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Abstract: At present, fine particulate matter (PM2.5) has become an important pollutant in regard
to air pollution and has seriously harmed the ecological environment and human health. In the
face of increasingly serious PM2.5 air pollution problems, feasible large-scale continuous spatial
PM2.5 concentration monitoring provides great practical value and potential. Based on radiative
transfer theory, a correlation model of the nighttime light radiance and ground PM2.5 concentration
is established. A multiple linear regression model is proposed with the light radiance, meteorological
elements (temperature, relative humidity, and wind speed) and terrain elements (elevation, slope,
and terrain relief) as variables to estimate the ground PM2.5 concentration at 56 air quality monitoring
stations in the Pearl River Delta (PRD) urban agglomeration from 2018 to 2019, and the accuracy
of model estimation is tested. The results indicate that the R2 value between the model-estimated
and measured values is 0.82 in the PRD region, and the model attains a high estimation accuracy.
Moreover, the estimation accuracy of the model exhibits notable temporal and spatial heterogeneity.
This study, to a certain extent, mitigates the shortcomings of traditional ground PM2.5 concentration
monitoring methods with a high cost and low spatial resolution and complements satellite remote
sensing technology. This study extends the use of LJ1-01 nighttime light remote sensing images
to estimate nighttime PM2.5 concentrations. This yields a certain practical value and potential in
nighttime ground PM2.5 concentration inversion.

Keywords: nighttime light image; LJ1-01; light radiance at night; nighttime PM2.5 concentration;
Pearl River Delta urban agglomeration

1. Introduction

Air pollution has become an important environmental pollution problem. In 2012,
the concentration of fine particulate matter (PM2.5) was listed as an important pollution
source indicator in China’s National Ambient Air Quality Standard [1,2]. PM2.5 can remain
in the atmosphere for a long time, which not only seriously affects visibility but also causes
environmental and meteorological problems such as haze and temperature and precipita-
tion anomalies [3–7] and endangers human health [8–14], thus impacting normal economic
and social activities. Therefore, it is urgent to control PM2.5, and accurate monitoring and
estimation of the temporal and spatial distributions of the PM2.5 concentration are essential.
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Traditional PM2.5 concentration monitoring methods include the manual particle sam-
ple weighting method, micro-oscillation balance method and β-ray absorption method.
These three ground monitoring methods achieve a high accuracy and notable real-time
performance. These techniques are commonly adopted PM2.5 long-term monitoring meth-
ods, but the monitoring cost is very high, and only observation data obtained at limited
monitoring sites can be considered to characterize the PM2.5 concentration in the entire
area. It is difficult to accurately monitor a wide range of geographic scenes. At present, the
rapid development of satellite remote sensing technology has provided a feasible method
for large-scale continuous spatial PM2.5 monitoring [15–20]. For example, Kahn et al. [15]
found that the particle size corresponding to the aerosol optical depth (AOD) obtained via
inversion of multiangle imaging spectrometer (MISR) data was similar to the PM2.5 particle
size, which verified the establishment of a correlation model between the AOD and PM2.5.
In terms of feasibility, Lee et al. [18], based on a correlation regression model between the
AOD and PM2.5 concentration, proposed the AOD daily calibration mixed-effect model
method, combined with ground monitoring data, which overcame the low-temporal reso-
lution shortcomings of PM2.5 concentration prediction to a certain extent. Lin et al. [20]
proposed an urban air quality monitoring program based on limited ground stations and
developed a physical model that integrated ground-based meteorological observations and
radiosonde observations. They first obtained satellite remote sensing images to estimate the
PM2.5 concentration and then calibrated the PM2.5 concentration estimation error derived
from satellite remote sensing images against ground sensor network observations to obtain
a higher model accuracy. At the same time, a series of satellite images such as Landsat are
also used in PM2.5 concentration estimation [21,22].

According to the abovementioned research, the application of satellite remote sensing
technology in daytime PM2.5 concentration estimation is becoming increasingly mature,
but AOD products based on visible light observations do not directly monitor the nighttime
PM2.5 concentration in real time. Therefore, the use of satellite remote sensing technology
to estimate the nighttime PM2.5 concentration should be further explored.

