = 10,
(b) simulation curves of different “Conv + BN + ReLU” layers when L = 10, (c) the comparison of PSNR between M-xUnit
and ReLU, (d) the comparison of SSIM between M-xUnit and ReLU.

To further facilitate the superiority of M-xUnit, we set the number of parameters as abscissa
in Figure 7c,d to show the relationship between denoising performance and network complexity.
It was found that PSNR and SSIM values obtained by two layers of “Conv + BN + M-xUnit”
were equivalent to those obtained by six layers of “Conv + BN + ReLU”, and in the case of
three layers, its performance was completely superior to that of ID-CNN. We can also see that
the parameters of two layers of “Conv + BN + M-xUnit” were fewer than half of the parameters
required by ID-CNN, and the comparison is shown in Table 2.

Table 2. Network parameters for different layers.

Layers 1 2 3 4 5 6

Conv + BN + ReLU 38,273 75,329 112,385 149,441 186,497 222,017
Conv + BN + M-xUnit 43,649 86,081 128,513 170,945 213,377 255,809

Comparing the structure of M-xUnit and ReLU in Figure 2, it increased the number of
network parameters if the ReLU was merely replaced by the modified xUnit. This meant
more memory consumption and running time at the training and the testing stages were
required. In [51], compared with ReLU, the xUnit based structure could achieve the same
performance with fewer network layers. Finally, fewer network parameters were involved.

To prove that the M-xUnit has better performance on the ID-CNN structure than the
original xUnit, a test experiment was conducted in advance. As shown in Table 3, the
average PSNR of 10 test images, which are shown in Figure 6, with the speckle noise level
of L = 10 for the two structures was compared. It was found that M-xUnit and xUnit
activation functions had almost the same performance for the 10 tested images, but the
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proposed M-xUnit structure was simpler, which meant fewer network training parameters
and fewer computational resources were needed for the proposed structure.

Table 3. The PSNR (dB) comparison of xUnit and M-xUnit with speckle noise level L = 10.

Activation Unit xUnit M-xUnit Activation Unit xUnit M-xUnit

a 29.036 29.094 f 29.411 29.441
b 29.294 29.344 g 33.372 33.381
c 31.663 31.701 h 31.146 31.157
d 26.826 26.964 i 26.549 26.577
e 25.723 25.762 j 27.161 27.171

3.2. Results on Synthetic SAR Images

To verify the denoising effectiveness with known noise level in SAR image despeckling,
three different speckle noise levels of L = 1, 4, and 10 were set up for the test images. In
this paper, peak signal to noise ratio (PSNR) and structural similarity (SSIM) were used to
evaluate the denoising effectiveness for synthetic SAR images, and the results of synthetic
despeckled images are listed in Table 4.

Table 4. Average despeckled results for various experiments on 10 synthetic images.

L Metric Noisy PPB SAR-BM3D ID-CNN Proposed

1
PSNR (dB) 8.271 19.143 18.726 22.594 23.693

SSIM 0.139 0.443 0.4361 0.656 0.763

4
PSNR (dB) 14.304 22.532 24.134 26.667 27.149

SSIM 0.3225 0.743 0.831 0.851 0.865

10
PSNR (dB) 18.283 23.746 26.033 28.721 29.047

SSIM 0.482 0.776 0.855 0.896 0.902

As shown in Table 4, the proposed method obtained the best denoising results com-
pared to the other methods in all the different noisy levels. We found that the proposed
method achieved the best denoising results compared to other methods for all the different
noisy levels. Figures 8 and 9 show the despeckled results affected by speckle noise level of
L = 4. It can be observed that the despeckled results were consistent with the visual results
by comparing the zoomed-in patches shown at the lower right corner of these images.
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3.3. Results on Real SAR Images

In Section 3.3, the real Flevoland and the Death Valley SAR images were evaluated
for the despeckling test by the proposed method and some other state-of-the-art methods,
shown in Figures 10 and 11. The Flevoland and the Death Valley SAR images were acquired
by the airborne synthetic aperture radar (AIRSAR) and cropped to 600 × 600 pixels as the
test SAR image.

It can be observed that the despeckled result by SAR-BM3D still contained residual
speckle noise. Moreover, a few texture distortions were generated after the PPB processing.
Based on the visual inspection, the ID-CNN performed almost as well as the proposed
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method for the despeckling. The difference was quite small. Since there were no speckle-
free data for the real SAR images, the ENL was employed to measure the performance
of different methods. In Figures 10 and 11, the ENL values are estimated from the two
homogeneous regions within the red square.
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Figure 11. Despeckle results of different methods for the Death Valley SAR image: (a) original; (b) PPB; (c) SAR-BM3D; (d) ID-CNN;
(e) proposed.

As listed in Tables 5 and 6, the proposed method attained a better performance in
speckle reduction than the other methods.

Table 5. The estimated ENL results for the Flevoland SAR image.

