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Abstract: Rice floret number per unit area as one of the key yield structure parameters is directly
related to the final yield of rice. Previous studies paid little attention to the effect of the variations in
vegetation indices (VIs) caused by rice flowering on rice yield estimation. Unmanned aerial vehicles
(UAV) equipped with hyperspectral cameras can provide high spatial and temporal resolution
remote sensing data about the rice canopy, providing possibilities for flowering monitoring. In this
study, two consecutive years of rice field experiments were conducted to explore the performance of
florescence spectral information in improving the accuracy of VIs-based models for yield estimates.
First, the florescence ratio reflectance and florescence difference reflectance, as well as their first
derivative reflectance, were defined and then their correlations with rice yield were evaluated. It
was found that the florescence spectral information at the seventh day of rice flowering showed the
highest correlation with the yield. The sensitive bands to yield were centered at 590 nm, 690 nm
and 736 nm–748 nm, 760 nm–768 nm for the first derivative florescence difference reflectance, and
704 nm–760 nm for the first derivative florescence ratio reflectance. The florescence ratio index
(FRI) and florescence difference index (FDI) were developed and their abilities to improve the
estimation accuracy of models basing on vegetation indices at single-, two- and three-growth stages
were tested. With the introduction of florescence spectral information, the single-growth VI-based
model produced the most obvious improvement in estimation accuracy, with the coefficient of
determination (R2) increasing from 0.748 to 0.799, and the mean absolute percentage error (MAPE)
and the root mean squared error (RMSE) decreasing by 11.8% and 10.7%, respectively. Optimized by
flowering information, the two-growth stage VIs-based model gave the best performance (R2 = 0.869,
MAPE = 3.98%, RMSE = 396.02 kg/ha). These results showed that introducing florescence spectral
information at the flowering stage into conventional VIs-based yield estimation models is helpful
in improving rice yield estimation accuracy. The usefulness of florescence spectral information for
yield estimation provides a new idea for the further development and improvement of the crop yield
estimation method.

Keywords: florescence; florets; rice yield; UAV remote sensing; growth stage

1. Introduction

Timely monitoring of agricultural production and accurate prediction of crop yield
are crucial due to the severe economic and social consequences of food shortages [1,2].
Especially, agricultural products have to be increased by 70% by 2050, when the world
population is expected to reach 9 billion people [3]. Rice (Oryza sativa L.) is one of the
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main food crops and the primary staple food for about half the people of the world [4].
The production is related to the national economy and people’s livelihoods, so timely
and non-destructive assessments of rice yield information is of great significance to the
development of grain procurement, storage, allocation, and foreign trade [5]. Since remote
sensing technology has the advantages of a large-area and dynamic monitoring, it is widely
used for regional and global crop yield estimation, including rice [6–8].

There are three types of crop yield estimation methods based on remote sensing
data; (1) common empirical models based on vegetation indices (VIs) [9–13], (2) crop
yield estimation by mechanistic models combined with remote sensing data [14–18], and
(3) semi-empirical production estimation models based on Gross Primary Production (GPP)
or Net primary production (NPP) [19,20]. Among them, empirical models based on VIs
are the most widely used method for crop yield estimation due to their simplicity and
ease of use [21,22]. This method generally uses the vegetation index at a single growth
stage or the combined vegetation indices from multiple growth stages to build univariate
or multivariate models for yield estimation [23]. For those statistical rice yield estimation
models that are constructed by spectral indices from multiple growth stages such as the
tillering stage, jointing stage, booting stage, heading stage, filling stage and maturity
stage [24], spectral information at the flowering stage is rarely used, because vegetation
indices directly developed by spectral information at the flowering stage is interfered with
by white florets, which may result in the error for yield estimates.

However, the spectrum at the flowering stage contains the information of rice floret
number per unit area, which is the most important factor relating to yield [25–28], mak-
ing the spectral information at the flowering stage crucial for rice yield estimation. To
date, the spectral features at the flowering stage has not been considered in rice yield
estimation, although some researchers have observed that the presence of flowers can
cause canopy spectral changes in certain bands [29,30]. At present, research on remote
sensing monitoring of flowering can be categorized into three types: (1) the extraction of
floret amount information (flower coverage ratio and flower number) basing on remote
sensing data. Thorpa et al. [31] estimated the floret number of leskelaole rape by flower
coverage proportion. Carl et al. [32] extracted the proportion of flower area and estimated
the florets amount of acacia using unmanned aerial vehicle (UAVs) images. (2) The ef-
fects of flowering information on estimation of such vegetation parameters as biomass,
coverage and LAI. Shen et al. [33] found that it was difficult to estimate biomass using
NDVI and EVI that contain flowering information, but they could estimate biomass more
accurately after the removal of flowering information. Fang et al. [34] tested the effects of
flowering information on the estimation of rape vegetation coverage at the flowering stage,
and proposed a florescence index to improve estimation accuracy. (3) The application of
remote sensing-based flowering information. As flowering spectral information is varied
with plant types and fruits, it can be used to classify vegetation types [35] or to extract
information related to fruits or yield [36].

