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Abstract: Water availability for vegetation use has been associated with the relative amount of water
in the plant and is a key factor for modeling variables related to the soil-plant system (e.g., net primary
production, drought effects on vegetation). To the best of our knowledge, the integration of spectral
proxies of vegetation water content (near-infrared (NIR), shortwave-infrared (SWIR) bands) and land
surface temperature (LST) for estimation, not only of vegetation water content but also soil water
available for the evapotranspiration process requires more analysis. This study aims to assess the
relationship between NIR, SWIR reflectance, and LST data as indicators of water availability for crop
use. For this purpose, vegetation water content, LST, and spectral reflectance over soybean, corn, and
barley were measured in the field and the laboratory. Based on the consistency of satellite data from
Moderate-Resolution Imaging Spectroradiometer (MODIS/Aqua) in relation to such measurements,
a model is proposed, which can be parameterized from remotely sensed NIR-SWIR/LST scatterplots.
The obtained results were tested in the Argentine Pampas, showing coherence with surface processes
at regional scale associated with soil water availability. The comparison with soil moisture at different
depths (R2 > 0.7) showed that the method is sensitive to variations in root zone water availability.
Given the reliance of the index on just satellite data, it can be pointed that the potential not only
for vegetation water stress analyses but also in the context of hydrological modeling as an input of
water availability.

Keywords: energy balance; water vegetation status; optical/thermal; drought

1. Introduction

Water availability for vegetation use is a key variable for modeling net primary pro-
duction, drought effects on vegetation, and susceptibility to fire due to its association with
transpiration, photosynthesis, vegetation stress, and flammability [1]. Vegetation water
scarcity affects physiological processes that determine vegetation growth; thus, it has been
widely studied in agricultural lands and terrestrial ecosystems [2,3]. Vegetation water
status has been commonly associated with water stress. Typical field methods for vegeta-
tion water status measurement include pressure chambers, thermocouple psychrometers,
leaf porometers that measure stomatal conductance, and destructive field sampling that
considers the weight of water in the leaves, among others [4,5]. However, these methods
are difficult to integrate at a landscape or regional scale, given the spatial changes in soil
moisture and atmospheric conditions (e.g., incoming solar radiation, evaporative demand).
In this sense, remote sensing techniques have contributed to the estimation of vegetation
water content over large areas.

Over the last few decades, various remote sensing approaches have been investigated
to monitor vegetation water content. Commonly, they consider visible, near-infrared (VIS-
NIR, 0.3–1.0 µm), short-wave infrared (SWIR, 1.0–2.5 µm), and mid-wave infrared (MIR,
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2.5–6.0 µm) reflectance data [2,5–8]. VIS and NIR have been frequently used to obtain
vegetation indices showing changes in photosynthetic activity, given the interaction of
solar radiation with leaf pigments in VIS and the high reflectance of healthy vegetation
in NIR. However, these indices show changes due to re-arrangement of the cellular space
and leaf structure after a long stress process, which has also been reported at the canopy
level [5,6].

Other parts of the solar spectrum, like SWIR wavebands, have been widely associated
with early biophysical symptoms of water stress like leaf water content and stomatal
conductance due to the strong absorption of liquid water at those wavelengths [7–11].
The estimation of the vegetation water content has been frequently analyzed with NIR
and SWIR data with the purpose of studying vegetation water stress [4]. Incident solar
radiation in the SWIR bands is absorbed by liquid water with no influence of foliar pigment
absorption; thus, the reflectance of canopies has been associated with liquid water in the
leaves [5,11]. Common SWIR wavebands show a strong correlation with leaf water content
range between 1.6 µm and 2.5 µm [9,12,13]. Several authors stated that NIR is less effective
for estimating this variable, given the lower sensitivity to changes in leaf water content,
compared with the SWIR [14,15]. Model simulations have shown a high sensitivity at 0.86
µm to changing water content, which explains the frequent use of this band as a reference
for formulating indices sensitive to water content [4]. However, leaf structure and dry
matter content could influence the SWIR reflectance. Given that NIR is mainly affected by
dry matter [16], by subtracting NIR and SWIR, these effects can be removed, improving
the estimation of water content [17,18] (Figure 1). Ref. [4] shows an interesting review of
optical methods for the estimation of leaf water content from remotely sensed data.

