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Abstract: Accurate estimation of the aboveground biomass (AGB) of grassland is a key link in
understanding the regional carbon cycle. We used 501 aboveground measurements, 29 environmental
variables, and machine learning algorithms to construct and verify a custom model of grassland
biomass in the Headwater of the Yellow River (HYR) and selected the random forest model to analyze
the temporal and spatial distribution characteristics and dynamic trends of the biomass in the HYR
from 2001 to 2020. The research results show that: (1) the random forest model is superior to the
other three models (R2

val = 0.56, RMSEval = 51.3 g/m2); (2) the aboveground biomass in the HYR
decreases spatially from southeast to northwest, and the annual average value and total values are
176.8 g/m2 and 20.73 Tg, respectively; (3) 69.51% of the area has shown an increasing trend and
30.14% of the area showed a downward trend, mainly concentrated in the southeast of Hongyuan
County, the northeast of Aba County, and the north of Qumalai County. The research results can
provide accurate spatial data and scientific basis for the protection of grassland resources in the HYR.

Keywords: machine learning; aboveground biomass; grassland; Headwater of the Yellow River

1. Introduction

The grassland ecosystem is the largest terrestrial biosystem on the earth’s surface,
accounting for about 40% of the total land area [1], and plays an important role in global
carbon cycle and climate regulation [2]. Grassland plays a role in modulating climate, wind-
resistant sand, maintaining soil and ecological balance, and the economic development of
the pastoral area, thus maintaining the sustainable development of animal husbandry [3,4].
The current status and changing trend of grassland aboveground biomass reflects whether
the utilization of grassland is scientific and reasonable, which is the focus of ecological
environment protection and the sustainable development of animal husbandry [5,6].

The aboveground biomass (AGB) can be predicted by direct methods (by harvesting
the biomass) and by indirect methods (including the use of remote sensing tools). The
direct harvest method is more accurate in a small area, but it is time-consuming and
labor-intensive, difficult to achieve on a large-scale and long-term sequence, and will cause
certain ecological damage to the grassland [7]. In contrast, remote sensing technology has
low-cost and can monitor the current status and dynamic changes of grassland resources.
In the 1980s, NOAA/AVHRR data were used, by previous authors, to estimate grassland
production in grasslands. Diallo et al. [8] used AVHRR data to predict natural grasslands in
the Sahel region of Africa. In recent years, the method of establishing a biomass statistical
regression model through the vegetation index is widely used. The vegetation index most
commonly used for aboveground biomass monitoring is the normalized difference vege-
tation index (NDVI), but it has many problems [9], such as saturation and the impact on
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the soil background in low vegetation coverage areas. Therefore, scholars have proposed
other vegetation indexes, such as EVI, MSAVI, NDVGI, SAVI, etc. Different vegetation
indexes have their own characteristics, and it is difficult to prove which vegetation index is
superior. Statistical models are divided into parametric and non-parametric models. Ac-
cording to different regression variables, parameter models can be divided into linear and
nonlinear regression models. Paruelo et al. [10] combined NDVI data with the measured
biomass on the ground to monitor the grassland biomass in the grasslands of the central
United States and found that the power function regression model is more suitable for local
biomass monitoring than the linear regression model. The simple one-dimensional curve
model is usually unable to achieve the high-precision fitting of biomass, while multivariate
linear simulations do not allow for large correlations between variables; otherwise, it will
cause multicollinearity problems and affect the modeling effect. Because there are often
significant correlations between vegetation indices, it is difficult for multiple linear models
to accurately estimate biomass.