Since the green part of rice canopy structure is becoming stable at the flowering stage,
the ongoing flowering can be regarded as a process in which white florets information
is gradually added into the green background. If the canopy spectrum before flowering
and the spectral information during flowering could be obtained, it is possible to use the
difference of spectral characteristics before and after flowering to optimize the estimation
model and improve the accuracy of yield estimation.

Monitoring spectral changes during the flowering stage requires remote sensing data
with high temporal and spatial resolution, which is difficult to meet by current satellite
data. Unmanned Aerial Vehicles (UAV) are capable of obtaining the required data as
demanded. In this study, UAV equipped with hyperspectral imaging sensors are used
to obtain hyperspectral images that cover the whole flowering stage of rice, and new
florescence spectral indices were proposed based on spectral characteristics before and
after flowering, and then the capabilities of these florescence spectral indices in improving
the performance of VIs-based yield estimation models were tested. The objectives of this
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study were: (1) to determine the characteristic date of the flowering stage and sensitive
bands for rice yield estimates by analyzing spectral information of the flowering stage;
(2) to propose florescence spectral indices that can express spectral changes during the
flowering stage; (3) to optimize traditional multi-growth VIs-based estimation models by
combining spectral information at the flowering stage and traditional vegetation indices,
so as to verify the performance of florescence spectral index in improving the estimation
accuracy of rice yield.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) is located in a grain production functional area of Xiashe
Village, Deqing County, Zhejiang Province (120◦10′49.34′′E, 30◦34′21.21′′N). It covers about
8200 square meters, with an average annual precipitation of 1379 mm and an average
annual temperature of 15 ◦C. The field experiment was conducted from May to November
in 2018 and 2019. Two rice varieties were adopted each year, i.e., Zhejing 99 and Jia 67 in
2018, and Nanjing 9108 and Nanjing 46 in 2019. Five different nitrogen fertilizer levels
were set, including N0 (no fertilization), N1 (half of normal fertilization), N2 (normal
fertilization), N3 (1.5 times normal fertilization) and N4 (double the normal fertilization),
and phosphate and potassium fertilization were consistent with local farming management.
The purpose of different nitrogen fertilization levels was not used to analyze the effect of
different nitrogen levels on yield, but to increase the variation range of rice yield, so as to
make developed models more robust.

Figure 1. The general location of the field experiment.

The experimental field was set with two varieties, five nitrogen levels and two repli-
cates. Therefore, the experimental field was divided into 20 plots, numbered as P01–P20
(Figure 1).

2.2. Data Collection and Processing

In this study, the DJI M600 Pro UAV equipped with a Rikola hyperspectral imager
(Rikola Ltd., Oulu, Finland) (Figure 2) was used to acquire hyperspectral images of rice.
The wavelength range of the imager is 500–900 nm, with 62 bands. The imager ’s default
band range is 500–900 nm, and the number of bands that can be set is 0–380. In this study,
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the number of bands was set to 62, and the center wavelength and full width at half maxima
of these bands were as shown in Table 1 [37].

Figure 2. UAV-based hyperspectral platform.

Table 1. Wavelength (WL, nm) and full Width at Half Maxima (FWHM, nm) of all the bands of Rikola.

WL FWHM WL FWHM WL FWHM WL FWHM WL FWHM

504 8.18 592 7.24 680 9.80 733 6.39 816 9.10
512 8.18 596 7.72 685 5.82 736 6.68 824 7.69
520 8.51 600 7.76 688 6.06 740 6.14 832 13.62
528 7.58 604 7.26 692 6.50 744 6.23 840 14.49
536 8.55 608 9.24 696 7.45 748 5.87 848 13.53
544 7.63 616 10.21 700 6.99 752 6.59 856 13.61
552 7.77 624 9.20 704 5.89 760 5.96 864 12.42
560 7.98 632 8.93 709 6.00 768 6.09 872 12.75
568 7.27 635 9.29 712 6.44 776 8.71 880 12.83
576 8.30 650 8.36 716 6.91 784 7.38 888 10.51
580 8.16 656 9.37 720 6.86 792 8.51
584 7.24 664 8.75 724 6.22 800 8.72
588 6.51 672 9.43 728 5.81 808 8.16

Note: green band (WL = 504–560 nm), yellow band (WL = 568–616 nm), red band (WL = 624–680 nm), red-edge band (WL = 685–760 nm),
NIR band (WL = 768–888 nm).

The flight time of UAV was around 11:00 to 12:00 at noon (Beijing local time), when
the weather condition was relatively clear and sunny, wind-free and cloud-free. The flight
altitude was 200 m, with spatial resolution of hyperspectral image of 13 cm. Hyperspectral
images with 1010 by 1010 pixels were obtained at the booting stage, heading stage, filling
stage and ripening stage. In order to obtain hyperspectral data before and after flowering,
intensive data collection campaigns were carried out from the late booting stage to the
end of the flowering stage, with frequency of once every one to two days to ensure the
complete time series data before and during the rice flowering stage.

