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Abstract: Water level (WL) and terrestrial water storage (TWS) are two important indicators for
early alerts of hydrological extremes. Their variation is governed by precipitation under monsoon
variability, in particular in the Mekong river basin, where it is affected by the interaction between the
Indian summer monsoon (ISM) and western North Pacific monsoon (WNPM). This study aimed to
quantify the contributions of two monsoons to the water levels of four hydrological stations (i.e., My
Thuan, Can Tho, Chau Doc and Tan Chau) on the Mekong Delta and the terrestrial water storage of
the entire Mekong River basin through relative importance analysis. Three methods—multivariate
linear regression; Lindeman, Merenda and Gold (LMG); and the proportional marginal variance
decomposition (PMVD) methods—were selected to quantitatively obtain the relative influence of
two monsoons on water level and TWS. The results showed that, from 2010 to 2014, the proportions
of the ISM impacts on the water level obtained with the three methods ranged from 55.48 to 81.35%,
50.69 to 57.55% and 55.41 to 93.64% via multivariate linear regression, LMG and PMVD, respectively.
Further analysis showed that different choices of time spans could lead to different results, indicated
that the corresponding proportion would be influenced by other factors, such as El Niño–Southern
Oscillation (ENSO). The removal of ENSO further enlarged the relative importance of the ISM, and
the mean values of the four stations were increased by 8.78%, 2.04% and 14.92%, respectively, via
multivariate linear regression, LMG and PMVD. Meanwhile, based on the analysis of terrestrial water
storage, it was found that the impact of the ISM on the whole Mekong River basin was dominant:
the proportions of the impact of the ISM on terrestrial water storage increased to 68.79%, 54.60%
and 79.43%, which rose by 11.24%, 2.96% and 19.77%, respectively, via linear regression, LMG and
PMVD. The increases almost equaled the quantified proportion for the ENSO component. Overall,
the novel technique of quantifying the contributions of monsoons to WL and TWS can be applied to
the influence of other atmospheric factors or events on hydrological variables in different regions.

Keywords: monsoon; relative importance; Mekong basin; ENSO

1. Introduction

Monsoons are one of the most energetic components of the earth’s climate system [1],
affecting the livelihoods of more than 60% of the world population [2]. Recently, many
research studies have revealed the relationship between the Asian summer monsoon and
hydrological extreme events. For instance, the Asian monsoon is the key factor affecting
the occurrence of drought and flood across different regions in India [3] and China [4] and
the biogeochemical and hydrological processes in South Korea [5]. The Indian summer
monsoon (ISM) and western North Pacific monsoon (WNPM) are the two main monsoon
members in Asia that have significant influences on Southeast Asia. Two circulation indices,
the ISM and WNPM [1], are normally selected to explain the regional hydrological and
climatic conditions.
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Various research studies have demonstrated that a significant interaction between the
Asian monsoon and El Niño–Southern Oscillation (ENSO) exists [1,6,7]. For example, the
East Asian summer monsoon is influenced by El Niño events, leading to more precipitation
in the summer after El Niño for some regions [8]. Significant negative correlations have
been found between the WNPM and ISM during the El Niño early onset years and during
the El Niño decaying summer [9]. In fact, the respective relationships between ENSO
and precipitation [10] and water levels [11] in the Mekong River basin have also been
analyzed, and it was found that hydrological variables are significantly influenced by
ENSO events. Applying the above findings, recent studies have been focused on water
level reconstruction based on ENSO [12], drought indices and satellite gravimetry [13].
However, the quantification of the relative impacts of the above two monsoons on the
water level and terrestrial water storage have never been reported.

As the largest river in Southeast Asia [14], the Mekong River basin (MRB), with a total
basin covering an area of 795,000 km2 across 25◦ of latitude [15], discharges freshwater
southward from China, flowing through Myanmar, Laos, Thailand, Cambodia and Viet-
nam [16] to the South China Sea (SCS) [17] (Figure 1). The MRB is normally divided into
two parts: the Upper Mekong basin in China (called the Lancang River) and the Lower
Mekong basin beginning from the Chinese boundary and extending to the SCS. The terrain
in the upper basin is steep and narrow but becomes relatively flat and open in the lower
basin, especially from Cambodia to the SCS [17]. The climate of the MRB is significantly
affected by the Asian–Pacific monsoon system [18], especially the downstream MRB. The
MRB ranks tenth among the global megabasins on the basis of mean annual discharge at
the estuary mouth [19], which is inhabited by around 65 million people [17]. Due to the
Asian–Pacific monsoon system, the climate of the MRB presents obvious dry (from early
May to October) and wet (from November to April) seasons [20], controlled by the cold air
from the Eurasian continent and the summer monsoon by air from both the southwest and
the southeast. Water discharge (WD) mainly comes from the rainfall in the rainy season in
the downstream MRB [12].

WD monitoring is significantly important for managing water resources and obtaining
alerts about hydrological extremes that can cause otherwise unforeseeable losses to the
economy [21–23]. As a power function of the WD [24,25], the water level (WL) has an
inseparable relationship with people’s lives, production and even regional development.
Given the high correlation with the precipitation, whether on land [26], lakes [27], or
rivers [28,29], the WL and terrestrial water storage (TWS) are affected by precipitation and
discharge through the monsoon, as this large-scale atmospheric circulation controls the
spatiotemporal variability of precipitation [30].

As a key part of terrestrial water resources [31], the TWS, consisting of surface water
storage (e.g., reservoirs and lakes), groundwater, soil moisture, snow and ice [32], can
be inferred from Gravity Recovery and Climate Experiment (GRACE). This provides a
synoptic view of its spatiotemporal variability [33], which can better reflect the change
of terrestrial water quantity at a regional scale when compared to WL. It plays a major
role in the exchange of water mass between the atmosphere and the ocean [34]. The
TWS variability can be attributed to precipitation [35,36], evapotranspiration [35] and
ice melting, to mention only a few factors [36]. Monsoons’ effects on TWS have been
investigated recently. He et al. [37] discovered that the shifting of TWS spatial distribution
over East China is due to the varying strengths of local winds and Asian monsoons. On the
other hand, the variability of TWS across China has long been attributed to the interaction
of monsoons and a connection with El Niño–Southern Oscillation (ENSO); for instance, by
Long et al. [38], Ni et al. [39], Tang et al. [40] and Zhang et al. [41]. Several research studies
have quantitatively inferred that WL variations are linked to the TWS (e.g., [42–44]). For
example, WLs have been reconstructed based on TWS and other indices in the Mekong
and Yangtze river basins [13,45]. Though the relationship between WL and TWS has
been scientifically investigated and the practical applications of the relationship have been
explored, the direct comparison between the WL and TWS as affected by monsoons has
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rarely been studied, let alone the quantification of the relative importance (or contribution)
of the governing monsoons for the WL and TWS.