Region Original PPB SAR-BM3D ID-CNN Proposed

I 2.76 62.25 14.16 81.45 157.38
II 2.61 30.69 10.33 35.51 68.33

Table 6. The estimated ENL results for the Death Valley SAR image.

Region Original PPB SAR-BM3D ID-CNN Proposed

I 10.711 38.961 24.482 36.743 55.041
II 3.356 5.612 4.606 4.539 5.787

3.4. Method Validation on Optical Images

From the above subjective analysis, it can be seen that this method was very effective
for SAR image speckle suppression. For better analysis and verification, the three tree
images were selected from the human vision aspect, which was an optical image taken
by a small unmanned aerial vehicle (UAV) produced by China DJI (AIR 2S, DA2SUE1).
As shown in Figure 12, they are coniferous forest, broad-leaved forest, and conifer broad-
leaved mixed forest.

Most conifers [69] are evergreens, many of which have long and slender leaves with
a needlelike appearance, including most of the Taxodiaceae. These leaves are linear,
flattened, straight or slightly curved, pectinately arranged, obtusely pointed or shortly
mucronate, tapering abruptly towards the articulated junction of the lamina with the
decurrent base. The broad-leaved tree [70] (such as maple or oak) can be distinguished
from trees bearing needlelike leaves (such as most conifers) by having relatively broad
flat leaves and leaf texture, and the most common are oak (sessile and pedunculate) and
birch (silver and downy), but ash, sycamore, and beech are also quite common. Under
the airborne perspective, coniferous trees are generally darker than broad-leaved trees,
with clear tree crown boundaries, but the clarity of coniferous tree leaves is blurred. The
main reason is that broad leaf has an obvious texture while conifer does not [71–73]. This
experiment selected the Metasequoia glyptostroboides forest of Nanjing University of Science
and Technology as the coniferous forest image, the broad-leaved trees near the bandstand
of Sun Yat-sen Mausoleum as the broad-leaved forest image, and the tree species near
Sun Yat-sen Mausoleum Meiling Palace as the conifer broad-leaved mixed forest image, as
shown in Figure 12a,d,g, respectively. The tree species in Figure 12d,g included taxodiaceae,
pine, plane tree, Cinnamomum camphora, Photinia serrulata, etc.
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Visually, due to complications stemming from the original numerous needles interlac-
ing with each other and inadequate characterization based on the limited pixel resolution,
the leaves of the coniferous forest after denoising were relatively blurred, each of which
were hard to distinguish, as shown in Figure 12c. The leaves of the broad-leaved forest
after denoising had a clear boundary because each leaf occupied several pixels, which was
conducive to texture rendering and presence in Figure 12f. As can be seen from Figure 12i,
after denoising, the leaves of conifers were blurred into blocks (marked with red circles),
while those of broad-leaved trees retained obvious texture (marked with red rectangles),
and the clarity of broad-leaved trees was higher than that of conifers.

For better analysis, the two relevant indices (i.e., PSNR and SSIM) are given in Table 7.
The higher the PSNR value was, the better the effect of noise suppression was.

Figure 12. Three forest aerial images were chosen as the experimental objects to analyze the performance of our deep
learning method. (a) The original image of the pure coniferous forest comprising Metasequoia glyptostroboides in Nanjing
University of Science and Technology. (d) The original image of the broad-leaved forest near the bandstand of Sun Yat-sen
Mausoleum in Nanjing city. (g) The original image of the conifer broad-leaved mixed forest of Sun Yat-sen Mausoleum
Meiling Palace in Nanjing city. (b,e,h) The corresponding noisy images. (c,f,i) The corresponding denoising results of
our method.
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The coniferous forest image had the lowest value (22.75 dB) of PSNR, while the
broad-leaved forest image had the highest value (24.94 dB) of PSNR, which shows that
the denoising effect of the broad-leaved forest was better than that of the coniferous forest.
The closer SSIM was to one, the higher the similarity was between the two images, which
resulted in better kept image details. It can be seen that the SSIM of the coniferous forest
was 0.778 dB, and that of the broad-leaved forest was 0.806, from which we can infer that
the image details of the broad-leaved forest were better preserved after denoising. Because
the coniferous and the broad-leaved tree crowns were staggered, the two indices of the
conifer broad-leaved mixed forest (PSNR 23.46 dB and SSIM 0.785) were lower than those
of the broad-leaved forest and higher than those of the coniferous forest. Figure 12i shows
a coniferous trees crown with an ambiguous upper appearance due to information loss
caused by insensitivity of activatable functions for minute details (red circle marks) and
broad-leaved trees with clear texture (red rectangle marks) because the activatable function
had higher recognition of texture.

A well-denoised image can be obtained by our method, which is helpful to identify
conifers and broad-leaved trees from the conifer broad-leaved mixed forest. It can also be
concluded that our method is effective for multiplicative noise.

Table 7. The experimental results on three kinds of image denoising.