All hyperspectral images were processed with vignetting correction, lens distortion
correction, and black level calibration by using the corresponding module functions in
a Rikola Hyperspectral Imager V2.1.4 (Rikola Ltd., Oulu, Finland) software to solve the
problems of image chromatic aberration, geometric deformation, and temperature-sensing
dark current effects. DN values of raw images were transformed to radiance values [38].
Reflectance calculations were carried out using ENVI 5.1 software (Harris Geospatial
Solutions, Inc., Boulder, CO, USA) by choosing the gray cloth (diffuse reflection area) in the
processing image as the standard reference board and calculating the reflectance of each
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pixel (Formula (1)), and then obtaining the average reflectance curve of each plot through
the Statistics for All ROIs function of ENVI.

Re f img =
Radimg × Re fgrey

Radgrey
(1)

where Radgrey is the radiation of the reference board, Radimg is the radiation of image, and
Refgrey is the reflectivity of the reference board.

2.3. Calculation of Vegetation Indices

The normalized vegetation index (NDVI), ratio vegetation index (RVI) and difference
vegetation index (DVI) have been widely used in different crops’ growth monitoring [39]
and yield estimation [40]. In the study, NDVI, DVI and RVI were calculated using the
following equations.

NDVIi,j =
NIRi + REDj

NIRi − REDj
(2)

RVIi,j =
NIRi
REDj

(3)

DVIi,j = NIRi − REDj (4)

where NIRi is the reflectance of band i in the NIR spectral region (760 nm–900 nm), and
REDj is the reflectance of band j in the red spectral region (620 nm–760 nm).

Since the Rikola hyperspectral camera had 62 bands, it was necessary to determine
which band combination was best suitable for yield estimation at different growth stages.
Therefore, in this study, all possible two-band combinations between red and near-infrared
in types of NDVI, RVI, DVI at four growth stages were calculated. The correlation between
these VIs and grain yield were analyzed, and VIs at each growth stages with the highest
Pearson correlation coefficient were selected as the optimal vegetation index for rice
yield estimation.

2.4. Description of Florescence Spectral Information
2.4.1. Florescence Ratio Reflectance, Difference Reflectance and Their First
Derivative Reflectance

The leaves of rice plants grow completely before flowering, making the leaf area
index (LAI) basically stable for about two weeks. This means that the green structure of
the rice canopy can remain stable during flowering. From the start of flowering, white
florets were constantly adding to the unchangeable green background until the full flow-
ering stage, and then diminished till the end of flowering. It could be presumed that
the change of canopy reflectance before and after flowering was mainly caused by the
change of florets. Therefore, if canopy reflectance before flowering (green background re-
flectance) and during the flowering stage (florets + green background reflectance) could be
obtained, the rice flowering information can be characterized by comparing the difference
of canopy reflectance before and after flowering. Based on this mechanism, the idea of
florescence ratio reflectance, difference reflectance and their first derivative transformations
were proposed in the study. They were expected to enhance the difference in canopy
reflectance between before and after flowering. The florescence ratio reflectance (Rr_Fl(i))
and florescence difference reflectance (Rd_Fl(i)) were calculated as:

Rr_Fl(i) =
RFl(i)

R0_Fl (i)
(5)

Rd_Fl(i) = RFl(i) − R0_Fl (i) (6)
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where RFl(i) is the canopy spectral reflectance at wavelength i during the flowering stage,
and R0_Fl(i) is the canopy spectral reflectance of the exact day before flowering at wave-
length i.

Derivative spectral transformation can effectively eliminate the interference of back-
ground to target reflectance [41]. Here, the first derivative florescence ratio reflectance
(R′r_Fl(i)) and the first derivative florescence difference reflectance (R′d_Fl(i)) were calculated
using florescence ratio reflectance and difference reflectance. They were expressed as:

R′r_Fl(i) =
Rr_Fl(i+1) −Rr_Fl(i−1)

∆γ
(7)

R′d_Fl(i) =
Rd_Fl(i+1) −Rd_Fl(i−1)

∆γ
(8)

where Rr_Fl(i+1) and Rr_Fl(i−1) are the florescence ratio reflectance at wavelength i + 1 and
i − 1. Rd_Fl(i+1) and Rd_Fl(i−1) are the florescence difference reflectance at wavelength i + 1
and i – 1. ∆γ is wavelength difference between wavelength i + 1 and wavelength i − 1.

2.4.2. Formulation of Florescence Indices

Florescence difference index (FDI) and florescence ratio index (FRI) were proposed to
enhance the spectral characteristic of florets, while weakening the background signals of
the green canopy (Table 2).

Table 2. Florescence indices tested in this study.