In recent years, nighttime light images have been widely employed to study the spatial
distribution of socioeconomic parameters and estimate their values [23–27], among which
the importance of nighttime PM2.5 concentration estimation has increasingly attracted the
attention of scholars [28–32]. For example, Johnson et al. [28] used day/night band (DNB)
observations of the visible/infrared imager/radiometer suite (VIIRS) onboard the Suomi
National Polar-Orbiting Partnership (S-NPP) satellite, and a new method was proposed for
the retrieval of the nighttime AOD (τ) considering the contrast between regions with and
without artificial surface lights. Wang et al. [30] analyzed DNB radiation data retrieved
from the VIIRS onboard the S-NPP satellite to estimate the particle concentration in Atlanta,
Georgia. Data measured on moonless and cloudless nights from August to October 2012
were tested, and it was found that the nighttime light intensity reflected the PM2.5 concen-
tration to a certain extent. Fu et al. [31], based on the correlation between nighttime light
data, VIIRS/DNB observations and PM2.5 concentration, constructed a mixed-effect esti-
mation model of the nighttime PM2.5 concentration. Xu et al. [32] extracted the nighttime
light index from Defense Meteorological Satellite Program-Operational Linescan System
(DMSP-OLS) images as a socioeconomic factor, analyzed the correlation between the night-
time light index and spatial distribution of the PM2.5 concentration, and found that the
nighttime light index was the main influencing factor of the spatial distribution of the PM2.5
concentration. Based on the theory of radiant transmission, the relationship model between
nighttime light radiance and PM2.5 concentration can be established. Therefore, the use of
nighttime light images can realize the roughly estimation of nighttime PM2.5 concentration,
which extends the use of remote sensing images to estimate PM2.5 concentration. PM2.5 has
become the main air pollution in the Pearl River Delta (PRD) urban agglomeration, which
has caused great harm to people’s health. PM2.5 output outside the PRD is the main source
of PM2.5 in the PRD, especially in autumn and winter [33]. The estimation of nighttime
PM2.5 concentration in the PRD still needs further exploration.
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Accurate estimation of the nighttime PM2.5 concentration based on nighttime light
images overcomes the limitations of satellite remote sensing technology. However, con-
sidering the complicated temporal and spatial distributions of PM2.5 and its influencing
factors, a given PM2.5 concentration estimation model must also incorporate factors such as
meteorology and topography. In addition, the spatial distribution of the PM2.5 concentra-
tion exhibits obvious seasonality, and the temporal characteristics of PM2.5 concentration
estimation should be further explored in depth. This paper relies on the radiation trans-
mission theory to analyze the correlation between the LJ1-01 nighttime light radiance
and PM2.5 concentration and introduces factors such as weather and terrain conditions to
construct a multiple linear and machine learning-based regression model to estimate the
nighttime PM2.5 concentration in the PRD. We combined ground monitoring site data to
evaluate the accuracy of the model results and performed a sensitivity analysis.

2. Study Areas and Data Sources
2.1. Study Areas

The study area is the PRD, which is located in the south-central part of Guangdong
Province, China (as shown in Figure 1) and the lower reaches of the Pearl River, bordering
the South China Sea, and most of them are located south of the Tropic of Cancer. The
region experiences a subtropical marine monsoon climate. It covers nine prefecture-level
cities, including Guangzhou, Shenzhen, Foshan, Dongguan, Zhuhai, Huizhou, Zhaoqing,
Jiangmen and Zhongshan, with a total area of 55368.7 square kilometers. The PRD is
one of the most economically well-developed regions in China and one of the four major
industrial bases. Serious air pollution problems occur and could be attributed to automobile
exhaust and industrial exhaust emissions [33]. Among them, the concentrations of PM2.5
has risen to a large extent in the past period of time, which has caused great harm to
human health [34,35]. At the same time, the Chinese Government has also realized that
PM2.5 and other air pollutants has caused serious harm to the development of society and
economy. Therefore, it has introduced and implemented relevant pollution gas emission
reduction policies, resulting in decrease of the PM2.5 concentration in the PRD [33,36,37].
Although the PM2.5 concentration in the PRD is up to standard in recent years, the area
is still facing the challenge of air pollution control. As an important indicator of the air
quality, continuous improvement, monitoring and estimation of the PM2.5 concentration
are increasingly crucial.