Remote Sens. 2021, 13, × FOR PEER REVIEW 2 of 20 
 

 

NIR, 0.3–1.0 μm), short-wave infrared (SWIR, 1.0–2.5 μm), and mid-wave infrared (MIR, 
2.5–6.0 μm) reflectance data [2,5–8]. VIS and NIR have been frequently used to obtain vege-
tation indices showing changes in photosynthetic activity, given the interaction of solar ra-
diation with leaf pigments in VIS and the high reflectance of healthy vegetation in NIR. 
However, these indices show changes due to re-arrangement of the cellular space and leaf 
structure after a long stress process, which has also been reported at the canopy level [5,6]. 

Other parts of the solar spectrum, like SWIR wavebands, have been widely associ-
ated with early biophysical symptoms of water stress like leaf water content and stomatal 
conductance due to the strong absorption of liquid water at those wavelengths [7–11]. The 
estimation of the vegetation water content has been frequently analyzed with NIR and 
SWIR data with the purpose of studying vegetation water stress [4]. Incident solar radia-
tion in the SWIR bands is absorbed by liquid water with no influence of foliar pigment 
absorption; thus, the reflectance of canopies has been associated with liquid water in the 
leaves [5,11]. Common SWIR wavebands show a strong correlation with leaf water con-
tent range between 1.6 μm and 2.5 μm [9,12,13]. Several authors stated that NIR is less 
effective for estimating this variable, given the lower sensitivity to changes in leaf water 
content, compared with the SWIR [14,15]. Model simulations have shown a high sensitiv-
ity at 0.86 μm to changing water content, which explains the frequent use of this band as 
a reference for formulating indices sensitive to water content [4]. However, leaf structure 
and dry matter content could influence the SWIR reflectance. Given that NIR is mainly 
affected by dry matter [16], by subtracting NIR and SWIR, these effects can be removed, 
improving the estimation of water content [17,18] (Figure 1). Ref. [4] shows an interesting 
review of optical methods for the estimation of leaf water content from remotely sensed 
data. 

 
Figure 1. Spectral reflectance measured in the laboratory using spectrometer SVC HR-1024i from soybean leaves with two 
different values of relative water content. Straight lines show the difference between NIR and SWIR reflectances (in this 
case, bands centered at 0.86 and 2.13 μm, respectively), which rise with increasing leaf water content. As an example, 
bands of MODIS sensor in NIR and SWIR (bands 2, 5, 6, and 7) are included. 

Previous studies have shown a strong relationship between vegetation water content 
and narrow-band indices based on NIR-SWIR domains [5,14,17,19–21]. Ref. [18] reported 
low redundancy between the normalized difference vegetation index (NDVI) and an in-
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Figure 1. Spectral reflectance measured in the laboratory using spectrometer SVC HR-1024i from soybean leaves with two
different values of relative water content. Straight lines show the difference between NIR and SWIR reflectances (in this
case, bands centered at 0.86 and 2.13 µm, respectively), which rise with increasing leaf water content. As an example, bands
of MODIS sensor in NIR and SWIR (bands 2, 5, 6, and 7) are included.

Previous studies have shown a strong relationship between vegetation water content
and narrow-band indices based on NIR-SWIR domains [5,14,17,19–21]. Ref. [18] reported
low redundancy between the normalized difference vegetation index (NDVI) and an
index based on NIR (band 2 of MODIS, 0.841–0.876 µm) and SWIR (band 6 of MODIS,
1.628–1.652 µm) during the vegetative phase in Senegal. Ref. [14] showed that the SWIR is
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sensitive to changes in leaf water content on different eucalyptus species, with the highest
correlation coefficient approximately between 1.6–1.8 µm and 2.1–2.2 µm.

The study of water stress using only spectral data seems to be complex, given the
existence of simultaneous processes. A large obstacle when estimating vegetation water
content from reflectance data at the landscape level is the effect of LAI, soil, and background,
given its spatial and temporal changes [4]. On the other hand, [22] stated that in drying soils,
changes in root metabolism could produce a decrease in growth and stomatal conductance,
reducing evapotranspiration. Ref. [23] suggested that water stress induces photochemical
changes as soon as stomata close, but leaf water content decreases when soil moisture
reaches a certain threshold. Moreover, the rate of transpiration depends mainly on the
supply of water to the evaporating surfaces, the supply of energy to vaporize water, and the
resistances in the vapor pathway [22]. Thus, changes in stomatal aperture are affected not
only by internal factors like pressure and relative water content but also by environmental
variables with complex interactions between them.