Index Equation Index Equation

FRIa
Rr_Fl(i)−Rr_Fl(j)
Rr_Fl(i)+Rr_Fl(j) FDIa Rd_Fl(i)−Rd_Fl(j)

Rd_Fl(i)+Rd_Fl(j)

FRIb
Rr_Fl(i)
Rr_Fl(j) FDIb Rd_Fl(i)

Rd_Fl(j)

FRIc Rr_Fl(i) − Rr_Fl(j) FDIc Rd_Fl(i) − Rd_Fl(j)

FRId
R′r_Fl(i)−R′r_Fl(j)
R′r_Fl(i)+R′r_Fl(j)

FDId R′d_Fl(i)−R′d_Fl(j)
R′d_Fl(i)+R′d_Fl(j)

FRIe
R′r_Fl(i)
R′r_Fl(j)

FDIe R′d_Fl(i)
R′d_Fl(j)

FRIf R′r_Fl(i) − R′r_Fl(j) FDIf R′d_Fl(i) − R′d_Fl(j)

Note: i and j refers to the specific wavelength of these indices.

The aim of constructing the florescence spectral index was to enhance the changes of
spectral characteristics caused by rice florets. The spectral transformation methods such as
difference, ratio and normalization were used to enhance the spectral contrast, which will
help reduce the influence of solar height angle and canopy background when extracting
flowering information. Therefore, in this study, florescence ratio reflectance, florescence
difference reflectance, first derivative florescence ratio reflectance and first derivative
florescence difference reflectance from 500–900 nm of 62 bands were to construct florescence
spectral indices in three types of all two-band combinations, and the correlation between
these indices and yield were explored. The indices with high correlation coefficients were
identified as the optimal florescence spectral indices suitable for yield estimation.

2.5. Model Construction and Evaluation

Multiple linear regression was used to construct rice yield estimation models. Yield
was the dependent variable, and spectral information, including all types of vegetation
indices, florescence difference or ratio reflectance as well as first derivative florescence
reflectance were independent variables.
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The parameters adopted to assess the performance of models were the coefficient of
determination (R2), average absolute percentage error (MAPE), and root mean square error
(RMSE). R2 reflected the fitting degree of estimated and measured yield. The higher R2 was,
the higher the reliability of the yield estimation model was. MAPE and RMSE reflected the
error between estimated and measured yield, with lower values indicating higher accuracy.
They were defined as:

R2 = 1−
∑
i
(y− y′)2

∑
i
(y− y)2 (9)

MAPE =

n
∑

i = 1

∣∣∣ y−y′
y

∣∣∣
n

× 100% (10)

RMSE =

√√√√√ n
∑

i = 1
(y− y′)2

n
(11)

where y is the measured yield, y′ is the modeled yield, y is the average value of the
measured yield, and n is the sample size.

The yields in 2018 ranged from 5497.27 to 9494.92kg/ha with their average of 7404.85 kg/ha,
while the yields in 2019 ranged from 4413.38 to 8803.24 kg/ha with their average of
7271.62 kg/ha. Due to the differences in rice varieties and fertilization levels in the two
years, all samples of two years were ranked by yield from lowest to highest, and were
evenly divided into three groups, with 2/3 as the modeling dataset and 1/3 as the valida-
tion dataset.

3. Results
3.1. Yield Estimation Basing on VIs

In general, the accuracy of rice yield estimation models increases with a greater
number of key growth stages involving in models, but introducing too many growth stages
in models will not only make models more complex, but also weaken the interannual
robustness of models [38]. Considering that rice spectral information at early growth stages
is more easily affected by environmental factors such as water surface and soil background,
it is better to estimate rice yield from the booting stage when rice leaves have basically
covered the background [42]. Therefore, in this present study, the booting stage and the
following three critical growth stages, i.e., the heading, filling, and ripening stages, were
tested for yield estimation. The band locations for all selected VIs were shown in Table 3.

Table 3. Band locations of vegetation indices best suitable for yield estimation.

Sensitive Bands Booting Heading Filling Ripening

NDVI
band 1 740 733 752 748
band 2 768 832 880 792

Correlation coefficient 0.872 0.873 0.826 0.663

RVI
band 1 740 748 752 748
band 2 768 832 880 792

Correlation coefficient 0.871 0.872 0.824 0.662

DVI
band 1 748 748 752 748
band 2 800 840 864 816

Correlation coefficient 0.817 0.867 0.804 0.681
Note: band 1 is red and band 2 is NIR.

As seen, band 1 from all types of vegetation indexes occurred in the red-edge region
from 733 nm and 752 nm, but NIR bands were different at different growth stages. For
NDVI and RVI at the booting stage, the NIR band was 768 nm; for NDVI at the ripening
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stage, the NIR band was 792 nm. The NIR bands of the best vegetation indices at other
growth stages were located between 800 nm and 880 nm.