There are many vegetation indices that can be used for AGB estimation; however, the
variation of AGB is not only influenced by a single factor but also by a variety of factors,
such as soil, climate, and topography factor, etc. In previous studies, estimating AGB using
only a single type of factor may have introduced errors and uncertainty. Idowu et al. [11]
found that for models with a non-unique number of variables, machine learning algorithms
may be more effective than ordinary regression models. Machine learning methods, such
as random forest (RF) regression, can integrate multiple factors and learn highly complex
nonlinear mappings for estimating AGB. Wang et al. [12] estimated the AGB of the Loess
Plateau using the RF algorithm, combining 233 field observations and their corresponding
climate and remote sensing data from 2011–2013, and compared the two methods, showing
better accuracy from the neural network, compared to the multiple linear regression
model. Xie et al. [13] used neural network model and multiple linear regression model
to estimate the aboveground biomass of grassland and compared the two methods. The
neural network model is better than the multiple linear. Research by Yang et al. [14] showed
that the accuracy of the BP-ANN model for grassland AGB inversion was significantly
higher than that of the traditional multi-factor inversion model in the THR. Zeng et al. [4]
developed an AGB estimation model suitable for the Qinghai-Tibet Plateau, based on the
random forest algorithm. The R2 of the model is equal to 0.86.

The HYR is located in the northeastern part of the Qinghai-Tibet Plateau, which is
called “the water tower of the Yellow River” [15]. In recent years, desertification, due to
overgrazing and other grassland problems, has become more and more serious. Effective
monitoring of regional grassland is an urgent problem to be solved. Achieving the rapid
and effective monitoring of grassland changes is not only an urgent need, to determine
a reasonable grassland stock carrying capacity, but also a realistic need to ensure the
development of animal husbandry. Measured data are the key parameter for constructing
the optimal model in this study. The reasonable setting of sample points will directly
affect the results of model simulation [16]. The high altitude, harsh natural conditions,
inaccessibility, high mountains, and wetlands in the HYR made the collection of samples
difficult. Therefore, the distribution of sample points should be representative of the
general characteristics of the HYR, but also take into account the difficulty of sample
collection and sampling costs.

The study uses 501 measured AGB data, combined with factors for climate, vegetation
indices, soil texture, and topography, to construct a data set of environmental variables
affecting AGB in the HYR. The main goals are: (1) comparing and analyzing the accuracy
of various machine learning model algorithms to build an inversion model suitable for
estimating grassland AGB in the HYR; (2) simulate the spatial distribution and temporal
trend of grassland AGB in the HYR from 2001 to 2020.
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2. Materials and Methods
2.1. Study Area

The HYR is located at 32◦30′–35◦0′N, 95◦50′–103◦30′E (Figure 1), covering an area of
approximately 12.37× 104 km2 [17], with an elevation between 2680–6248 m. The roads are
rugged and few, and the average temperature for many years was concentrated between
−12.7 ◦C and 5.6 ◦C (Figure 2a). The average rainfall from 2001 to 2020 was 579.50 mm, and
the rainfall decreased from southeast to northwest. (Figure 2b), mainly concentrated in June
to September, accounting for 90% of the total annual rainfall. Grassland is an important
land cover type. Alpine meadows account for 61.40% of the entire study area; followed by
alpine steppes (12.04%), mountain meadows (9.29%), wetlands (6.56%), bare land (5.52%),
and arable land (2.11%); other land use types account for less than 1.0% (Figure 1). The
main characteristics of the soil are thin soil layer, coarse soil quality, more gravel, and
coarse sand in the soil (14.50% clay, 39.90% powder, and 38.17% sand) (Figure 2j–l); animal
husbandry is the main activity.
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Figure 1. Study area and sample points. Figure 1. Study area and sample points.

2.2. Data Source and Preprocessing
2.2.1. AGB Data Source

We use the conditional Latin hypercube sampling (cLHS) method [18], which is
restricted by the cost layer, to arrange the sampling points as evenly as possible in the HYR.
The restricted variables, when using cLHS to lay out sample points, include meteorological
data (such as rainfall and temperature), topographic data (such as elevation and slope),
and soil data (such as powder and sand); the above variables are uniformly resampled to a
spatial resolution of 500 m [18,19].