2.2. Data Sources

The experimental data in this article include PM2.5 ground monitoring data, LJ1-01
nighttime light remote sensing images, weather data and digital elevation model (DEM)
data pertaining to the PRD at 22:00 on 3 September, 26 October, 24 November 2018, and 11
March 2019.

The hourly PM2.5 concentration monitoring data of the PRD originate from the na-
tional real-time air quality reporting platform of the China Environmental Monitoring
Station, which includes 56 ground monitoring stations (as shown in Figure 2). The spatial
distribution is relatively uniform and basically covers the PRD area.

LJ1-01 nighttime light remote sensing images are obtained from the Hubei Data
and Application Center of the High-Resolution Earth Observation System. In this paper,
the provided Geocoded ellipsoid corrected system geometric correction products are
selected. The LJ1-01 Starlight Remote Sensing Satellite is equipped with a complementary
metal oxide semiconductor (CMOS) sensor. It was launched on 2 June 2018. Under ideal
conditions, global nighttime images can be obtained within 15 days. The image resolution
is 130 m, the width is 250 km, and the wavelength ranges from 0.5–0.9 µm. LJ1-01 nighttime
light remote sensing images are currently high-resolution and radiometrically calibrated
nighttime light data [38,39]. It has great application potential in the recognition of built-
up areas and the modeling of social-economic parameters [40–44]. This article adopts
the radiance equation provided by the Hubei Data and Application Center of the High-
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Resolution Earth Observation System to convert the radiance. Then, road data for 2015
provided by the National Geographic Information Resource Catalog Service System are
applied for geo-reference purposes. A given original nighttime light image is projected
onto the coordinate system of Krasovsky_1940_Albers. Based on spatial autocorrelation
and existing research results [30], the total value of the nighttime light radiance within a
radius of 500 m around the ground station is adopted as the nighttime light radiance value
of the ground station.
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The hourly meteorological data of the PRD obtained from the National Oceanic and
Atmospheric Administration (NOAA), including seven meteorological stations, which
basically cover most of the Pearl River Delta. The meteorological data in this experiment
mainly include three meteorological elements, i.e., the temperature, wind speed and
relative humidity. According to the spatial correlation and stability of the distribution
of meteorological elements within a small area, hourly meteorological data at 56 PM2.5
ground monitoring stations in the PRD are generated based on seven meteorological
stations according to the kriging interpolation method.

DEM data pertaining to the experimental area originate are retrieved from US Shut-
tle Radar Topography Mission (SRTM) data, which is a 90-m resolution DEM data set
generated through collating and splicing based on the latest SRTM V4.1 data. The slope,
topographic undulation and other terrain elements in this paper are all derived from
DEM data.

3. Methods
3.1. Correlation Analysis of the Nighttime Light Radiance and PM2.5 Concentration

Based on the theory of radiation transmission, a relationship model between the night-
time light radiance and PM2.5 concentration in the near-surface layer can be established.
Based on this model, this paper analyzes the correlation between the LJ1-01 nighttime light
radiance and PM2.5 concentration.

First, assuming that no change occurs in the distribution of surface features (especially
buildings and city lights) around a certain PM2.5 ground monitoring site, there exists light
radiance I0, where the light emitted upward from a Lambertian body is reflected/scattered
by various physical media. Therefore, I0 can be considered constant with spatial differences
at the same night time level [29,30]. Assuming that the multiple scattering effect of aerosols
is negligible, the nighttime light radiance reaching the LJ1-01 CMOS sensor follows Beer’s
law, which can be expressed as Equation (1):

I = I0e
−τ
u , (1)

where I is the nighttime light radiance of the LJ1-01 image, τ is the optical thickness of the
observed atmosphere, and u is the cosine of the zenith angle of the satellite observation.