3.2. Correlation Analysis between Florescence Ratio Reflectance, Florescence Difference Reflectance
and Rice Yield

Taking the data of the P01 plot in 2019 as an example, the florescence difference
reflectance and florescence ratio reflectance showed different spectral characteristics, but
their variation trends were consistent (Figure 3). Most reflectance of florescence difference
reflectance were positive, with the variation ranging from −0.05 to 0.15. The maximum
value appeared near 850 nm, and the minimum value occurred near 680 nm. The reflectance
of florescence ratio reflectance fluctuated around 1, with most of them greater than 1. The
maximum and minimum values appeared around 800 nm and 680 nm, respectively.

Figure 3. (a) Time series florescence difference reflectance and florescence ratio reflectance (from
1st day to 11th day) (b) florescence difference reflectance and florescence ratio reflectance at the
7th day of the flowering stage.
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It could be seen that the variation characteristics of the correlation coefficient curved
between the florescence ratio reflectance, florescence difference reflectance and yield in the
whole flowering stage were basically similar (Figure 4), with the peaks and troughs of the
daily correlation coefficient curve highly coincident. The performance of florescence ratio
reflectance was better than that of florescence difference reflectance. From the beginning of
the flowering stage to the end of the flowering stage, the correlation coefficients increased
at first and then decreased, and the best correlationship occurred around the seventh day
of the flowering stage, at which showed the biggest correlation coefficient and stable band
location. At the early flowering stage, the sensitive bands were mainly concentrated around
yellow and red bands of 635 nm and 650 nm, and gradually extended to the red edge
spectral region till the full flowering stage, and then completely moved to the near-infrared
bands of 830–880 nm at the late stage of flowering.

Figure 4. Correlation between rice yield and the difference florescence reflectance (FDR), the rice
yield and the ratio florescence reflectance (FDR).

Since the florescence ratio and difference reflectance at the seventh day of the flowering
stage had the highest correlation with the yield, it was considered as the best date for rice
yield estimation basing on spectral information at the flowering stage. At the seventh day
of the flowering stage, florescence ratio and difference reflectance from 520 nm to 704 nm
were best correlated to rice yield, with the biggest correlation coefficient for florescence
difference reflectance at 624 nm, and 664 nm for florescence ratio reflectance.

The first derivative ratio reflectance (Figure 5) at 560 nm, 720 nm and 740 nm showed
good correlation with yield, and they were 590 nm, 690 nm, 740 nm and 760 nm for the
first derivative difference reflectance. Obviously, the first derivative reflectance were better
correlated with yield than the difference reflectance or the ratio reflectance.

The results showed that for the first derivative ratio reflectance, the sensitive bands
were around green bands 560 nm–568 nm, yellow bands 576 nm–588 nm, red-edge bands
680 nm–760 nm and NIR bands around 840 nm; the highly sensitive bands (top 50% of
sensitive bands) were located at 704–760 nm. For the first derivative difference reflectance,
sensitive bands were centered at yellow bands 580 nm–596 nm, red bands 664 nm, red-edge
bands 688 nm–696 nm, 724 nm–768 nm, and the NIR region 840 nm–864 nm; the highly
sensitive bands (top 50% of sensitive bands) were more spread out than the ratio derivative
reflectance, mainly centering at 590 nm, 690 nm, 736 nm–748 nm, and 760 nm–768 nm.
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Figure 5. Correlation between rice yield and the first derivative florescence difference reflectance
(FDFDR), rice yield and the first derivative florescence ratio reflectance (FDFRR) at the 7th day
of flowering.

3.3. Development of Florescence Difference Index (FDI) and Florescence Ratio Index (FRI)

In this study, florescence ratio reflectance, florescence difference reflectance, first
derivative florescence ratio reflectance and first derivative florescence difference reflectance
from 500–900 nm of 62 bands constructed florescence spectral indices in three types of all
two-band combinations, and the correlation between these indices and yield were as in
Figure 6. The indices with high correlation coefficients were identified as the florescence
spectral indices more suitable for yield estimation.

In general, the first derivative florescence ratio reflectance and the first derivative
florescence difference reflectance were better related to yield than the raw florescence ratio
and difference reflectance. Additionally, the first derivative florescence ratio reflectance
performed better than the first derivative florescence difference reflectance.