Road, elevation, and slope were considered the main environmental factors limiting
the sample collection; weights of 0.5, 0.3, and 0.2 were assigned to the three variables,
respectively, and cost layers were generated (Figure A1). The cost layers were created using
ArcGIS software, and the cLHS sample points were laid out in R Studio software using the
data package cLHS. The aboveground biomass data were collected in the growing seasons
(July–August) in 2005, 2006, 2015, 2018, and 2020; one or two 0.5 × 0.5 m sample boxes
were set up in sample plots with good vegetation community consistency, and three or
four 0.5 × 0.5 m sample boxes were averaged in areas with more complex and uneven
vegetation distribution. Samples were selected to represent, as much as possible, the
vegetation growth of the whole area; all its aboveground biomass was collected, including
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apoplastic material. The samples were dried in the laboratory at 65 ◦C for 48 h to a
constant weight and the dry weight was determined, resulting in a total of 501 measured
aboveground biomass data.
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2.2.2. Environmental Variable Data Source

Environmental data parameters considered in this study are described in Table 1. The
meteorological data comes from the spatial interpolation data calculated by our team. First,
we downloaded the daily temperature, daily precipitation, daily wind speed, sunlight,
longitude, latitude, and elevation data of 836 weather stations across the country, from
2001 to 2020 (http://data.cma.cn, accessed on 18 February 2021) (Figure A2). Then, the
daily value data are calculated as monthly value data, according to the longitude, latitude,
and altitude of each weather station; the weather station point data was interpolated into
raster data, with a spatial resolution of 1 km, using ANUSPLIN software [20]. THE NDVI,
EVI, and LAI were obtained from MODIS data products, and the data were downloaded
through Google Earth Engine (https://code.earthengine.google.com/, GEE, accessed on
27 January 2021). The soil-related data were obtained from the Harmonized World Soil
Database (HWSD) (https://data.isric.org/, accessed on 13 January 2021). The ε, PAR, and
FPAR data were calculated using Zhu Wenquan’s improved CASA model [21]. All raster
images in this paper use Krasovsky 1940 Albers projection. The main environmental vari-
able factors are shown in Figure 2. According to the division of environmental variables in
the STEP-AWBH model, the environmental variables collected in this study were included
in four categories (Table 1): soil physical and chemical factors (S), topographic factors (T),
meteorological factors (A), and vegetation factors (B).

Table 1. All environment variables and data sources.

Category Abbreviation Variable Interpretation Resolution Data Sources

S CLAY1 Clay content (0–30 cm) 250 m HWSD
S CLAY2 Clay content (30–100 cm) 250 m HWSD
S SAND1 Sand content (0–30 cm) 250 m HWSD
S SAND2 Sand content (30–100 cm) 250 m HWSD
S SILT0-30 Silt content (0–30 cm) 250 m HWSD
S SOC0-30 Soil organic carbon (0–30 cm) 250 m HWSD
A PREP Annual temperature (2001–2020) 1000 m Meteorological Station
A TEM Annual precipitation (2001–2020) 1000 m Meteorological Station
A K Humidity (2001–2020) 1000 m Meteorological Station

A Σθ ≥0 ◦C Annual cumulative
temperature (2001–2020) 1000 m Meteorological Station

A V Actual evapotranspiration (2001–2020) 1000 m Meteorological Station
A ILL Illumination time (2001–2020) 1000 m Meteorological Station
T DEM Elevation 30 m SRTM
T SLP Slope 30 m ArcGIS Calculated
T ASP Aspect 30 m ArcGIS Calculated
T LON Longitude 30 m ArcGIS Calculated
T LAT Latitude 30 m ArcGIS Calculated

B EVI Enhanced vegetation index
(2001–2020) 1000 m MOD13A2

B NDVI Normalized difference vegetation
index (2001–2020) 1000 m MOD13Q1

B VC Vegetation cover (2001–2020) 1000 m Dimidiate Pixel Model
B LAI Leaf area index (2001–2020) 1000 m MOD15A2

B DMSAVI Winter modified soil adjusted
vegetation index (2001–2020) 1000 m MOD09A1 Band Calculated