L Metric Coniferous
Forest

Broad-Leaved
Forest

Conifer Broad-Leaved
Mixed Forest

10
PSNR (dB) 22.75 24.93 23.46

SSIM 0.778 0.806 0.785

4. Discussion

The reason the convolutional neutral network method was used to suppress the
speckle was that the traditional algorithm could improve the performance of noise suppres-
sion by introducing a new algorithm structure. However, detailed information could be still
missing. The speckle suppression performance would be degraded if more details were to
be retained. Therefore, traditional algorithms should seek the maximum balance between
speckle suppression performance and information preservation. The speckle suppression
itself is to solve the mapping problem from the observed image to the noise-free image.
By virtue of its powerful feature extraction ability, convolutional neural networks achieve
end-to-end mapping and good results in speckle suppression and information preserva-
tion. Convolutional neural networks are widely used in SAR image speckle suppression
because of the advantages that this traditional algorithm does not have. Deep convolution
neural networks achieve unprecedented performance in many low-level vision tasks, such
as super-resolution reconstruction, image denoising, target detection, and recognition.
However, the most advanced result is usually to design a very deep network with tens of
millions of network parameters, which greatly limits the implementation of the algorithm
on resource-limited platforms. Therefore, it is a challenge to run network models using
low power and resource-limited platforms.

At present, scholars have done a great deal of research in reducing model parameters.
One option is to improve convolution operation, such as 1 × 1 convolution, ACNet, and
MobileNet. The second is to improve the activation function, such as Leaky ReLU, PReLU,
DyReLU, and xUnit. Among them, PReLU, DyReLU, and xUnit are activation functions
with learnable parameters. Their essence is to add learnable parameters to the activation
function of the convolution layer, and their performance is much better than common
ReLU functions. Although the number of additional parameters will be increased, this kind
of function is characterized by its ability to achieve the same performance as the original
network model with fewer network layers, thereby further reducing the parameters of these
models without degrading the performance. Although convolutional neural networks
have achieved very good results in SAR image speckle suppression, the structure has
gradually changed from simple to complex with depth gradually changing from shallow
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to deep, resulting in an increasing complexity and thus requiring a large number of
computing resources. This paper further improved the performance by introducing a
learnable activation function at the cost of a small number of parameters.

We mainly introduced parameters that could be trained and learned with the network
in the process of nonlinear operation, that is, spatial processing was introduced in the
process of nonlinear operation, which constituted the structure of the algorithm. As shown
in Figure 2c, the constructed weight mapping achieved nonlinear operation through a
ReLU activation function and then successively deeply convolved with the Tanh function,
and, finally, the weight range was mapped between [−1, 1]. Tanh was introduced to solve
the problem that the output of the ReLU method was not zero-centered, making up for
the defect that the element value was zero by ReLU when it was less than or equal to zero
so as to prevent some cells from being activated. Compared with other algorithms, this
algorithm is easier to implement, which makes it easy for readers to analyze and operate.
In Section 3, 10 test images were used to evaluate the proposed method and ID-CNN by
gradually reducing “Conv + BN + M-xUnit” and “Conv + BN + ReLU” blocks, as shown in
Figure 7a,b. The training configuration was the same in both networks, and the network
configuration is displayed in Table 1. The performances of the modified networks based on
xUnit and ReLU with respect to number of parameters were compared, as demonstrated
in Figure 7c,d. As can be seen from the figure, the proposed method achieved higher
PSNR and SSIM with the same number of parameters. Alternatively, the modified xUnit-
based network achieved the same PSNR and SSIM with significantly fewer parameters,
suggesting, in the case of training models with large parameters, the “Conv + BN + ReLU”
blocks can be replaced with fewer “Conv + BN + M-xUnit” blocks. Finally, this algorithm
required little computational memory and time for speckling.

Based on the above analysis and discussion, the whole experiment achieved the
expected effect, which exceeded the traditional methods.

5. Conclusions

A SAR image despeckling method using a CNN platform with a new learnable
spatial activation function, M-xUnit, was proposed in this paper. Compared with the
most advanced speckle processing methods, fewer network parameters were required
for training without degrading performance. In addition to designing complex network
structures for better despeckled results, improving the activation function is also a preferred
choice for SAR image speckle suppression tasks. A total of 400 training images and
10 test images were used to illustrate the performance of the proposed method, and its
effectiveness was verified by using real SAR images and forest optical images. Despeckling
experiments on both synthetic and real SAR images indicate that the proposed method
outperforms some state-of-the-art despeckling methods. We also applied the proposed
method to forest optical images and achieved good results. It was also found that there
was a large difference in the despeckling effect between coniferous forest and broad-leaved
forest and thus concluded that the despeckling effect of the broad-leaved forest was better
than that of the coniferous forest.

In future work, the method proposed in this paper will be extended by adding other
algorithms so as to perform better and be applicable to a wider range of fields.
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