Plants need to maintain a continuous flux of water to preserve vital processes such as
photosynthesis and nutrient uptake. Drought conditions for a plant are mainly determined
by soil moisture availability, which controls the plant water potential and hence cell turgor
and water content. After the cooling effect of transpiration has been reduced by the
presence of water deficit, heat or radiation stress frequently appears [24]. Given that
surface temperature largely depends on soil moisture, Thermal Infrared (TIR, 8–14 µm)
has been widely used to detect signs of water stress [25]. Land Surface Temperature (LST
expressed in K) is an indicator of energy balance at canopy level, specifically the relation
between latent (evapotranspiration) and sensible heat fluxes [25–27], according to the
simplified surface energy balance equation:

Rn = LE + H + G (1)

where Rn is the net radiation, LE is the latent heat flux (evapotranspiration or ET), H is the
sensible heat flux (heat transferred due to the difference between LST and air temperature),
and G is the soil heat flux (which is almost negligible under maximum vegetation cover)
(all are expressed in w m−2). Over vegetated areas, the distribution of incoming solar
radiation into H and LE depends strongly on stomatal resistance to transpiration and root
zone soil moisture (all atmospheric forcing and surface roughness being equal) [28,29].
Stomatal resistance is crucial because water escapes mainly from plants through open
stomata—the more energy for evapotranspiration, the less sensible heating of the surface
(low LST). Thus, LST is an indicator of H (≈Rn − LE) and evapotranspiration [25,27].

A few works have analyzed the relationship between vegetation water content and
thermal data. Some of them suggested a better response in the solar domain than that
provided by thermal information. However, some points should be discussed. Ref. [30] re-
ported a more noticeable spectral response of three plant species in the MIR than in the TIR.
With the integration of different spectrometers measurements, some works investigated
the entire spectral range (i.e., VIS to TIR) to retrieve leaf water content. Ref. [13] found a
high coefficient of determination in MIR and SWIR with poorer results in TIR over eleven
plant species. However, such a relationship is not straightforward, given that fluctuations
in leaf internal structure, cuticle thickness, and surface characteristics can produce changes
in reflectance unrelated to water content [14,31]. Ref. [31] studied the effect of water and
temperature stress on two plant species (European beech and rhododendron), analyzing
TIR spectra and the leaf emissivity derived from a spectrometer (Bruker Vertex 70 FTIR).
They reported significant changes after water stress, showing variations according to water
content and cuticle thickness. However, it should be noted that changes in TIR spectra
are significantly less than in the solar domain, with the consequent possible reflectance
fluctuations due to different sources of noise not related to water content (e.g., changes in
measurement/observational conditions).

Given that leaf temperature is sensitive to changes in resistance to the process of
sensible heat flux, it can be a complementary indicator to vegetation water status indices
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as a proxy of root zone soil moisture available for vegetation use. Also, one of the main
advantages of thermal data is the high sensitivity to short-time vegetation water stress.
LST has been frequently associated with surface soil moisture given the relation with
thermal inertia, although, in over vegetated areas, it is strongly influenced by root zone
soil moisture according to the cooling process due to evapotranspiration [26,28]. Ref. [32]
used SWIR and LST in a downscaling algorithm to provide soil moisture maps at a higher
resolution than the original one of Soil Moisture Ocean Salinity (SMOS). They found
good agreement between such indices and surface soil moisture (0–5 cm depth) in Spain.
Refs. [33,34] reported that the SWIR waveband includes the optimal bands in the solar
domain for remote sensing of surface soil moisture. They suggested a model based on
a linear relationship between soil moisture and NDVI/SWIR reflectance instead of the
well-known NDVI/LST model. They assumed a linear relationship between root zone soil
moisture and leaf water content, but the validation was carried out at 0–5 cm depth. To the
best of our knowledge, the integration of spectral proxies of vegetation water content and
LST to develop a model, not only for vegetation water content estimation but also soil water
available for evapotranspiration with minimum requirements of ancillary measurements
requires more analysis.

In this context, the aim of this study is to evaluate the relationship between NIR-SWIR
reflectance and LST and their ability as indicators of water availability for vegetation use.
Thus, the contribution to the study of the effect of water stress on plants is expected. Specif-
ically, such a relationship is tested with in situ measurements of spectra, LST, vegetation
water content, subsurface soil moisture, and medium-resolution remote sensing images.