B XMSAVI Summer modified soil adjusted
vegetation index (2001–2020) 1000 m MOD09A1 Band Calculated

B DNDVGI Winter normalized difference
vegetation green index (2001–2020) 1000 m MOD09A1 Band Calculated

B XNDVGI Summer normalized difference
vegetation green index (2001–2020) 1000 m MOD09A1 Band Calculated

B DSAVI Winter soil adjusted vegetation green
index (2001–2020) 1000 m MOD09A1 Band Calculated

B XSAVI Summer soil adjusted vegetation
green index (2001–2020) 1000 m MOD09A1 Band Calculated

http://data.cma.cn
https://code.earthengine.google.com/
https://data.isric.org/
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Table 1. Cont.

Category Abbreviation Variable Interpretation Resolution Data Sources

B PAR Photosynthetically active radiation
(2001–2020) 1000 m BESS PAR

B FPAR Fraction of photosynthetically active
radiation (2001–2020) 1000 m CASA

B ε Actual light use efficiency (2001–2020) 1000 m CASA

2.3. Methods and Modelling
2.3.1. Variable Selection

LASSO is a variable screening method with the advantage of statistical accuracy
of variable selection and its computational feasibility. LASSO has the ability to handle
multicollinearity data, by automatically selecting the most important independent variables
and narrowing down the less important predictor variables to zero, so as to retain only the
useful features [22].

2.3.2. Modeling Methods

The four modeling methods include partial least squares regression (PLSR), support
vector machines (SVM), RF, and back-propagation artificial neural network (BP-ANN).
PLSR is an extension of multiple linear regression. Compared with ordinary least squares
regression, PLSR calculations are more reliable [23,24]. SVM was originally used for classi-
fication and has been widely used to solve the classification and regression problems of
nonlinear and high-dimensional data [25]. In this paper, the radial basis function was used
as the kernel function and the genetic algorithm was used to optimize two key parameters
(gamma and cost) [26]. The most important parameters in the BP-ANN model are the
number of neurons and hidden layers, which need to be repeatedly tested and continuously
tuned [27]. RF is a machine learning algorithm that trains classification samples through
decision trees and makes predictions based on the results of the classification [28]. The two
most important parameters in the RF algorithm are the number of regression trees and
the number of predictors at each node [29], which need to be optimized [3]. All machine
learning models in this paper were trained, parameter tuned, and simulated in the Matlab
2017a software.

2.3.3. Model Accuracy Evaluation

Five-fold cross validation was used to evaluate the predictive performance of the
model results. The coefficient of determination of the training dataset (R2

train), root mean
square error of the training dataset (RMSEtrain), R2 of the validation dataset (R2

val), and
the validation dataset RMSE (RMSEval) were used to evaluate the predictive ability of
each model.

2.3.4. Trend Analysis

The Theil-Sen (SEN) median trend analysis and Mann-Kendall test were used to
determine the significance of the trend of AGB [30,31]. When SENslope > 0, it reflected
an increasing trend, and there was a decreasing trend for when the opposite was true
(SENslope < 0). The significance of the changing trend of AGB was tested at the confidence
level α = 0.05 (Table 2). When Z > |1.96| means confidence level α < 0.05, the change
trend was significant, Z < |1.96| means confidence level α > 0.05, the change trend was
not significant [32].
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Table 2. Aboveground biomass change trend assessment table.

SENslope Z Trend

>0.001 >1.96 Significantly incresaing
>0.001 −1.96–1.96 Incresaing

−0.001–0.001 −1.96–1.96 Stable
<−0.001 −1.96–1.96 Decreasing
<−0.001 <−1.96 Significantly decreasing

3. Results
3.1. Analysis of Model Results
3.1.1. Correlation Analysis between AGB and Environmental Variables

The minimum value of all samples was 6.5 g/m2 (located in Maduo County) and the
maximum value was 428.02 g/m2 (located in Hongyuan County). The average value of all
samples was 171.39 g/m2. Overall, the average value of all samples decreased from the
southeast to the northwest, and the county with the largest average value was Hongyuan
County (with 292.59 g/m2), and the county with the smallest average value was Maduo
County (with 102.02 g/m2) (Table 3).