Assuming that the boundary layer at night exhibits a good and stable aerosol extinction
coefficient profile structure and PM2.5 is uniformly mixed at the effective height [30], the
atmospheric optical thickness at night is:

τ = PM2.5 f (RH)QmH + τRay + τgas, (2)

where f (RH) is the moisture absorption factor that describes the aerosol size and refractive
index according to the relative humidity, Qm is the extinction efficiency under dry condi-
tions, H is the effective height of the aerosol mixed layer, and τRay is the first-order Rayleigh
scattering optical thickness. The proportional relationship with the atmospheric pressure P
is a linear relationship of ap, where τgas is the influence of atmospheric absorption on the
optical thickness, and the proportional relationship with atmospheric water vapor W is a
linear relationship involving aw.

Due to the hygroscopic growth characteristics of PM2.5, the relative humidity imposes
a greater influence on the PM2.5 particle size. Therefore, it is necessary to correct the PM2.5
ground station data for the relative humidity to obtain the actual PM2.5 concentration at
each ground station. This paper chooses an exponential moisture absorption growth factor
model to explain the moisture absorption growth characteristics of PM2.5 in the PRD [45,46].
The model expression is as follows:

f (RH) = 0.68 ×
(

1 − RH
100

)−0.56
. (3)
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In the above equation, RH is the relative humidity. Combining Equations (1)–(3), we
can obtain:

PM2.5 f (RH)Qm H
u

= ln(I0)− ln(I)− apP − awW. (4)

There exists a linear relationship between the atmospheric water vapor volume W
and near-surface water vapor pressure e:

W = be + aee, (5)

where be and ae are coefficients. Moreover, the relative humidity RH can be obtained from
the near-surface water vapor pressure e and saturated water vapor pressure E:

RH =
e
E
× 100%. (6)

Equation (4) can be rewritten as:

PM2.5 f (RH)Qm H
u

= ln(I0)− ln(I)− apP − aeRH E. (7)

On-site Qm and H measurements are difficult to perform in real time, and these two
parameters do not contribute significantly to the estimation accuracy of the model [30]. If it
is assumed that these two variables remain constant, errors will accumulate in the model
estimation results. If the elevation change between the various PM2.5 ground monitoring
sites is small, the atmospheric pressure difference between the sites is not large, and the
corresponding impact on the accuracy of the model results is negligible [30]. Therefore,
Equation (7) can be roughly simplified as:

PM2.5 f (RH)

u
≈ ln(I0)− ln(I)− aeRH E. (8)

Since the saturated vapor pressure E is a function of the air temperature C, the three
variables in PM2.5 f (RH)

u can be obtained, namely, ln(I), ln(I0), C and RH.
Through the above analysis, a correlation model between the nighttime light radiance

and PM2.5 concentration is preliminarily established. Considering the complicated pro-
cesses determining the temporal and spatial distributions of the PM2.5 concentration and
the difficulty of data acquisition, the results directly estimated with the above relationship
contain large errors [30]. It is also necessary to construct an accurate model in conjunction
with other factors related to the PM2.5 concentration.

3.2. PM2.5 Concentration Estimation Model Based on Nighttime Light Images

Zhang et al. [47] found that simple models exhibit limitations in the simulation of
complex geographic phenomena considering multiple factors with a high accuracy. Among
these factors, meteorological elements are important factors that influence the temporal and
spatial distributions of PM2.5 [48–53]. In addition, topographical elements affect the spatial
distribution of PM2.5 to a certain extent [54–56]. Therefore, a PM2.5 concentration estimation
model that considers the influences of multiple factors simultaneously, such as weather
and topography, can provide high-precision PM2.5 concentration simulation results.

In this paper, referring to the research results of Wang et al. [30], a multiple linear
regression model is applied to construct a nighttime PM2.5 concentration estimation model
suitable for the PRD. On the basis of the three variables of the LJ1-01 nighttime light
radiance ln(I), temperature C and relative humidity RH, the wind speed V is separately
added to establish Model I. Certain terrain elements including the elevation H, slope S, and
terrain undulation T are separately added to build Model II. Subsequently, all elements are
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added to compile Model III. These three nighttime PM2.5 concentration estimation models
are detailed in Equations (9)–(11).