For the first derivative florescence ratio reflectance, the types of band combinations
with larger correlation coefficients were very diverse, including ratio, normalized and
difference combinations: ratio combination of red-edge and red bands, ratio combination
of red-edge and green bands, normalized combination of red-edge and red-edge bands,
difference combination of red-edge and red-edge bands, difference combination of NIR and
red-edge bands. For the first derivative florescence difference reflectance, the larger correla-
tion coefficients were obtained by normalized combinations, including the normalization
combinations of NIR and red-edge bands, NIR and NIR bands, NIR and yellow bands, red
and yellow bands, and yellow and yellow bands (Figure 7). Compared with the second
part of the study, it was found that the denominators in the ratio combination of the first
derivative ratio reflectance were always within the sensitive band range, but numerators
were not. Most of the bands in the ratio combination and difference combination were
within the range of sensitive bands. Additionally, the two bands in a normalization combi-
nation of the first derivative difference reflectance basically consisted of a highly sensitive
band and a less sensitive (at least generally sensitive) band. The combination of a highly
sensitive band and a less sensitive band, such as FRI3 and FRI4, gave the best results. On
the basis of band combination analysis, five combinations of the ratio derivative reflectance
and of the difference derivative reflectance highly correlated with yield were selected as
the florescence difference index (FDI) and florescence ratio index (FRI) for yield estimation.
(Table 4).
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Figure 6. Correlation analysis of sensitive bands in the florescence ratio reflectance (FRR), the florescence differ-
ence reflectance (FDR), the first derivative florescence ratio reflectance (FDFRR) and the first derivative difference re-
flectance (FDFDR).
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Figure 7. The combinations of high correlation florescence indices in the florescence ratio reflectance (FRR), the florescence
difference reflectance (FDR), the first derivative florescence ratio reflectance (FDFRR) and the first derivative florescence
difference reflectance (FDFDR).
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Table 4. The expressions of florescence difference index (FDI) and florescence ratio index (FRI) with high correlation with
rice yield.

Index Equation CC Index Equation CC

FRI1 ρ′r_Fl7th(624)

ρ′r_Fl7th(716)
−0.4852 FDI1

ρ′d_Fl7th(576)−ρ′d_Fl7th(664)

ρ′d_Fl7th(576)+ρ′d_Fl7th(664)
−0.4671

FRI2 ρ′r_Fl7th(560)

ρ′r_Fl7th(748)
−0.4696 FDI2

ρ′d_Fl7th(596)−ρ′d_Fl7th(784)

ρ′d_Fl7th(596)+ρ′d_Fl7th(784)
–0.4660

FRI3 ρ′r_Fl7th(696)−ρ′r_Fl7th(716)

ρ′r_Fl7th(696)+ρ′r_Fl7th(716)

0.5149 FDI3
ρ′d_Fl7th(709)−ρ′d_Fl7th(768)

ρ′d_Fl7th(709)+ρ′d_Fl7th(768)
0.4756

FRI4 ρ′r_Fl7th(692) − ρ′r_Fl7th(720) 0.5363 FDI4
ρ′d_Fl7th(848)−ρ′d_Fl7th(872)

ρ′d_Fl7th(848)+ρ′d_Fl7th(872)
–0.4755

FRI5 ρ′r_Fl7th(716)−ρ′r_Fl7th(800)

ρ′r_Fl7th(716)+ρ′r_Fl7th(800)

0.4589 FDI5
ρ′d_Fl7th(576)−ρ′d_Fl7th(608)

ρ′d_Fl7th(576)+ρ′d_Fl7th(608)
0.4746

Note: CC means coefficient correlation.

3.4. Yield Estimation Model

In this study, vegetation indices at different growth stages and florescence spectral
indices were used as independent variables, and rice yield was used as the dependent
variable. Yield estimation models were established based on both vegetation indices
and florescence spectral information. They were compared with the yield estimation
models using vegetation indices alone, and the potential of spectral information at the
flowering stage in improving yield estimation was analyzed. The yield estimation models
are presented in Table 5:

Table 5. The expressions for the optimization model with single, two and three growth stages involved.

Growth Stage Model Expression

Single-growth stage Y = 29882.803 × NDVI(740,768) (Booting)−3.017 × FDI1−78.851 × FDI2-7.921 × FDI4 + 2331.725

Two-growth stage
Y = 24173.141 × NDVI(740,768) (Booting) + 33292.36 × DVI(752,864) (Filling) + 24.836 × FRI1 +

43897.073 × FRI4 + 15.488 × FDI5−32.097

Three-growth stage
Y = 30193.832 × NDVI(740,768) (Booting) − 15773.406 × RVI(748,832) (Heading) + 73832.326 ×

DVI(752,864) (Filling) + 41129.09 × FRI4−5.211 × FDI4 + 16010.301

As seen in Table 6, the best single-growth stage model was constructed by
NDVI(740,768)(Booting) at the booting stage, with R2 of 0.748. The introduction of FDI1(576,664),
FDI2(596,784) and FDI4(848,872) into this model effectively improved the model performance,
with R2 increasing from 0.748 to 0.799, increasing by 6.8%, and MAPE and RMSE de-
creasing by 11.8% and 10.7%, respectively. For the two-growth stage model, the involved
vegetation indices were NDVI(740,768) (Booting) at the booting stage and DVI(752,864)(Filling) at
the filling stage. After introducing florescence spectral indices FRI1(624,716), FRI4(692,720) and
FDI5(576, 608), the model R2 increased by 4.1%, MAPE and RMSE decreased by 16.0% and
11.3%, respectively. For the three-growth stage model, RVI(748,832)(Heading) at the heading
stage was added on the basis of the two-growth stage model and the introduction of
FRI8(692, 720] and FDI4(848,872) at the flowering stage increased R2 by 2.7%, and decreased
MAPE and RMSE by 7.8% and 4.6%, respectively. It could be seen that the performance of
estimation models using vegetation indices alone were improved when two or three flo-
rescence spectral indices were included. Among the involved florescence spectral indices,
FDI4(848,872) was used in the single-growth stage model and three-growth stage model, and
FRI4(692,720) was introduced in the two-growth stage model and three-growth stage model.
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Table 6. Comparisons of the yield estimation models with and without considering florescence spectral information for the
modeling dataset.