Table 3. Summary statistics of measured AGB (g/m2).

County Min Max Average Standard Deviation

Xinghai 44.00 233.92 104.37 46.00
Maduo 6.50 252.44 102.02 53.62
Tongde 34.47 264.44 119.22 68.06
Zeku 96.66 321.36 163.87 50.79

Maqin 11.00 374.92 167.17 78.29
Henan 143.88 400.79 265.14 64.36
Gande 100.34 210.64 146.33 37.45
Maqu 83.77 328.30 164.48 63.13
Dari 77.96 220.00 151.21 35.77

Ruoergai 63.00 357.50 191.19 86.98
Jiuzhi 74.92 380.20 188.08 88.15
Aba 86.40 253.60 164.12 39.32

Hongyuan 104.01 428.02 292.56 101.10
Total 6.50 428.02 171.39 84.89

3.1.2. Correlation Analysis between AGB and Environmental Variables

The correlation matrix represents the environmental variables and AGB, shown by the
correlation coefficient (Figure 3). Positive correlations are shown in yellow, and negative
correlations are shown in green. Among them, FPAR, XMSAVI, and XSAVI had the highest
correlation with AGB (R = 0.59), except that there was a good correlation between various
vegetation indices and the measured AGB; the correlations were all greater than 0.5, indi-
cating that the vegetation index can better characterize the grassland in the HYR. Among
the geographic location factors, longitude (R = 0.44) was more correlated with AGB than
latitude (R = −0.28), elevation (R = −0.25), and slope (R = 0.05). Among the meteorological
factors, annual rainfall (R = 0.46) and illumination (R = −0.44) better responded to the
information of AGB, compared to mean annual TEM (R = 0.32) and K (R = 0.13). Among
the soil factors, the correlation between SOC and AGB was significantly higher than that
between CLAY and SAND. In addition, there were also strong correlations among the envi-
ronmental variables; for example, the correlation coefficient between NDVI and coverage
was 1, while the correlation between NDVI and EVI also reached 0.89. Therefore, if all
variables are included in the machine learning algorithm for simulation, it will lead to the
generation of the multicollinearity problem. Based on this problem, we did variable screen-
ing to determine the best input feature set, which is crucial to reduce model overfitting and
improve model performance.
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3.1.3. Model Accuracy Evaluation

LASSO selected 8 environmental variables. Longitude was selected in the geographic
location factor, EVI, XMSAVI, and XNDVGI were selected in the vegetation index factor,
illumination was selected in the meteorological factor, and CLAY2 and SOC were selected
in the soil factor. In the CASA model, the FPAR variable was also selected. In the validation
set of the four grassland AGB estimation models (Figure 4), RF had the highest R2

val and
lowest RMSEval of 0.56 and 51.3 g/m2, respectively. The second was BP-ANN, which were
0.41 and 67.4 g/m2, respectively. The R2

val of SVM and PLSR were both 0.39, and the
RMSEval was 67.35 g/m2 and 66.78 g/m2, respectively. The reason may be that (compared
with models, such as BP-ANN and PLSR) the RF model introduces randomization to deal
with the decision tree problem, which significantly improves the model’s resilience to
noise [33,34]. Therefore, the RF method was used to estimate the AGB of the HYR from
2001 to 2020.