Figure 1. Map of Mekong basin with two pairs of selected hydrological stations (My Thuan and Can
Tho, and Chau Doc and Tan Chau) located in the Mekong Delta.

This study aimed to quantify the influences of the ISM and WNPM on the WL of
the Mekong Delta and the TWS in the MRB. Linear regression and relative importance
(RI) analyses of long periods and continuous short periods were used to calculate their
relative influence. The RI is a statistical tool for quantifying the relative contribution of each
potential explanatory variable (i.e., regressor) comprising the value of R2 [46–48]. After
preprocessing, the relative importance of the ISM and WNPM indices for the WL and TWS
was calculated with a multivariate linear model; the Lindeman, Merenda and Gold (LMG)
model; and the proportional marginal variance decomposition (PMVD) model. Moreover,
the relative importance of the data after removing the signal related to ENSO with wavelet
transform coherence (WTC) was also analyzed. The results were compared to analyze the
effect of ENSO on WL and TWS.

This article is structured as follows: The dataset is described in detail in Section 2, and
the research methods and evaluation indicators are stated in Section 3, followed by the
results of linear regression, LMG and PMVD in Section 4, with WTC used as well. The
results are further analyzed also in Section 4 and the conclusion is given in Section 5.

2. Datasets Description
2.1. Water Level Data

Daily WLs from 1 January 2008 to 31 December 2015 observed at four hydrological
stations (i.e., My Thuan and Can Tho, approximately 80–110 km from the estuary mouth,
and Chau Doc and Tan Chau, approximately 220 km from the estuary mouth) were obtained
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from the Mekong River Commission (MRC; http://www.mrcmekong.org, accessed on
10 July 2020). Four station time series are displayed in Figure 2, with their basic information
given in Table 1. In this study, the data time span for 2010–2014 was taken as an example for
our initial investigation, and the rest were used for subsequent comparison and analysis.

Figure 2. WLs of four selected stations in the Mekong River delta (MRD): (a,b) are the daily observed
WLs and (c,d) are the WLs after monthly averaging.

Table 1. Maxima, minima, means and standard deviations of daily observed (and monthly averaged)
WLs from four selected stations in the MRD.

Variable Station Max Min Mean Standard Deviation

Daily observed
water level(m)

My Thuan 1.594 −0.530 0.404 0.321
Can Tho 1.742 −0.498 0.503 0.334

Chau Doc 4.223 0.184 1.378 0.884
Tan Chau 4.778 0.138 1.574 1.073

Monthly
averaged water

level (m)

My Thuan 1.081 −0.059 0.403 0.274
Can Tho 1.175 0.065 0.504 0.289

Chau Doc 4.142 0.435 1.375 0.866
Tan Chau 4.620 0.408 1.569 1.053

http://www.mrcmekong.org
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The WL presented obvious annual periodic changes due to the seasonal precipitation
and even monsoon activities [13]. Periodic changes were accompanied by small diurnal
fluctuations, which are mainly caused by dominant semi-diurnal ocean tides in the southern
SCS [49,50]. For Can Tho and My Thuan, which are closer to the coast, the backwater from
the ocean intrudes into the estuary, which should dampen the amplitude of the WL [49].
As a result, the standard deviations of the WL at My Thuan and Can Tho were smaller
than that at the upper pair of stations (i.e., Chau Doc and Tan Chau) (Table 1). To be
consistent with the monthly monsoon index and basin-averaged TWS, monthly averaging
was conducted to smooth the raw data [49] (Figure 2), and the statistics of the monthly
averaged data are shown in Table 1 as well.

2.2. Indian Summer Monsoon (ISM) Index and Western North Pacific Monsoon (WNPM) Index

To numerically represent the intensity of the tropical westerly monsoon, the Indian
summer monsoon (ISM) index and western North Pacific monsoon (WNPM) index [1]
were used. The ISM index is defined by a difference of 850 hPa in the zonal winds
between 5–15◦N, 40–80◦E and 20–30◦N, 70–90◦E, whereas the WNPM index is defined
by a difference of 850 hPa in the westerlies between 5–15◦N, 100–130◦E and 20–30◦N,
110–140◦E [1], as shown in Figure 3. The 850 hPa zonal wind was used as an indicator
because it better reflects the variations of the corresponding convective heating [51], from
which the monsoon can be formed.

Figure 3. The definitions of the ISM index (a difference of 850 hPa in zonal winds between A and B,
i.e., UA −UB) and WNPM index (a difference of 850 hPa in westerly winds between C and D, i.e.,
UC −UD).

The time series of the ISM index and WNPM index from 2003 to 2015 can be directly
accessed at the website of the Asia-Pacific Data-Research Center (APDRC) (http://apdrc.
soest.hawaii.edu/projects/monsoon/realtime-monidx.html, accessed on 10 July 2020),
as displayed in Figure 4. Both indices display the obvious annual cycle and short-term
fluctuations, similar to those for the WL.

2.3. Terrestrial Water Storage Data

The Gravity Recovery and Climate Experiment (GRACE) yields time-variable TWS
data on a monthly scale [52]. The TWS data used here, with a theoretical spatial resolution
of 3◦, were computed from the CSR GRACE Level 2 Release 05 (RL05) GSM monthly
gravity fields, accessible at the website of the Center of Space Research (CSR) managed by
NASA (http://www2.csr.utexas.edu/grace/RL05.html, accessed on 10 July 2020). Two
post-processing steps were applied to obtain TWS data from the GRACE gravity spherical
harmonic coefficients. The GRACE C20 term was replaced by satellite laser ranging (SLR)
and degree-one terms were restored to correct for geocenter motion [53,54], followed by a

http://apdrc.soest.hawaii.edu/projects/monsoon/realtime-monidx.html
http://apdrc.soest.hawaii.edu/projects/monsoon/realtime-monidx.html
http://www2.csr.utexas.edu/grace/RL05.html
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de-striping process and Gaussian filtering with a radius of 350 km [55,56]. The data time
series of the Mekong River basin were then spatially averaged to obtain a single TWS time
series for the entire Mekong basin for the period from 2003 to 2015, as given in Figure 5.