PM2.5 f (RH)

u
= β0 + β1 ln(I) + β2C + β3RH + β4V + ln(I0), (9)

PM2.5 f (RH)

u
= β0 + β1 ln(I) + β2C + β3RH + β5H + β6S + β7T + ln(I0), (10)

PM2.5 f (RH)

u
= β0 + β1 ln(I) + β2C + β3RH + β4V + β5H + β6S + β7T + ln(I0). (11)

In the above equations, β0 is the constant term of each model, and β1, β2, β3, β4, β5,
β6 and β7 are the regression coefficients of each model.

3.3. PM2.5 Concentration Estimation Model Based on Machine Learning

When there is no definite estimation method of the PM2.5 concentration, the applica-
tion of machine learning can extract key feature information to determine the relationship
between known data sets, and the machine model trained with a large amount of data can
be applied to realize accurate prediction. Machine learning is increasingly adopted to solve
the inversion problem of geographic phenomena, and studies have been performed on
PM2.5 concentration inversion [57–59]. However, machine learning models and feature
selection remain to be studied in depth. Based on the PM2.5 concentration data obtained
at ground stations and known data of the nighttime light radiance ln(I), air temperature
C, relative humidity RH, wind speed V, elevation H, slope S, and terrain undulation T,
we construct nighttime PM2.5 concentration estimation Models IV, V, VI, and VII with the
four machine learning algorithms of the regression tree, support vector machine, Gaussian
process regression and ensemble tree, respectively.

In terms of the parameters of the above four machine learning models, the important
parameters with a higher goodness of fit are selected according to the model principle and
training results (please refer to Table 1). Among the important parameters, the parameters
of regression tree Model IV and ensemble tree Model VII includes minimum leaf size, while
the parameters of support vector machine Model V and Gaussian process regression Model
VI include the kernel function.

Table 1. Important parameters of the various PM2.5 concentration estimation models based on machine learning.

Model Parameter 3 September 2018 26 October 2018 24 November 2018 11 March 2019

Model IV Minimum leaf size 4 12 4 4
Model V Kernel function Linear Gaussian Linear Gaussian
Model VI Kernel function Square index Square index Index Matern 5/2
Model VII Minimum leaf size 8 8 8 8

4. Results
4.1. Results and Accuracy Evaluation of the PM2.5 Concentration Estimation Models at Night

Based on the above three multiple linear regression models and four machine learning
regression models, combined with the data of the 56 ground monitoring stations at four
time points in the PRD, the various models were constructed. In regard to the multiple
linear regression models, all data at each time point were considered for model construction,
and the model-predicted value was then compared to the ground monitoring value. For the
machine learning models, all data samples at each time point were subjected to the fivefold
cross-validation method. As a result, the goodness of fit (R2) of each PM2.5 concentration
estimation model suitable for the PRD was determined, as listed in Table 2. The results
indicated that the estimation effect of multiple linear regression Model III is better. The four
research time points exhibited high R2 values, and the P value was less than 1%, which
passed the 1% significance test.
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Table 2. Fitting results (R2) of the various PM2.5 concentration estimation models in the PRD.

Model 3 September 2018 26 October 2018 24 November 2018 11 March 2019

Model I 0.75 0.59 0.61 0.76
Model II 0.69 0.59 0.71 0.76
Model III 0.76 0.64 0.73 0.78
Model IV 0.44 0.36 0.79 0.65
Model V 0.59 0.39 0.42 0.66
Model VI 0.68 0.51 0.52 0.7
Model VII 0.52 0.53 0.55 0.64