3.2. Spatial and Temporal Dynamic Distribution of AGB

In terms of spatial distribution, the spatial distribution of AGB in the HYR from 2001
to 2020 showed an obvious heterogeneity (Figure 5), showing a clear trend of gradual
decline from southeast to northwest. The 2001–2020 AGB annual mean and AGB annual
total values were 176.8 g/m2 and 20.73 Tg, respectively. The maximum biomass was
306 g/m2, mainly concentrated between 50–250 g/m2, accounting for 76.13%, distributed
in Tongde, Zeku, Henan, Maqu, Jiuzhi, Gand, Dari, and MaQin counties. The percentage
of those exceeding 250 g/m2 was 23.49% were distributed in Hongyuan, Aba, and Ruoerge
counties. The smallest AGB values were distributed in Qumarai, Maduo, and Chengduo
counties, in the northwestern region of the HYR. The average values from 2001 to 2020
were 82.46 g/m2, 98.23 g/m2, and 116.71 g/m2. The AGB values decreased spatially from
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southeast to northwest, and this trend was closely related to the rainfall, elevation, and
vegetation distribution types in the region.
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3.3. Trend Analysis of AGB Changes

The AGB in the HYR showed an increasing trend in most areas from 2001 to 2020, with
69.51% of the area increasing, 0.35% of the area remaining stable, and 30.14% of the area
decreasing in AGB (Figure 6). Among them, the significantly increased areas accounted for
19.2%, mainly in the northern parts of Tongde, Zeku, Henan, and Maqu counties, as well
as the southern parts of Maduo (Table 4). A total of 50.31% of the regional AGB showed a
slight increase in trend, mainly distributed in Maqin and Dari counties. In addition, nearly
25.87% of the regional AGB showed a slight downward trend, mainly concentrated in
northern Hongyuan county and southern Ruoerge, as well as southern Maqu, northern
Quemalai, and Maduo counties. A significant decrease was observed in 4.27% of the areas,
which were distributed in the southeastern part of Jiuzhi county, the northwestern part of
Maqin, and the northern parts of Qumalai and Maduo counties (Figure 6).

Table 4. The dynamic change trend of AGB in each county.

County Obviously Increase Slightly Increase Stable Slightly Increasing Obviously Decrease

Xinghai 24.60% 50.13% 0.36% 21.57% 3.34%
Qumalai 4.66% 35.07% 1.48% 50.11% 8.69%
Maduo 21.31% 51.25% 0.40% 22.42% 4.62%
Tongde 39.72% 46.91% 0.15% 12.42% 0.80%
Zeku 49.08% 45.35% 0.09% 5.27% 0.21%

Maqin 18.65% 56.58% 0.24% 19.84% 4.68%
Chengduo 28.39% 50.11% 0.52% 19.72% 1.26%

Henan 49.12% 48.53% 0.02% 2.30% 0.04%
Gande 11.49% 53.56% 0.19% 32.77% 1.98%
Maqu 30.95% 45.11% 0.08% 20.52% 3.34%
Dari 7.76% 74.06% 0.28% 16.07% 1.83%

Ruoergai 6.59% 33.74% 0.46% 52.50% 6.71%
Jiuzhi 6.00% 42.63% 0.08% 36.92% 14.36%
Aba 3.66% 48.27% 0.40% 43.43% 4.24%

Hongyuan 9.02% 47.18% 0.24% 38.76% 4.80%
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4. Discussion
4.1. Compared with Traditional Univariate Model

The aboveground biomass in the HYR has a positive correlation with the remote
sensing vegetation index (Table 5), indicating that it is basically feasible to use the vegetation
index to monitor grassland biomass. Meanwhile, there were differences in the relationship
between different vegetation indices and biomass, among which NDVI and AGB had
the highest cubic correlation coefficient (R = 0.46); the curvilinear model better reflected
the relationship between vegetation indices and measured biomass, compared to the
univariate linear regression model. Overall, the correlation coefficient fit of NDVI and AGB
was better than that of EVI, MSAVI, NDVGI, and SAVI. It shows that the use of NDVI cubic
polynomial model is a simple, effective, and practical method to monitor AGB. Generally
speaking, compared with the univariate model, RF improves the simulation accuracy of
grassland AGB in the HYR, has higher stability, better predictive ability, strong application
prospects, and advantages. Although the random forest model is significantly better than
the traditional model, the custom model constructed in this study is only applicable to the
HYR, for the time being. Whether it is applicable to other grassland types, such as cold
desert, temperate grassland, and tropical grassland, remains to be further verified.