Figure 4. Indian summer monsoon (ISM) index and western North Pacific monsoon (WNPM) index
from 2003 to 2015. A positive ISM index means that the monsoon activity in region A is stronger
than that in region B (Figure 3), and the negative value indicates the opposite. A positive WNPM
index means that the monsoon activity in region C is stronger than that in region D (Figure 3), and
the negative value indicates the opposite.

Figure 5. TWS time series for the entire Mekong basin for the period from 2003 to 2015.

2.4. Multivariate ENSO Index (MEI)

As a wind field and sea surface temperature oscillation occurs in the equatorial eastern
Pacific region, ENSO can be detected from the anomalies of sea-level pressure difference
and sea surface temperature (SST) [57]. In this study, the multivariate ENSO index (MEI)
was considered as a more integrated index than other ENSO indices for the quantification
of the strength and variability of ENSO [58] because the MEI is calculated based on the sea
surface pressure, the zonal and meridional components of the surface wind, the SST and
the total cloudiness fraction of the sky over the tropical Pacific [30]. The MEI dataset was
downloaded on 10 July 2020 at http://www.esrl.noaa.gov/psd/enso/mei.ext/table.ext.html.

http://www.esrl.noaa.gov/psd/enso/mei.ext/table.ext.html
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3. Method and Evaluation Metrics
3.1. Research Flow

The flow of this study included the following aspects: pretreatment (including time
lag analysis); calculation of the relative contributions of the ISM and WNPM via linear
regression, LMG and PMVD; and removal of the ENSO effect from the monsoon index
through WTC (Figure 6).

Figure 6. The research flowchart of this study.

3.2. Time Lag Analysis

Considering that only the quantitative relationship between the monsoon index and
water level was explored, a time lag between them must exist (Figure 7). This is because
time is required for the monsoonal wind to generate the process that, through precipitation
(recharge)–storage–discharge, ultimately affects the water level at the estuary. Cross-
correlation was employed to align the time series [59], defined as

ck = ∑
i

uivk+i−1 (1)

where u and v are time series of length N, i means the i-th sample of the time series and k
means the k-th number of the cross-correlation. The cross-correlation is maximized when
the time series u and v are aligned well with a time lag between them. For instance, in
this study, u is the monsoon index and v is the WL or TWS, and ck is maximized when the
monsoon index and WL or TWS are aligned well with a time lag between them.

The degree of the maximum value of ck, denoted as imax(c), is the parameter used to
calculate time lag, τ, as follows:

τ = −∆t(imax(c)− N) (2)

where τ stands for the time lag and ∆t is the sampling interval of the time series. The lag is
positive when time series v occur later than that of time series u. The time lag between the
monsoon index and the daily WL observed at station (monthly basin-averaged TWS), with
the ∆t in terms of the day (respectively, month), was calculated (Table 2).

Table 2. The time lag between the monsoon index and WL (or basin-averaged TWS).

Variable Station Time Lag with ISM (days) Time Lag with WNPM (days)

WL

My Thuan 98 89
Can Tho 85 88

Chau Doc 68 44
Tan Chau 60 39

TWS ——
Time Lag with ISM (months) Time Lag with WNPM (months)

2 1
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Figure 7. Time lag between (a) WL at My Thuan and (b) Indian summer monsoon index.

The time lags of the WNPM for four selected stations were all shorter than those of
the ISM except the one at Can Tho. This indicates that the influence of the WNPM arrives
earlier than that of the ISM. This might be attributable to the defined zone of the WNPM
being 1500 km closer to the location of the MRB, as shown in Figure 3.

Differently from the daily WL fluctuation resulting purely from the land surface
hydrology, the long-period ocean tides, such as semi-annual and annual tidal constituents,
play an important role in providing a backwater effect on the WL at the river mouth, such
that the effect of the monsoon is not reflected instantly. Consequently, the time series for
the station pair closer to the ocean (i.e., My Thuan and Can Tho) presented a longer time
lag (i.e., ~3 months) than that of the upper station pair (i.e., Chau Doc and Tan Chau).
Compared to the difference between the time lags of the two station pairs, that of the two
monsoon indices was relatively small at the same station. For instance, 9 day and 3 day
time lags were present at My Thuan and Can Tho, and 16 day and 21 day time lags were
present at Chau Doc and Tan Chau.

3.3. RI Calculated from Linear Regression Coefficients

A multivariate linear model is commonly used to quantify the relationships among
different variables. For a dependent variable y and multiple independent variables
x1, x2, x3 · · · , the basic linear model is

y = b0 + b1x1 + b2x2 + · · ·+ bnxn + ε (3)

where b0 is the constant offset, b1, b2, b3 · · · are the coefficients for each independent variable
and ε is the random error with a mathematical expectation that equals zero. According
to Equation (3), the quantitative relationship between the WLs at stations and the two
monsoon (ISM and WNPM) indices can be formulated as follows:

WL = b0 + b1·ISM + b2·WNPM (4)

Therefore, the relative importance (or contribution) of each monsoon index can be
calculated as

CISM =
b1

b1 + b2
× 100%, CWNPM =

b2

b1 + b2
× 100% (5)
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3.4. Evaluation Indices

The Pearson correlation coefficient (PCC) was selected to evaluate the performance
of the WL modeled from the linear regression against the observed one. Its definition is
shown in Equation (6), where Xobs and Xmon represent the WL/TWS from observation and
from the linear regression based on monsoon indices, respectively. Xobs refers to the mean
of Xobs, so too does Xmon.