2. Materials and Methods
2.1. Study Area

The Argentine Pampas is one of the most productive plains in the world, covering
more than 50 million hectares for crop production and livestock. As only about 10% of
agricultural lands are irrigated, water availability is a common limiting factor for grain
production, especially for summer crops (mainly soybeans and corn). Field measurements
were carried out in three test sites with physical characteristics and agricultural practices
representative of the study area: Tandil station (37◦19′ S, 59◦05′ W), La Campana (37◦17′ S,
58◦56′W) and La Ydalina (35◦09′ S, 61◦07′W) (Figure 2). Tandil station and La Campana are
located in Northern Hills, an agro-climatic region characterized by a sub-humid temperate
climate, mean annual rainfall about 950 mm, reference evapotranspiration of 1000 mm, with
usual water excess during autumn and winter and occasional water deficit in summer [29].
Typic Argiudoll is the dominant soil type, with silty loam texture in the A horizon and silty
clay loam in deep horizons, high organic matter content (3–5%) in superficial horizons, and
high water retention capacity (≈170–220 mm at 0.8 m depth). Wheat and barley are the
main winter crops, soybeans and corn are dominant in summer.

In Sandy Pampas, the mean annual precipitation is about 800 mm showing an east–
west gradient, and is slightly lower than reference evapotranspiration, with short periods
of water deficits in summer [25]. Entic Hapludoll with sandy loam texture is the dominant
soil, with lower water retention capacity (≈90–130 mm at 0.8 m depth) than Northern Hills.
Soybeans and corn are the main summer crops. It should be noted that crop yield in the
study area is highly dependent on water availability, and important fluctuations have been
reported in the last years due to water scarcity [25,29].
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2.2. Field Data
2.2.1. Leaf and Canopy Spectral/Thermal Measurements

Spectral reflectance measurements over soybean, corn, and barley were taken between
0.35 and 2.50 µm with the spectrometer SVC HR-1024i (Spectra Vista Corporation, USA),
FOV = 4◦. This spectrometer can acquire spectra with a sampling interval of ≤0.0033 µm,
0.7 µm; ≤0.0095 µm, 1.5 µm; ≤0.0065 µm, 2.1 µm. A reference reflectance spectralon panel
(99%) was used to convert raw incident radiance to spectral reflectance [35]. All spectral
measurements were made in a nadir orientation of the spectrometer, with a distance of
about 0.4 m between the spectrometer and the canopy. Spectra were recorded under two
conditions: (1) laboratory, on the collected soybean leaves post hydration and during the
progressive dehydration process, (2) field, every 15 m of each transect. In the laboratory,
the 5–7 collected leaves per plant were arranged horizontally, taking spectra on the adaxial
surface. In La Campana station, 2 plots of soybeans and 1 of corn were selected for
measuring reflectance along transects during dates of full vegetation cover and different
hydric conditions (15 February 2019 and 28 February 2019). Also, 1 plot of barley was
monitored during November 2019 to test the behavior of a winter crop. Sampling locations
were selected so that canopy conditions were fairly homogeneous in surrounding areas at
scales of 10 m. Measurements were taken under cloud-free conditions diurnally between
10:30 and 16:00 local time. The studied crops are representative of the regional ones, and
the dates were selected to study the sensitivity of spectral/thermal data to changes in
vegetation water availability over the same cover.

Foliage temperatures were measured immediately after obtaining spectra with an ST
PRO Raytek (8–14 µm), which has a resolution of 0.1 ◦C and accuracy of about 0.3 ◦C for
the typical range of temperature. LST was obtained by hand-holding the thermometer
directly over each plant (or group of leaves in the case of the laboratory) and looking down
at the leaves from about 0.5 m above the canopy with an angle of about 70◦ from horizontal,
which always allowed full-plant cover. We assumed an emissivity of 0.98 for all cases.
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2.2.2. Vegetation Water Content

At each stop along transects where spectra were recorded, foliar samples were col-
lected by cutting the plants of barley and 5–7 leaves of soybean at the top of the canopy.
They were immediately weighed using a portable electronic balance with an accuracy
of 0.01 g (model ES-1200HA, Jadever Scale Co., Xiamen, China) to obtain the fresh mass
(Fw). After weighing, leaves were placed in sealed plastic bags and transported to the
laboratory. In the laboratory, samples were hydrated with distilled water to determine
leaf mass at 100% water content (Tw). Afterward, they were exposed to the sun, dried at
ambient temperature, and then oven-dried at 50 ◦C until dry weights were constant to
obtain dry mass (Dw). The Fw was determined during the dehydration process, previous to
each reflectance measurement. These weights were used to obtain gravimetric estimations
of relative water content (RWC, %):

RWC =
Fw− Dw
Tw− Dw

× 100 (2)

The RWC compares the actual leaf water content with the maximum water content
at full turgor. It is a common water content index in plant physiology to determine plant
water status [17].