Table 5. Fitting results of vegetation index and AGB.

Index Model Formula R2

NDVI

Linear y = 0.0011x + 0.5294 0.313
Exponential y = 0.5031e0.0018x 0.2758

Power y = 0.1375x0.3213 0.4041
Logarithmic y = 0.1788ln(x) − 0.1848 0.4313
Quadratic y = −6 × 10−6x2 + 0.0035x + 0.3278 0.4327

Cubic y = 3 × 10−8x3 − 2 × 10−5x2 + 0.0063x + 0.2023 0.4564

EVI

Linear y = 9.9831x + 3434.5 0.3307
Exponential y = 3247.5e0.0024x 0.2885

Power y = 706.02x0.3859 0.3841
Logarithmic y = 1567.1ln(x) − 2692.5 0.3885
Quadratic y = −0.0456x2 + 28.372x + 1949.9 0.4068

Cubic y = 7 × 10−5x3 − 0.0867x2 + 35.423x + 1625.9 0.4087

XMSAVI

Linear y = 0.001x + 0.3281 0.3478
Exponential y = 0.3174e0.0023x 0.3077

Power y = 0.0684x0.3871 0.3983
Logarithmic y = 0.1562ln(x) − 0.2813 0.4023
Quadratic y = −4 × 10−6x2 + 0.0027x + 0.1944 0.4121

Cubic y = 5 × 10−9x3 −7 × 10−6 x2 + 0.0032x + 0.1696 0.4133

XNDVGI

Linear y = 0.0007x + 0.5543 0.3001
Exponential y = 0.5448e0.0011x 0.2809

Power y = 0.2551x0.1891 0.3877
Logarithmic y = 0.109ln(x) + 0.1213 0.3977
Quadratic y = −3 × 10−6x2 + 0.002x + 0.4438 0.3894

Cubic y = 10−8x3 − 10−5x2 + 0.0033x + 0.3829 0.4033

XSAVI

Linear y = 0.0009x + 0.3462 0.3426
Exponential y = 0.3352e0.002x 0.3073

Power y = 0.0875 × 0.3376 0.402
Logarithmic y = 0.1356ln(x) − 0.1852 0.4089
Quadratic y = −4 × 10−6x2 + 0.0024x + 0.2251 0.4138

Cubic y = 7 × 10−9x3 − 8 × 10−6x2 + 0.0031x + 0.1912 0.4166
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4.2. Reasons for AGB Changes

In the past 20 years, the vegetation status in the HYR has shown an overall improve-
ment trend, which is consistent with existing research results [35–37]. Existing studies have
shown that [38], affected by global warming, the HYR has generally shown a warm and
humid trend in recent years, which provides favorable climatic conditions for vegetation
restoration in the HYR. In this study, although temperature and rainfall were not screened
as important environmental variables for simulating grassland AGB, the correlation coeffi-
cients of longitude with rainfall and temperature were 0.71 and 0.82, respectively; rainfall
and temperature showed a gradual decrease from west to east, due to the geographical
location of the Yellow River source area, so longitude better represented the climate influ-
ence factors in the region. The areas with the least AGB are located in Maduo County and
the northern part of Chenduo County. The area is less affected by the southwest monsoon,
has high altitude, poor water, and heat conditions, and therefore, poor vegetation growth.
Lowering temperature will inhibit the growth and development of vegetation in this area,
and rising temperature is conducive to the accumulation of dry matter quality of plants,
which is a favorable condition for vegetation growth. This is the climatic factor of AGB
decreasing from southeast to northwest in the HYR.