PCC =
∑N

i=1
(
Xi

obs − Xobs
)(

Xi
mon − Xmon

)√
∑N

i=1
(
Xi

obs − Xobs
)2
√

∑N
i=1
(
Xi

mon − Xmon
)2

(6)

Additionally, two other metrics were also selected: the normalized root mean squared
error (NRMSE) and the Nash–Sutcliffe efficiency model (NSE). The NRMSE, as an indicator
to reflect the accuracy in normalized form, is defined as follows:

NRMSE =

√
∑N

i=1(Xi
mon−Xi

obs)
2

N

max(Xobs)−min(Xobs)
(7)

The NSE, which was first introduced by Nash and Sutcliffe in 1970 [60], is a widely
used coefficient for the evaluation of hydrological models against observed data, with a
range from −∞ to 1. The numerical value of the NSE reflects the best performance of the
model when it approaches 1. It can be calculated as Equation (8) shows.

NSE = 1− ∑N
i=1
(
Xi

mon − Xi
obs
)2

∑N
i=1
(
Xi

obs − Xobs
)2 (8)

3.5. RI from Linear Regression Using LMG and PMVD Methods

Since the RI refers to the quantification of an individual regressor’s contribution to
a multivariate linear model [61], assigning shares of “relative importance” to each one
of a set of regressors is one of the keys to linear regression [62]. Choosing from among
many methods for determining the RI, the Lindeman, Merenda and Gold (LMG) [63]
and proportional marginal variance decomposition (PMVD) [64] methods were used here
to decompose R2 into the contributions of each regressor. R2 refers to the coefficient of
determination, which is defined as follows:

R2(M) =
∑n

t=1(ŷt − y)2

∑n
t=1(yt − y)2 (9)

where yt is the observed value at time t, and ŷt is the linear estimate of yt. y is the
average of the dependent variable y and M = {x1, x2, · · · , xN} is the set of N possi-
ble regressors contributing to the overall description of the dependent variable. In this
study, y stands for WL/TWS and M consists of the ISM index and WNPM index; that is
M = {x1, x2, · · · , xN} = {ISM index, WNPM index}. In Section 4.4, MEI is added into M
as a possible factor as well. The LMG and PMVD methods eliminate the dependence of the
contribution of regressors (xi) by replacing orders of regressions and averaging marginal
contributions of replaced regressors. Suppose T represents the input of a set of regressors
into the model, and r = (r1, r2, · · · , rN) represents different orders of x1, x2, · · · , xN in
the model. The set of regressors before xi in order r is denoted as Tr

i . Consequently, the
marginal contribution Mi of the regressor xi in the order r, denoted as seqR2(xi

∣∣Tr
i
)
, can be

written as

Mi = seqR2(xi|Tr
i ) = R2({xi} ∪ Tr

i )− R2(Tr
i ) (10)
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With the LMG method, all Mis are simply averaged in the order r, which is calculated as

LMG(xi) =
1

N! ∑
repermutation

seqR2(xi
∣∣Tr

i
)

= 1
N! ∑

Tr
i ∈M{xi}

n
(
Tr

i
)
!
(

N − n
(
Tr

i
)
− 1
)
!seqR2(xi

∣∣Tr
i
) (11)

where n
(
Tr

i
)

is the number of regressors in Tr
i .

However, with the LMG method, when one regressor xi is related to other regressors,
a biased marginal contribution is obtained, even if the regression coefficient of xi and
the dependent variable y is zero. Therefore, the PMVD method, which is a weighted
analogue of the LMG method using data-dependent weights, has been proposed to solve
this problem [64]. The data-dependent weights, ω(r), are derived from a set of axioms and
used to weight the permutation in the PMVD method, which is defined as

PMVD(xi) =
1

N! ∑
repermutation

ω(r)seqR2(xi
∣∣Tr

i
)

= 1
N! ∑

Tr
i ∈M{xi}

n
(
Tr

i
)
!
(

N − n
(
Tr

i
)
− 1
)
!ω(r)seqR2(xi

∣∣Tr
i
) (12)

3.6. Wavelet Transform Coherence

Wavelet transform coherence (WTC), first put forward by Torrence and Webster
(1999) [65], has been widely used in time series analysis [66,67]. The continuous wavelet
transform (CWT) is one class of wavelet transforms. The CWT of the time series of the
WNPM index, for example, with length n and uniform time step ∆T, can be defined as
CWNPM

i (j), which is a convolution of the WNPM index with the scaled and normalized
wavelet [67]:

CWNPM
i (j) =

√
∆T

j

n

∑
k=1

WNPMk·ϕ0

[
(k− i)

∆T
j

]
(13)

where i represents the time index and j is the wavelet scale. The ϕ0 is a particular wavelet
basis, called the Morlet wavelet, defined as:

ϕ0(η) = π−
1
4 e−

η2
2 +iω0η (14)

where ω0 is the dimensionless frequency and η is the dimensionless time. Aiming at
striking a good balance between frequency and time, the ω0 was chosen to be 6 [68].

According to [27], the cross-wavelet spectrum of two time series, for example, WNPM
and MEI, can be defined as CWNPM,MEI

i (j):

CWNPM,MEI
i (j) = CWNPM

i (j)CMEI
i (j)∗ (15)

Here, ∗ represents the complex conjugate. Then, according to [31], the WTC of these
two time series, R2

i (WNPM, MEI), can be calculated as:

R2
i (WNPM, MEI) =

∣∣∣So
(

j−1CWNPM,MEI
i (j)

)∣∣∣2
So
(

j−1
∣∣CWNPM

i (j)
∣∣2)·So

(
j−1
∣∣CMEI

i (j)
∣∣2) (16)

Here, So is a smoothing operator. The significance level of the WTC can be calculated
using the Monte Carlo method. The phase difference is:

ψi(s) = arg
(

So
(

j−1CWNPM,MEI
i (j)

))
(17)
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4. Results and Discussion
4.1. RI Analysis from Linear Regression, LMG and PMVD

The results obtained from the multivariate linear model are shown in Table 3. Al-
though the defined boundary of the WNPM index was closer to the MRD (Figure 3), the
contribution of the ISM to the water level was larger than that of WNPM at the estuary.
Combined with the geographical locations of the hydrological stations (Figure 1), it can
be seen that the contributions of the two monsoons to the WL varied considerably. This
was particularly apparent for the pair consisting of My Thuan and Can Tho, where the
contribution ratio of the ISM and WNPM was four to one (i.e., 4:1). From east to west,
the relative contribution of the ISM decreased from 81% to 55%, while that of the WNPM
increased. This implies that the WL at stations closer to the open ocean (i.e., Can Tho and
My Thuan) was subject to a stronger influence from the ISM. The contribution ratio of the
ISM index for the TWS was similar to the results for the WL for Chau Doc and Tan Chau,
the reason being that a basin-averaged TWS was employed. For the influence on both the
WL and on the TWS, the contribution of the ISM was larger than that of WNPM (Table 3),
implying that the ISM plays a stronger role.