Comparing the estimated values of Model III to the measured values at the four time
points (as shown in Figure 3), the values exhibit a good linear relationship, and the overall
goodness of fit reaches 0.82. Model III constructed in this paper achieves a high accuracy
and can be applied to roughly estimate the nighttime PM2.5 concentration at four time
points in the PRD urban agglomeration.
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polation method, the spatial distribution of the inverted PM2.5 concentration in the PRD can
be obtained, as shown in Figure 4. The results show that there are large spatial distribution
differences in the PM2.5 concentration at the four time points. The PM2.5 concentration
in the surrounding area of the Pearl River estuary on 3 September 2018, and 11 March
2019, was lower than that in other regions, while in 2018 on 26 October and 24 November
2018, the PM2.5 concentration is higher than other regions. The concentration of PM2.5 in
the northwestern PRD has always been high. On the whole, the PM2.5 concentration on
3 September 2018 and 26 October 2018 was significantly lower than the other two time
points. On 24 November 2018, the PM2.5 concentration in the PRD was the highest at the
four time points.
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4.2. Sensitivity Analysis of the Model Factors for Nighttime PM2.5 Concentration Estimation

To explore the correlation between the PM2.5 concentration and the different model
factors, regression coefficient analysis of the PM2.5 concentration and the 7 variables of
Model III is carried out. Table 3 provides the regression coefficient results for the PM2.5
concentration at the four time points and the different variables. The regression coefficient
of the nighttime light radiance ln(I) factor is relatively high, and the average regression
coefficient over the four time points is 2.96. Three meteorological factors (temperature
C, relative humidity RH and wind speed V) and the PM2.5 concentration attain a high
correlation, and the average regression coefficient values are 36.11, 8.12 and 18.40, respec-
tively. The regression coefficients for the correlation between the three topographic factors
(elevation H, slope S and topographic undulation T) and the PM2.5 concentration are quite
different, and the average regression coefficient values are 0.28, 12.60 and 0.64, respectively.

Table 3. Correlation coefficients between the PM2.5 concentration and the different variables at the
four time points.

Variable 3 September 2018 26 October 2018 24 November 2018 11 March 2019

ln(I) 4.64 2.69 3.74 0.79
C 29.02 13.65 88.89 12.88

RH 3.47 4.85 17.03 7.15
V 13.65 11.21 18.49 30.25
H 0.15 0.32 0.21 0.45
S 2.71 2.23 31.34 14.13
T 0.07 0.14 1.70 0.65
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4.3. Remote Sensing Retrieval Analysis of the Nighttime PM2.5 Concentration
4.3.1. Time Sensitivity Analysis of the Model

This paper compares and analyzes the measured and model-estimated PM2.5 concen-
tration values at the 56 ground monitoring stations and four time points and constructs
scatter plots of the PM2.5 concentrations at the four research time points in the PRD (as
shown in Figure 5). The results reveal that the estimated values obtained with the PM2.5
concentration model and the measured values attain a good linear relationship, the good-
ness of fit R2 at the four research time points is high, and the model goodness of fit remains
stable at four time points.
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Moreover, error analysis of the PM2.5 concentration estimation model at the four time
points is carried out (please refer to Table 4). Based on the results, the two time points with
a smaller root mean square error are 3 September 2018 and 26 October 2018, which remains
stable at 14.35 ± 0.1 µg/m−3. The time points with a larger root mean square error are
24 November 2018 and 11 March 2019, and the former time point produces the largest root
mean square error, at 46.99 µg/m−3, indicating that the model estimation error is time
sensitive. In addition, the study determines that the model errors at a very small number
of ground monitoring sites exert a greater impact on the overall results. Among the four
time points, the five sites with the largest model estimation errors account for nearly half
of the errors.
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Table 4. Estimation error of the PM2.5 concentration during the four time periods.

Time Series 3 September 2018 26 October 2018 24 November 2018 11 March 2019

Root mean square error (µg/m−3) 14.25 14.45 46.99 26.12
Proportion of stations with the five

largest errors (%) 53.29 43.18 46.78 48.14

On 3 September 2018, and 26 October 2018, the average temperatures at the 56 surface
stations in the PRD are 27.19 and 24.96 ◦C, respectively, while southerly winds prevail. Cer-
tain meteorological conditions are conducive to the diffusion of PM2.5 and other particles.
During a given period, meteorological elements can exert a greater impact on the PM2.5
concentration, the nighttime light transmission conditions are better, and the estimation
accuracy is correspondingly improved. On 24 November 2018 and 11 March 2019, the
average temperature is 18.23 and 17.34 ◦C, respectively. Northerly winds prevail, the
atmospheric structure remains stable, the meteorological conditions do not facilitate the
diffusion of PM2.5 and other particulates [33]. Furthermore, the increase in PM2.5 emissions
originating from emission sources such as automobile exhaust in winter and spring makes
the prediction process of the PM2.5 concentration more complicated, resulting in a reduced
model estimation accuracy. Therefore, the estimation accuracy of the model, which in
summer and autumn is higher than in winter and spring, reveals a certain time sensitivity.