Human activities are equally important drivers of changes in grassland dynamics [39–41].
Since 2003, the region began to implement the policy of returning grazing to the grasslands.
The purpose of the plan is to improve the grassland ecological environment, promote a
virtuous cycle of grassland ecology, and maintain national ecological security. In 2011, the
first phase of the ecological award policy was implemented in the region, and the second
phase of the ecological award policy was started in 2016, which increased the amount of
grass storage balance incentives and subsidies for grazing ban, compared to the first phase;
in terms of policy ecological effects, the study showed that the ecological supplementation
policy played a positive role in the ecological restoration and improvement of the Yellow
River source area [42]. Thus, favorable policies may be the artificial reason why 69.51%
of the regional AGB in the study area showed an increase. As the AGB in Zeku, Tongde,
and Magu have shown an increasing trend in recent years (Figure 6), this is due to the fact
that the area has adopted water and soil conservation prevention and protection projects
and comprehensive desertification control projects, through fences, policy closures, water
and soil conservation monitoring, and improvement of the legal system. It also carries out
ecological restoration treatment of mines, power stations, and road construction projects,
so that the regional ecological environment is significantly improved, and the cover of
severely degraded areas is significantly increased [43]. On the other hand, areas of AGB
degradation, occurring in this study, were mainly concentrated in Aba, Hongyuan, and
Maduo counties; according to research by Xu et al. [44], there are overgrazing situations in
Aba and Hongyuan, while the total number of livestock in Henan, Tongde, Xinghai, and
Zeku counties has shown a downward trend. Therefore, the increase in grazing pressure
will reduce the carrying capacity of the grassland, which will degrade the grassland. In
degraded areas of AGB, since animal husbandry is the main source of income for local
herders, it is obviously unrealistic to implement large-scale grazing prohibitions. We
should graze scientifically, determine animals with grass, manage scientifically, use grass-
land rationally, and restore natural grassland productivity [45], focus on the construction
of pasture fences, determine a reasonable pasture carrying capacity, scientifically configure
the herd structure, implement zoning and grazing in turns, so that natural pastures can be
recuperated, and develop grassland irrigation and fertilization in areas where conditions
permit, and improve natural pastures [46].

4.3. Advantages and Limitations of Custom Models

First, the machine learning algorithm can incorporate a variety of environmental
variables that affect AGB into the model simulation study. In addition, the input variable
data are easy to obtain, and the model can independently learn and adjust parameters,
which has strong applicability. The model can be adapted to the study of different research
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areas, and even with the support of sufficiently complete data, the prediction range can
be further improved. Although our research provides a comprehensive assessment of the
AGB in the HYR, there are still some limitations. First, due to inconvenient transportation,
there are relatively few sampling points in the western region; this may result in inaccurate
AGB estimates for the region. Secondly, as a black box operation, the learning process of a
machine learning model is uncontrollable. Third, when the random forest is performing
regression, it cannot make predictions that exceed the range of the training set data; it does
not perform as well in classification, because it cannot give a continuous output [47].

5. Conclusions

The simulation results of the RF algorithm are better than the SVM, BP-ANN, PLSR,
and univariate vegetation index model (R2

val = 0.56, RMSEval = 51.3 g/m2). From 2001
to 2020, the AGB of the HYR showed a spatially decreasing trend from the southeast to
northwest, and the proportion of the area with increasing grassland AGB reached 69.51%
in the past 20 years, while the proportion of the area with decreasing grassland AGB was
30.14%, mainly in Hongyuan, Ruoerge, Jiuzhi, and Qumalai counties. This study has a high
sampling site density and small model deviation, which accurately simulates the spatial
distribution pattern of soil erosion in the HYR. The research results can not only provide a
scientific basis for the grassland management and protection policies in the HYR, but also
extend the application of such modeling methods to the study of grassland AGB in other
areas of the Qinghai-Tibet Plateau.
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Appendix A

In Figure A1, we showed the cost map of using the cLHS method to lay out the sample
points, thus laying the foundation for the scientific collection of samples to make belts. In
Figure A2, we showed the distribution of meteorological stations, which is the basis for all
meteorological data in this paper.
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