Table 3. The RI of the ISM and WNPM indexes generated from the multivariate linear models.

Variable Station b0 b1 b2 CISM CWNPM PCC NRMSE NSE

WL

My Thuan 0.4340 0.0384 0.0088 81.35% 18.65% 0.9121 0.0977 0.8318
Can Tho 0.5564 0.0370 0.0148 71.45% 28.55% 0.9259 0.1001 0.8573

Chau Doc 1.5659 0.0860 0.0652 56.88% 43.12% 0.9100 0.1000 0.8281
Tan Chau 1.8021 0.1045 0.0839 55.48% 44.52% 0.9306 0.0944 0.8660

Basin-averaged
TWS —— 2.9387 1.0426 0.7689 57.55% 42.45% 0.9482 0.0905 0.8990

In terms of evaluation metrics (i.e., PCC, NRMSE and NSE), it can be seen from Table 4
that the ISM and WNPM were, to a large extent, able to explain the fluctuation of the WL
and basin-averaged TWS via the multivariate linear model in Equation (3). Therefore, the
analyses of the relative contributions of the ISM and WNPM seem to have been appropriate.
Among these analyses, the data fitting based on the basin-averaged TWS appears to have
been the best (the PCC was 0.9482, the NRMSE was 0.0905 and the NSE was 0.8990).
However, the WL obtained by the linear model was not in fact completely consistent with
the actual measurement results (Figure 8), most obviously at the peak and the trough. For
instance, the peak of observed TWS during 2011–2012 was lower than that of the model
based on monsoon indices, as was that of the WL. This could be attributed to the influence
of a medium La Niña event in 2010–2012, which might have increased the water in the
MRB [8,10], leading to the higher values for the WL and TWS. Therefore, the model with
only two monsoon indices could not precisely reconstruct the specific changes in the WL
and TWS.

Table 4. Results of relative importance analysis for the two monsoons with regard to the WL and TWS.

Variable Station
Total

Response
Variance

Proportion
of Variance

Contributions of the ISM Contributions of the WNPM

LMG PMVD LMG PMVD

WL

My Thuan 0.007492 83.18% 57.55% 93.64% 42.45% 6.36%
Can Tho 0.086046 85.73% 57.33% 82.84% 42.67% 17.16%

Chau Doc 0.812452 82.81% 50.94% 56.87% 49.06% 43.13%
Tan Chau 1.175889 86.60% 50.69% 55.41% 49.31% 44.59%

TWS —— 101.5007 89.90% 51.64% 59.66% 48.36% 40.34%

The RI of the ISM and WNPM resulting from the LMG and PMVD methods was also
calculated (Table 4). Compared to the multivariate linear regression result (Table 4), the
proportions of RI for the ISM and WNPM resulting from the LMG and PMVD methods
for the TWS were almost the same. For the WL, the total response variances at My Thuan
and Can Tho were much smaller compared to those at Chau Doc and Tan Chau. This was
due to the difference in amplitudes. The proportion of variance explained by the model,
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expressed as R2, was relatively similar. Although the difference between the LMG and
PMVD methods lies in the data-dependent weights of the PMVD, the results generated
from both methods were very different from each other, especially for the WL at My Thuan
and Can Tho.

Figure 8. WL and linear regression fitting for the period from 2010 to 2014 at (a) My Thuan, (b) Chau
Doc, (c) Can Tho and (d) Tan Chau, along with (e) the TWS and its linear regression fitting for the
period from 2010 to 2014.

With respect to the results from Table 4, the resulting proportions of RI for My Thuan
and Can Tho yielded high consistency with each other when using the LMG method, and
the RI of the ISM accounted for more than 57%. However, the RI of the ISM was about
equal to that of the WNPM at Chau Doc and Tan Chau. For the results generated from the
PMVD, the proportions of RI of the ISM at the four stations for the WL were higher than
those of the LMG, especially at My Thuan (36.09% higher) and Can Tho (25.51% higher).

4.2. Comparison among Three Methods

Comparing Table 3 with Table 4, it can be seen that similarities and differences existed
among the results generated from different RI methods. Taking the results for the WL as
an example, the ISM accounted for a larger relative contribution to WL than the WNPM
for all four stations. The ISM relative contribution to the WL at My Thuan and Can Tho
was higher than at the other two stations. However, there were significant differences in
the specific values: the results generated with multivariate linear regression were closer
to those of the PMVD, especially in the pair consisting of Chau Doc and Tan Chau. The
proportions of RI of the ISM at My Thuan and Can Tho obtained from multivariate linear
regression were lower than those obtained with the PMVD method. For the LMG method,
all the results were in favor of an equilibrium between the ISM and WNPM, and the
proportions of the ISM at all stations were all lower than with the previous two methods.

In essence, it is the characteristics of the methods themselves that leads to different
results. The three methods are fundamentally linear regression, which aims to measure the
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influence of each explanatory variable on a dependent variable. The first method, multi-
variate linear regression, is an ideal model based on the hypothesis that all explanatory
variables are unrelated to each other. When considering the correlation between variables,
the order in which variables participate should not be ignored during the model inter-
pretation process. As stated in Section 3.4, the LMG method is simply the average of the
marginal contributions of all permutations. Based on the LMG method, the PMVD method
assigns different weights in different orders to ensure that variables with coefficients of zero
do not participate in the relative importance calculation process. Consequently, as shown
in Figure 9, the results of the LMG method tended to show more balance between the ISM
and WNPM, whereas the PMVD method, on the other hand, highlighted the part with
greater influence, reminding us of the factors dominantly related to the dependent variable.
In addition, the resulting proportions of RI of the ISM and WNPM for the dependent
variables obtained from the PMVD method and linear regression were relatively close,
indicating that a direct relation between the ISM and WNPM did not exist.