2.2.3. Soil Moisture

Soil moisture is a key factor controlling plant water potential and then cell turgor and
RWC. To test the sensitivity of NIR-SWIR/LST data to root zone soil moisture, a comparison
with field measurements was carried out. On La Ydalina station (35◦09′ S, 61◦07′ W), a
tensiometer connected to a Davis Vantage Pro2 (Davis Instruments Corporation) station
was used to measure soil moisture at 60- and 120-cm depths. Values at 5-cm depth were
also considered, although it is expected that they have significant fluctuations, especially
in sandy soils and that plants extract water from deeper soil horizons. Relative soil water
content (%) was determined from tension measurements (in centibars) by the moisture-
characteristic curve previously defined in the laboratory. On Tandil station (37◦19′ S,
59◦05′ W), the sensors EC-10 H2O and EC-20 H2O (Decagon Devices, Inc., USA) measured
water content (%) at 10-, 40-, and 60-cm depths. Both probes measured the integrated
dielectric constant (in millivolts) at 10- and 20-cm depths, respectively, which is related to
the volumetric water content. With the sole purpose of showing the behavior of NIR-SWIR
and LST on bare soil with different surface water content, measurements were taken with a
Delta-T ThetaProbe ML2x soil moisture probe. The sensors were calibrated for each soil
type [36,37]. Finally, from NIR-SWIR/LST images obtained from MODIS/Aqua, daily
values for a kernel of 3× 3 in size were compared with soil moisture data. This comparison
was carried out for January–March 2012, when simultaneous data in Tandil and La Ydalina
stations were available.

2.3. Relationship between NIR-SWIR/LST in 2D Space from Satellite Data

In this study, a narrow band normalized difference index as a traditional indicator of
leaf water content (e.g., [18,19]) was calculated using the reflectance of MODIS sensor band
2 (0.841–0.876 µm) and band 7 (2.105–2.155 µm):

NIR− SWIRindex =
ρNIR − ρSWIR
ρNIR + ρSWIR

(3)

where ρNIR and ρSWIR are the daily surface reflectance of bands 2 and 7 of the MODIS
sensor, respectively. We named the index as a generalized equation based on the normalized
difference between NIR and SWIR, given that several previous works have defined different
indices according to different wavebands. As shown in Figure 1, the index will take high
values in the case of a spectrum with SWIR reflectance lower than NIR reflectance, showing
high vegetation water content.
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Following the concepts discussed in the Introduction, a conceptual model of the
complementation between remotely sensed data of LST and NIR-SWIR can be proposed in
Figure 3 (left), which shows a scatterplot for the study area that includes heterogeneous
hydric conditions. The index is based on the difference of reflectance between NIR and
SWIR increases with the leaf water content and also with increasing vegetation cover [38].
However, moderate water stress frequently does not produce vegetation water content
changes since the plant tries to maintain a level compatible with its basic functioning,
reducing transpiration [39]. Thus, LST could be a complement of a NIR-SWIR index given
that minimum water availability reduces ET and increases H (sensible heat flux changes
can be assessed by surface temperature LST). In a scatterplot for a study area that includes
heterogeneous hydric conditions and vegetation cover (from full cover to bare soil), an
edge of minimum water availability for plant use, and surface soil moisture in the case of
bare soil, is expected to be a quadratic adjustment. Such an edge of minimum ET indicates
maximum water stress. The quadratic function would be more consistent with biophysical
processes of the soil-plant system than a linear edge of the approaches based on LST and
vegetation indices, given that the intercept value of linear adjustment is difficult to find in
natural conditions. Conversely, the linear edge of maximum ET (minimum LST) represents
high soil water availability for plants and the conduction of heat from the soil-plant system
into the atmosphere. These edges can fluctuate depending on climatic conditions (e.g.,
atmospheric water demand, dry/wet periods), whereby such changes should be considered
if large regions with different atmospheric forces are being analyzed. It should be noted that
this shape of the scatterplot would not depend on the spatial resolution if the mentioned
heterogeneous surface conditions are included.
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Figure 3. (left) general conceptual model of the NIR-SWIR/LST relationship (see NIR − SWIRindex in Equation (3)). (right)
Interpretation of remotely sensed LST/NIR-SWIR scatterplot using two examples of daily MODIS/Aqua data for the study
area (EVI > 0.3). Triangles (rectangles) indicate edges of maximum (minimum) evapotranspiration (ET), and hence, water
availability in the soil-plant system. The TIDI for a given pixel (e.g., A or B) is based on the distance to the edges. A path
from A to B is suggested as a drying process for a given pixel. Grey: edges for a widespread wet condition, black: edges for
a dry condition.