Growth Stage
Combination

Florescence
Information

Assessment

R2 MAPE (%) RMSE (kg/ha)

Single-growth stage No 0.748 5.74 548.61
Yes 0.799 5.06 489.91

Two-growth stage No 0.833 4.74 446.45
Yes 0.869 3.98 396.02

Three-growth stage No 0.838 4.7 439.7
Yes 0.861 4.33 419.58

The estimation accuracy of models using vegetation indices alone was improved
when more growth stages were involved. With the introduction of florescence spectral
indices in these models, estimation accuracy was further improved, especially for the
single-growth stage model and two-growth stage model, which showed the most obvious
improvements. The obvious increase in estimation accuracy for these two models was
partly because of their relatively low accuracy, making them have a greater potential for
improvement, while the accuracy of the three-growth stage model was already high and the
room for optimization was limited. It could be concluded that spectral information at the
flowering stage was very useful in improving the performance of yield estimation models
using vegetation indices alone. Taking florets as interference information, weakening
the efficiency of spectral information was actually a waste of useful information at the
flowering stage.

3.5. Validation of Yield Estimation Models

In this section, the established models were evaluated by validation datasets. It was
found that the overall test results were similar to these obtained by the calibration dataset,
demonstrating the usefulness of florescence spectral information in improving R2, MAPE
and RMSE of yield estimation models using vegetation indices alone (Table 7). Moreover,
the fitting line of measured and estimated yields of models with flowering information
were closer to the 1:1 line (Figure 7). R2 of the single-growth stage model, two-growth stage
model and three-growth stage model increased by 0.073, 0.037 and 0.012, respectively, with
the largest increase obtained by the single growth stage model, whose MAPE and RMSE
decreased by 27.3% and 19.2%, respectively.

Table 7. Comparisons of the yield estimation models with and without considering florescence spectral information for the
validation dataset.

Growth Stage
Combination

Florescence
Information

Assessment

R2 MAPE (%) RMSE (kg/ha)

Single-growth stage No 0.738 7.04 405.92
Yes 0.811 5.12 328.10

Two-growth stage No 0.791 6.83 391.68
Yes 0.828 6.04 376.16

Three-growth stage No 0.795 6.17 360.54
Yes 0.807 6.06 373.31

Additionally, it could be found that yield estimation accuracy of the single-growth
stage model based on vegetation index and florescence spectral indices was equivalent to
the two-growth stage model using vegetation indices alone, and the same held true for
the comparison between the two-growth stage model basing on vegetation indices and
florescence spectral information and the three-growth stage model basing on vegetation
indices alone. This indicated that the introduction of florescence spectral information
into models using spectral indices alone not only helped reduce the number of remote
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sensing data acquisition, but also realized the accurate rice yield estimation at an earlier
time. Compared to the three-growth stage models using vegetation indices alone, the
two-growth stage model using vegetation indices and florescence spectral indices was
more likely to be a preferred model for rice yield estimation (Figure 8).

Figure 8. Scatter plots of measured yield vs. estimated yield derived from the original vegetation index-based model
and the optimization model introducing florescence spectral information for modeling datasets of (a) single growth stage
(b) two-growth stage (c) three-growth stage, and validation datasets of (d) single-growth stage (e) two-growth stage and
(f) three-growth stage.
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4. Discussion
4.1. The Mechanism of Spectral Information at Flowering Stage on Improving Yield
Estimation Accuracy

The traditional agronomic methods for rice yield estimation mainly use rice yield
components to calculate rice yield per unit area, which is also known as theoretical yield.
This theoretical yield has a high correlation with actual yield [43]. Generally, rice yield per
unit area can be calculated by the following four yield components [28]:

Yield per unit area = Total grain number per unit area× Seed setting rate× 1000-grain weight
Since the total number of grains per unit area is grossly equal to the number of florets

per unit area, the agronomic yield can also be expressed as:
Yield per unit area = Floret number per unit area× Seed setting rate× 1000-grain weight
The contribution rates of these three yield components to yield from high to low are

as follows: floret number per unit area > seed setting rate > 1000-grain weight. It can
be seen that floret number per unit area plays a major role in the formation of the final
yield regardless of types and yield levels of rice. Therefore, the monitoring of the rice
canopy at the flowering stage by remote sensing implies the monitoring of florets per unit
area, which is the most important component of rice yield. Compared to the traditional
empirical models which indirectly estimate rice yield by monitoring rice biomass, leaf area
index and other growth parameters [44], this method is essentially a direct monitoring
of yield component, that is floret number per unit area. Therefore, introducing spectral
information at the flowering stage into traditional VIs-based models can improve the
estimation accuracy of rice yields.