Figure 9. The comparisons of different resulting proportions of RI for the ISM and WNPM in the
period from 2010 to 2014 obtained by three methods (multivariate linear regression, LMG and PMVD)
for the WL at (a) My Thuan, (b) Chau Doc, (c) Can Tho and (d) Tan Chau, along with (e) those for
the TWS.

4.3. Influence of Different Data Time-Span Selections

The above results were based on five years of data from 2010 to 2014. To examine
whether a change in the selected data time-span would produce different results, data
spanning from 2008 to 2012 were employed.

For the RI of the ISM and WNPM for the WL, the ISM was obviously still dominant
in the long term, but interannual fluctuations might exist (Table 5). Although the basic
characteristics for the period from 2008 to 2012 were consistent with that for the period
from 2010 to 2014, the proportions of RI of the ISM obtained with the three methods for the
period from 2008 to 2012 were consistently larger than those for the period from 2010 to
2014. This was particularly apparent at Chau Doc and Tan Chau, where the contribution of
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the ISM to the WL increased by ~5% using the LMG method, while with multivariate linear
regression (PMVD) it increased by ~15% (30%). Moreover, no significant changes were
found in the RI results for My Thuan and Can Tho, especially when using the LMG method.

Table 5. Results of different intervals. The percentage in brackets indicates the change of the value compared with that for
the period from 2010 to 2014. The change of the WNPM is opposite that of the ISM.

Time Interval Monsoon Variable Station Liner Regression LMG PMVD

2010.1–2014.12

ISM
WL

My Thuan 81.35% 57.55% 93.64%
Can Tho 71.45% 57.33% 82.84%

Chau Doc 56.88% 50.94% 56.87%
Tan Chau 55.48% 50.69% 55.41%

TWS —— 57.55% 51.64% 59.66%

WNPM
WL

My Thuan 18.65% 42.45% 6.36%
Can Tho 28.55% 42.67% 17.16%

Chau Doc 43.12% 49.06% 43.13%
Tan Chau 44.52% 49.31% 44.59%

TWS —— 42.45% 48.36% 40.34%

2008.1–2012.12

ISM
WL

My Thuan 88.06% (+6.71%) 60.30% (+2.75%) 97.83% (+4.19%)
Can Tho 82.09% (+10.64) 58.83% (+1.50%) 94.57% (+11.73%)

Chau Doc 72.76% (+15.88%) 55.89% (+4.95%) 87.46% (+30.59%)
Tan Chau 72.58% (+17.1%) 55.54% (+4.85%) 84.39% (+28.98%)

TWS —— 34.00% (−23.55%) 43.69% (−7.95%) 17.42% (−42.24%)

WNPM
WL

My Thuan 11.94% 39.70% 2.17%
Can Tho 17.91% 41.47% 5.43%

Chau Doc 27.24% 44.11% 15.24%
Tan Chau 27.42% 44.46% 15.61%

TWS —— 66.00% 56.31% 82.58%

However, the resulting proportions of RI of the ISM and WNPM for the TWS were
quite different. During 2008–2012, the RI of the WNPM increased by 23.55%, 7.95% and
42.24%, as obtained via multivariate linear regression, LMG and PMVD, respectively, occu-
pying the dominant position of influence on the TWS. Combined with the comprehensive
performance results shown in Table 6, it can be seen that the change in the monsoons’
influence on the TWS was significantly larger than that on the WL.

To further explore the short-term proportions of RI of the ISM and WNPM for the WL
and TWS, six (respectively, eleven) three-year time-spans for the period from 2008 to 2015
(respectively, 2003 to 2015) were selected with a rolling data window. We found that the
results were not the same as the results shown in Table 5 (Figure 10). For the proportions of
RI of the ISM and WNPM for the WL at the four stations in the estuary, those at My Thuan
and Can Tho showed a consistent change pattern in the ISM contribution, in which they
all decreased first, then increased, and then decreased again; this was also found at Chau
Doc and Tan Chau. However, the times of the turning points were not exactly the same.
This shows that the monsoons’ interactions varied with time. For example, the minimum
RI of the ISM for the WL at My Thuan was in the period from 2009 to 2011, while that
at Can Tho was in the period from 2010 to 2012. The results for My Thuan in the period
from 2013 to 2015 were almost the same as for 2012–2014, whereas Can Tho showed a
significant downward trend. As My Thuan and Can Tho are located in two main tributaries
downstream of the Mekong Delta (Figure 1), we speculate that the length of the tributaries
and the distance of the hydrologic stations from the estuary mouth might have led to the
difference in the observed WL which was revealed in our results. The influence of the ISM
on the TWS also fluctuated up and down, similar to the results for the WL. The results
obtained with the LMG method were the most stable due to the simple averaging of the
marginal contribution of each regressor. We speculate that ENSO might play a substantial
role in the short-term variability in the strength of monsoons. This is further explored in a
later section.
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Table 6. Comparison of results before and after ENSO removal. The percentage in brackets indicates the change of the value
compared with that before the ENSO signal was removed, which can be regarded as the influence proportion of ENSO. The
change of the WNPM is opposite to that of the ISM.