4.3.2. Spatial Sensitivity Analysis of the Model

The spatial distribution of the PM2.5 concentration is a complex geographic phe-
nomenon, and the unique spatial characteristics of ground stations in different natural or
social environments may affect the accuracy of model estimation. This paper compares
the average model-estimated PM2.5 concentration and the average measured PM2.5 con-
centration at the 56 ground stations (as shown in Figure 6) to analyze the regionality and
stability of the model. These two data exhibit similar change trends as a whole, and there
are obvious local differences. In-depth analysis of the ground station error and error spatial
characteristics can be performed. Among the PM2.5 concentrations detected by ground
stations in the PRD, only 38% reached the Level 2 standard. China regards the PM2.5
concentration as reaching the Level 2 standard as meeting the standard.
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Figure 6. Comparison of the estimated and measured PM2.5 concentrations given the sample set
sequence. The blue line represents the Level 1 standard, and the purple line represents the Level 2
standard. The Level 1 standard refers to the 24-h average PM2.5 concentration lower than 35 µg/m2.
The Level 2 standard refers to the 24-h average PM2.5 concentration lower than 75 µg/m2.
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The real error and root mean square error results of PM2.5 concentration estimates
at 56 ground stations are shown in Figure 7. The average absolute error at these stations
reaches 14.68 µg/m−3, of which the minimum deviation is only 0.02 µg/m−3, and the
maximum deviation reaches 49.13 µg/m−3. The real error difference between the stations
is large, indicating that the spatial distribution of the real error is obviously uneven. In
terms of the proportion of the real error at the local sites, the five sites with the largest real
error account for 24.33% of all sites, indicating that the average model estimation error
at a few sites exerts a greater impact on the overall model error. Further analysis reveals
that the root mean square error and real error at the 56 ground stations exhibit a similar
change trend, and the mean value of the root mean square error is 24.82 µg/m−3. The
model estimation error distribution considering the 56 ground stations in the PRD exhibits
obvious differences, and the estimation results indicate a certain spatial sensitivity.
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To further explore the spatial distribution of the model estimation errors, we focused
on the analysis of the 24 ground stations with root mean square errors larger than the mean
value. The results demonstrate that there are ten ground stations located in the southeastern
coastal zone of the PRD, and the model-estimated average values at nine stations are all
higher than the measured average values, which further confirms the research results of
Liao et al. [60]: the impact of sea and land breezes on PM2.5 diffusion in coastal areas is
relatively obvious, generally resulting in a relatively low PM2.5 concentration in coastal
areas. The model in this paper may ignore the meteorological complexities of coastal areas,
leading to obvious overestimation errors in the coastal area model. The other 14 ground
stations are mostly distributed in areas with a low light intensity. The estimated average
values at 11 stations are all lower than the measured average values, which also validates
the findings of Wang et al. [30]. Affected by PM2.5, areas with brighter surface lights such
as urban centers can observe the disappearance of a large number of lights than areas with
darker surface lights such as rural areas, making it easier to detect PM2.5 concentration
changes in urban areas from the brightness of lights [30]. The accuracy of this model for
the nighttime PM2.5 concentration estimation in rural areas is lower, because the model
underestimates the actual PM2.5 concentration. The results indicate that the estimation
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model accuracy in coastal areas and areas with weak nighttime lights is low, which roughly
compensates for the determined spatial sensitivity of the PM2.5 concentration estimation
model to a certain extent.