However, rice florets are white and small, and it is difficult to obtain pure information
about florets. The signals of rice florets received by sensors are weaker than rice canopies,
indicating the vulnerability of these signals to environmental factors [45]. Therefore, in our
study, the method of constructing florescence difference or ratio reflectance using canopy
spectral data at the very day before flowering and these days during the flowering stage
are proposed to characterize the florescence spectral information, and further to express
the direct monitoring of floret number per unit area.

4.2. Comparisons between This Study and Previous Studies

In this study, the booting stage was shown to be the optimal stage for rice yield
estimation with vegetation indices at a single stage. This was because leaf area index
reached its maximum at the booting stage. Some studies also found that the booting
stage was the most important stage for yield estimation [23,38]. As for the spectral bands
for the three types of vegetation indexes, bands in red-edge and near-infrared regions
were identified to be the optimal combinations for rice yield estimation. This result was
consistent with that of Zhou et al. [23]. Although the effects of rice florets on canopy spectra
were seldom studied before, there were a few studies on the effects of rice panicles on rice
spectra. For example, He et al. [46] also found that a vegetation index constructed by a
combination of red-edge and near-infrared bands could best predict panicles-affected LAI,
which proved effectiveness of red-edge and near-infrared bands for monitoring of rice
florescence spectral information.

From the aspect of rice yield estimation based on UAV Remote Sensing, Zhou et al. [23]
found the best estimation of rice yield was obtained at the booting and heading stages and
the corresponding RMSE was 926.46 kg/ha; Wang et al. [47] combined vegetation indices
and textural information from UAV hyperspectral images to estimate rice yield, and a
RMSE of 521 kg/ha was obtained. In this study, after some florescence spectral indices were
introduced, the relatively smaller RMSE values were obtained. For the two-growth stage
and three-growth stage models the RMSE values were 376.16 kg/ha and 373.31 kg/ha,
respectively. This showed the importance of florescence information in yield estimation.
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4.3. Shortcomings of the Study

Since the florets of a panicle bloom from the top first, then to the bottom, with florets
at the top opening first, this makes the flowering duration of different panicles not always
same. The flowering durations of different rice plants are different even for those in the
same field. However, full flowering is generally reached at the seventh day of the flowering
stage. Therefore, the seventh day of the flowering stage is likely to be the most suitable
date for monitoring florescence spectral information. In this present study, due to the
unfavorable weather conditions, the spectral information at the flowering stage was not
obtained on a daily basis, making the conclusion that the seventh day of the flowering
stage ass the characteristic date questionable. However, it is sure that the characteristic date
should be within the sixth to eighth day of the flowering stage. Taking into account that
rice flowering is a cumulative process, the future study can try describing rice flowering
information in the form of integral or other functions to solve the problem.

5. Conclusions

This study fully used the direct relationship between florescence spectral information
and rice yield, analyzed the sensitive spectral bands to rice yield, and optimized multi-stage
VIs-based yield estimation models. The following conclusions can be drawn:

(1) For the first derivative florescence ratio reflectance, the sensitive bands to yield
were centered at green bands 560 nm–568 nm, yellow bands 576 nm–588 nm, red-
edge bands 680 nm–760 nm and NIR bands around 840 nm; the highly sensitive
bands (top 50% of the sensitive bands) were located at 704 nm–760 nm (red-edge).
For the first derivative florescence difference reflectance, the sensitive bands were
yellow bands 580 nm–596 nm, red bands 664 nm, red-edge bands 688 nm–696 nm,
724 nm–768 nm, the NIR region 840 nm–864 nm, and the highly sensitive bands (top
50% of the sensitive bands) were 590 nm (yellow), 690 nm and 736 nm–748 nm, and
760 nm–768 nm.

(2) The useful florescence spectral indices, FDI and FRI, were mainly constructed with
NIR bands, red-edge bands and yellow bands as denominators and bands from those
that closely relate to the yield as numerators.

(3) The best date for monitoring the spectral information of rice flowering was at around
the seventh day of the flowering stage.

(4) The introduction of florescence information into VIs-based models could not only
improve the accuracy of yield estimation, but is also helpful in realizing rice yield
estimations at an earlier stage.

In addition, this study was carried out using the data of a two-year experiment with
specific rice varieties, so data of more years and about more rice varieties are needed
to verify the effectiveness of models proposed in the study. The monitoring of spectral
changes at the flowering stage requires remote sensing data with temporal resolution at a
day level, which is difficult to be met by satellite data at present. Besides, the proposed
method is waiting to be tested using other crop species and other remotely-sensed data.
In the future, with the development of high spatial–temporal resolution technology of
satellites, this method is expected to realize the application of large-scale yield estimation
based on satellite data.
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