Time Interval Monsoon Variable Station Liner Regression LMG PMVD

2010.1–2014.12
(with ENSO)

ISM
WL

My Thuan 81.35% 57.55% 93.64%
Can Tho 71.45% 57.33% 82.84%

Chau Doc 56.88% 50.94% 56.87%
Tan Chau 55.48% 50.69% 55.41%

TWS —— 57.55% 51.64% 59.66%

WNPM WL

My Thuan 18.65% 42.45% 6.36%
Can Tho 28.55% 42.67% 17.16%

Chau Doc 43.12% 49.06% 43.13%
Tan Chau 44.52% 49.31% 44.59%

TWS —— 42.45% 48.36% 40.34%

2010.1–2014.12
(without ENSO)

ISM
WL

My Thuan 80.69% (−0.66%) 57.06% (−0.49%) 93.18% (−0.46%)
Can Tho 76.74% (+5.29%) 56.96% (−0.37%) 89.61% (+6.77%)

Chau Doc 73.90% (+17.02%) 56.08% (+5.14%) 86.44% (+29.57%)
Tan Chau 68.94% (+13.46%) 54.56% (+3.87%) 79.20% (+23.79%)

TWS —— 68.79% (+11.24%) 54.60% (+2.96%) 79.43% (+19.77%)

WNPM
WL

My Thuan 19.31% 42.94% 6.82%
Can Tho 23.26% 43.04% 10.39%

Chau Doc 26.10% 43.92% 13.56%
Tan Chau 31.36% 45.44% 20.80%

TWS —— 31.21% 45.40% 20.57%

2008.1–2012.12
(with ENSO)

ISM

TWS ——

34.00% 43.69% 17.42%

WNPM 66.00% 56.31% 82.58%

2008.1–2012.12
(without ENSO)

ISM 71.81% (+37.81%) 55.63% (+11.94%) 84.19% (+66.77%)

WNPM 28.19% 44.37% 15.81%

Figure 10. The temporal changes of the ISM’s effects on the WL for six three-year time-spans for the
period from 2008 to 2015 at: (a) My Thuan, (b) Chau Doc, (c) Can Tho and (d) Tan Chau, along with
(e) that for the TWS for eleven three-year time-spans for the period from 2003 to 2015.
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4.4. Influence of ENSO

Figure 10 indicated that the RI of the ISM for the WL had a change cycle, but the
reasons for the periodicity were not clear, nor were those for the significant change in
the monsoons’ influence on the TWS during the periods from 2008 to 2012 and 2010 to
2014 (Table 5). To explore the reasons behind the changes of influence, the MEI index was
further incorporated into the linear regression analysis. After introducing the MEI index,
the influence proportions for the changes in the WL and TWS were calculated using the
same methods (Figures 11 and 12).

Figure 11. The resulting proportions of RI for the ISM, WNPM and MEI in the period from 2010 to
2014 for the WL at (a) My Thuan, (b) Chau Doc, (c) Can Tho and (d) Tan Chau, along with (e) those
for the TWS.

As shown in Figure 11, the incorporation of the MEI indices into the RI analysis via
linear regression resulted in an enlarged RI for the MEI index when compared to that
obtained via the LMG and PMVD methods. In terms of the regularity of changes, the
results generated from the LMG and PMVD method were similar to those from before.
In the results generated from the LMG and PMVD methods, the MEI accounted for a
negligible contribution. The reasons for the differences in the methods were described in
Section 4.3. The results show that the ENSO effect, represented by the MEI, did play a role
in the change in the WL and TWS, although it was relatively weak.

To quantify the influence of the ISM and WNPM on the WL of the Mekong River
estuary separately from the influence of ENSO, it was necessary to eliminate the signal
of the MEI index in the monsoon index. This was achieved via WTC, as mentioned in
Section 3.4. The difference between the results before and after removing ENSO’s influence
can be seen as the quantified influence of the ENSO. Taking the WNPM as an example,
based on WTC, it is not difficult to see that there was a significant relationship (higher than
0.7) between the WNPM and MEI for the period between 1.8 and 5 years, with a time lag
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of about 1.5 months, as shown in Figure 13, and the coherence in the period from about
2 years to 3.5 years was the highest, higher than 0.8. It is clear that the WNPM was greatly
influenced by the MEI for the period between 1.8 and 5 years, especially at around 2 years
and 3.5 years. As a result, the signals for this part were removed.

Figure 12. The temporal changes in the resulting proportions of RI for the ISM, WNPM and MEI for
the WL for six three-year time-spans from 2008 to 2015 at (a) My Thuan, (b) Chau Doc, (c) Can Tho
and (d) Tan Chau, along with (e) those for the TWS for ten three-year time-spans from 2004 to 2015.
Each group of histograms was the result of three methods: linear regression, LMG and PMVD (from
left to right).

After removing the signals at the period between 2 and 5 years, the WNPM and MEI
no longer showed any obvious coherence in the short-wave signal (Figure 13). Thus, it
was considered that the influence of ENSO had been removed from the time series of the
monsoon index. The same processing was applied to the ISM time series in order to obtain
the time series without ENSO’s influence. The ISM and WNPM indices after the removal
of the MEI were utilized to recalculate the proportions of RI of the ISM and WNPM for the
WL at the four stations for the period from 2010 to 2014, as shown in Table 6.

Comparing the results after removing ENSO with the original results (Table 6), the
following changes could be found: For the proportions of RI of the ISM and WNPM for
the WL, the linear regression results enlarged the RI of the ISM at all stations except My
Thuan, while the RI resulting from the LMG method was slightly smaller at My Thuan
and Can Tho and larger at Chau Doc and Tan Chau. The changes in results for the PMVD
method were similar to those at My Thuan and Can Tho, but much larger at Chau Doc
and Tan Chau. In addition, the RI of the ISM was higher and the difference between the
maximum and minimum was narrower. Compared with those obtained before removing
the influence of ENSO, the mean values (ranges) increased (decreased) by 8.78% (14.12%),
2.04% (4.36%) and 14.92% (24.25%), as obtained via multivariate linear regression, LMG
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and PMVD, respectively. As a result, ENSO can be considered as a potential factor that
interferes with results. The influence of the ISM on the water level was more obvious and
stable for the monsoon indices after removing the MEI. The influence of the ISM on the
TWS increased to 68.79%, 54.60% and 79.43%, as obtained via multivariate linear regression,
LMG, and PMVD, respectively. The ISM remained dominant in terms of RI. From 2008 to
2012, after removing the influence of ENSO, the ISM surpassed the WNPM again, rising
from 37.81%, 11.94% and 66.77% to 71.81%, 55.63% and 84.19%, as obtained via multivariate
linear regression, LMG and PMVD, respectively.

Figure 13. The coherence between the WNPM and MEI, and the coherence between the MEI and
WNPM after the removal of the MEI. The red arrow represents the 5% significance level of high
coherence areas, and the phase lag is denoted by the directions (right (left) indicates a phase lag of
0 (180) degrees; up (down) indicates a phase lag of 270 (90) degree).