5. Discussion

As a major air pollutant, PM2.5 has attracted global attention. The monitoring of its
temporal and spatial changes comprises an important part of PM2.5 air pollution control.
With the development of remote sensing technology, daytime remote sensing images have
been widely applied in PM2.5 concentration estimation, and large-scale low-cost monitoring
of the PM2.5 concentration has been achieved. However, due to the temporal resolution of
daytime remote sensing images, the application of remote sensing images for nighttime
PM2.5 concentration estimation remains to be studied. Based on the theory of radiation
transmission, a correlation model between the radiance in nighttime light images and the
PM2.5 concentration can be established. To a certain extent, remote sensing images can be
employed to estimate the nighttime PM2.5 concentration, i.e., nighttime light images can
be obtained to estimate the nighttime PM2.5 concentration. Related research remains at
the preliminary stage and is limited by the resolution of nighttime light images. The more
commonly adopted DMSP/OLS and NPP-VIIRS nighttime light images exhibit spatial
resolutions of 1000 and 500 m, respectively, and relevant spatial details may be missing.
This article considers LJ1-01 nighttime light images with a spatial resolution of 130 m,
which is greatly improved. In the future, we should compare the accuracy of the three most
common types of nighttime light images to estimate the nighttime PM2.5 concentration
and examine their ability to estimate the nighttime PM2.5 concentration. In addition, the
satellite transit time in the area may coincide with times when the light intensity in the area
is low, so the resultant nighttime light images do not suitably reflect the intensity of human
activities in the area. The transit time of the LJ1-01 satellite providing the images used
in this article is 10 pm. At this time, the light intensity can reflect the intensity of human
activities to a greater extent.

The estimated PM2.5 in this paper is correlated with the measured PM2.5 concentration,
with R2 reaching 0.82. Wang et al. [30] extracted the NPP-VIIRS nighttime light images
information to establish a PM2.5 concentration estimation model. Further, the results show
that the estimated PM2.5 concentration is correlated with the measured PM2.5 concentration,
with R2 reaching 0.67. Zhang et al. [61] studied the accuracy of nighttime light images
of LJ1-01 and NPP-VIIRS to estimate PM2.5 concentration. The results show that the
information of the two nighttime light images has the potential to roughly estimate PM2.5
concentration. However, compared to the PM2.5 concentration estimation model with
NPP-VIIRS nighttime light images information, the accuracy of the PM2.5 concentration
estimation model with the LJ1-01 nighttime light images information has been improved.
In addition, in terms of socio-economic parameter modeling, the accuracy of the model
added to LJ1-01 nighttime light images information is also higher [62].

Machine learning models have high requirements regarding the number of samples,
so the estimation accuracy is lower than that of the commonly adopted multiple linear
regression models when there are fewer samples. Moreover, the estimation accuracy of the
model exhibits obvious temporal and spatial differences. In terms of time, among the four
time points, the estimation error on 24 November 2018 was the largest, while the estimation
error on 3 September and 26 October 2018 was small. In terms of space, the estimation error
of the model in the coastal area is larger than that in the inland area, and the model tends
to overestimate the PM2.5 concentration in the coastal area. In addition, if the light intensity
in the area is low, the ability of nighttime light images to reflect the PM2.5 concentration is
limited. As such, the model tends to underestimate the PM2.5 concentration in areas with
weaker lights such as rural areas.
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6. Conclusions

This paper focuses on the problem of PM2.5 concentration estimation at night in the
PRD and relies on radiation transmission theory to analyze the correlation between the
nighttime light radiance and PM2.5 concentration. A correlation model is constructed based
on LJ1-01 nighttime light images and meteorological and topographic factors. The PM2.5
concentration estimation model is combined with measured PM2.5 concentration values
at four time points from 2018 to 2019. The results indicate that R2 reaches 0.82. Through
remote sensing inversion analysis of the model factors and time/space sensitivity, it is
found that the nighttime PM2.5 concentration estimation model provides a certain reference
value and can expand the application of satellite remote sensing technology in the field of
PM2.5 concentration estimation.

Moreover, the nighttime PM2.5 concentration estimation and machine learning-based
methods considering LJ1-01 images proposed in this paper can be applied in strict radiation
transmission theory-related applications, multisource observation data fusion and large-
scale continuous spatial PM2.5 concentration inversion mechanisms, but other aspects
should be further explored.
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