The above results show that the influence of ENSO on the basin-averaged TWS
was higher than that on the WL at the estuary. The result is consistent with findings of
He et al., (2020) [37]. He et al., (2020) [37] discovered that the ENSO indirectly affected
the TWS through the Asian monsoon (including the ISM and WNPM), based on WTC
analysis. In addition, the ISM was weakened during ENSO, which was consistent with
results from [69–72]: as El Niño develops in the northern spring, an eastward shift of the
Walker circulation over the center of the Pacific occurs, causing the growth of subsidence
over South Asia. This suppresses convection over South Asia, leading to a weaker summer
monsoon. Though the coherence between ENSO and the WNPM over a long period (e.g.,
the period between 1.8 and 5 years in Figure 13) has not been previously analyzed, the
WNPM has been confirmed to be strengthened during ENSO due to the Pacific negative
SST anomalies [73–75].

Figure 14 shows the influence of ENSO on the TWS and WL via the rolling data
windows. For the WL, the change of results between linear regression and PMVD is more
obvious. For the TWS, the RI of the ISM for the TWS increased significantly in the periods
from 2008 to 2010 and 2009 to 2011 after the removal of ENSO, whether obtained by linear
regression or PMVD. This also coincided with the time of ENSO activity, which happened
from 2009 to 2010 [76].

4.5. Future Research and Applications

In this study, after quantifying the contributions of two monsoon indices (i.e., the ISM
index and WNPM index) using three RI methods, the ENSO effect was further discussed by
introducing the MEI index into the analysis. However, other potential influencing factors
(e.g., ocean tides on WL [49,50,77], precipitation and evapotranspiration on TWS) and the
restriction of the number of valid factors on RI analysis remain unexplored. Furthermore,
we mainly studied the interannual variance (i.e., 3-year and 5-year cycles) of monsoons
with regard to the WL and TWS. Nonetheless, for relatively short-term anomalies, such
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as the performance in drought or flood years in the MRB [4,78], further studies could be
conducted in the future.

Figure 14. The temporal changes of the ISM’s effects after ENSO factor removal on the WL for six
three-year time-spans from 2008 to 2015 at (a) My Thuan, (b) Chau Doc, (c) Can Tho and (d) Tan
Chau, along with (e) those on the TWS for ten three-year time-spans from 2004 to 2015. The changes
in the WNPM’s effects were the opposite.

In addition, other hydrological variables, such as the water discharge [79–81], regional
precipitation [79–81] and evapotranspiration [81,82], could be incorporated into the RI
analysis in the form of explanatory or response variables. When combined with the
terrestrial water storage [49,83], these hydrological variables should form a terrestrial water
balance that allows a more comprehensive analysis. Other regional monsoon or global
climate indices can also serve as explanatory variables in this regard. The above proposed
elements allow us to extend our methodology and apply it to other large basins with similar
geographic configurations and hydroclimatic characteristics as those of the MRB.

5. Conclusions

Aiming at exploring the influences of two monsoons (the Indian summer monsoon
(ISM) and western North Pacific monsoon (WNPM)) on the water level (WL) of the Mekong
River delta (MRD) and on the terrestrial water storage (TWS) of the entire Mekong River
basin (MRB), multivariate linear regression and the Lindeman, Merenda and Gold (LMG)
and proportional marginal variance decomposition (PMVD) methods were selected to
quantify the relative importance (RI) (or contributions) of the two monsoons. The results
showed that the ISM accounts for the majority of the RI for the WL, as well as that for the
TWS in the MRD.

Comparing stations closer to (e.g., My Thuan) and farther away from (e.g., Chau
Doc) the ocean, the resulting proportions of RI of the ISM for the WL at My Thuan (Chau
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Doc) station were 81.35% (56.88%), 57.55% (50.94%) and 93.64% (56.84%), as obtained via
multivariate linear regression, LMG and PMVD, respectively. This indicates that the WL at
stations closer to the ocean is subject more to the influence of the ISM, rendering different
results from the three methods. Moreover, the proportions of RI of the ISM for the TWS
were 57.55%, 51.64% and 57.99%, as obtained via multivariate linear regression, LMG and
PMVD, respectively.

In addition, the same method led to different results using data from different data
time-spans, indicating that the RI of the two monsoons’ influences on the WL and TWS
varied with time. Considering that climate factors might have caused the fluctuation in the
monsoons’ contributions to the WL and TWS, the El Niño–Southern Oscillation (ENSO)
index (i.e., the multivariate ENSO index (MEI)) was incorporated into the linear regression
analysis. It was found via wavelet transform coherence (WTC) analysis that the MEI
presented high correlations with the ISM and WNPM in the periods between 2 and 5 years,
highlighting the need for the removal of the ENSO signal from the monsoon indices. Using
the ENSO-eliminated data to recalculate the influence of the monsoons on the WL and
TWS, the proportions of RI of the ISM for the WL at the four stations were higher while the
ranges of change were narrower. The same applied to the TWS. These results indicated that
ENSO signals presented a substantial effect on the monsoons. The quantified contributions
of influence on the WL for the mean values of four stations (TWS) were 8.78% (11.24%),
2.04% (2.96%) and 14.92% (19.77%), as obtained via multivariate linear regression, LMG
and PMVD respectively.

A comparison between the relative importance methods indicated that the linear
regression enlarged the existence of the ENSO MEI index compared to the LMG and PMVD
methods. This was because linear regression tends to search for the best-fitting result,
leading to the enlargement of some variables along with a large deviation in the results.
Furthermore, the more balanced results derived from the LMG method demonstrated
its comprehensiveness in reflecting the proportions of factors, while the PMVD method
focused more on the dominant factor related to the dependent variables. Further improve-
ment could also be possible by including long-period ocean tides (i.e., semiannual and
annual tidal constituents) in the analysis. All in all, this study managed to quantify the
contributions of two monsoons (the ISM and WNPM) to two hydrological variables (the
WL and TWS) in the MRB, which can be generalized to interpret the interactive relations
between monsoons and other variables for regions with similar geographic configurations.
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