Soil reflectance varies with soil type, particle size distribution, bulk density of the
soil, and organic matter content, but also strongly with surface water content [34]. Our
measurements over bare soils indicate that the NIR-SWIRindex assumes negatives values,
although previous studies reported slightly positive ones for saturated soils (e.g., [40,41]).
On bare soils, LST is mainly related to surface soil moisture, associated with thermal inertia
and evaporative control. Under conditions of high atmospheric evaporative demand and
incoming solar radiation (e.g., during summer), low LST reflects high surface water content
and maximum evaporation from bare soil.

Figure 3 (right) shows a remotely sensed LST/NIR-SWIR scatterplot from daily
MODIS/Aqua data for the study area that includes heterogeneous hydric conditions,
partially and fully vegetated surfaces. These vegetated areas were selected considering
an Enhanced Vegetation Index (EVI) higher than 0.3; this vegetation index is similar to
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the NDVI but takes into account the canopy background and atmospheric scattering with
improved sensitivity into high biomass regions. A hypothetical path of a drying pixel
(from point A to B) is proposed. It should be noted that this path is not straightforward
and depends on the temporal response of LST and NIR-SWIR according to leaf water
content and energy balance. These aspects can be analyzed more deeply in future studies.
Nevertheless, to obtain information on water availability for vegetation use from remotely
sensed data at a regional scale, an index called TIDI (Temperature-Infrared Dryness Index)
is proposed:

TIDI =
LST− LSTmin

LSTmax − LSTmin
=

LST− a1(NIR− SWIRindex) + b1[
a2(NIR− SWIRindex)

2 + b2(NIR− SWIRindex) + c2

]
− (a1(NIR− SWIRindex) + b1)

(4)

where LST is the observed surface temperature at a given pixel, LSTmin is the minimum LST
in the LST/NIR-SWIR scatterplot (the linear edge reflecting maximum actual ET), LSTmax
is the quadratic edge of maximum LST in the LST/NIR-SWIR scatterplot representing
minimum actual ET and, hence, water availability. NIR-SWIRindex is an index based on
the difference between surface reflectance in NIR and SWIR bands (see Equation (4)). The
parameters a1, a2, b1, b2, and c2 of the edges are characteristic of each image and can vary
depending on hydric conditions (Figure 3). The edges can be determined using least square
quadratic and linear regression for LSTmax and LSTmin, respectively, from daily to 16/days
scatterplots, depending on the objectives of the study. This index takes values between
0 near the LSTmin (maximum water availability) and 1 for pixels near LSTmax (minimum
water availability).

For a good estimation of the TIDI parameters, certain points should be taken into
account. The study area should include dry and wet soils (minimum soil water content
and near field capacity), which would represent minimum evapotranspiration (LSTmax)
and potential evapotranspiration (LSTmin), respectively. Uniform atmospheric conditions
in the study area are preferable to avoid low sensitivity due to extreme conditions in the
same dataset (e.g., desert and humid areas). Also, seasonal fluctuations mainly produced
by atmospheric changes (e.g., incoming solar radiation, atmospheric water demand) can be
expected. In this sense, extreme edges (minimum LSTmin and maximum LSTmax) can be
defined for the study period to avoid such temporal fluctuations of the parameters. Thus,
the calculation of TIDI is normalized using the same parameters. On the other hand, the
index is recommended for monitoring vegetation water stress over large agricultural lands;
the sensitivity over native vegetation should be tested in future studies. Also, water bodies
or irrigated surfaces in the study area could be considered to test the LSTmin as an indicator
of maximum or potential evapotranspiration [28].

Horizontal variation of surface (e.g., LST differences between vegetation and bare
soil) or atmospheric conditions can produce large-scale advection. This process is more
noticeable under extreme conditions as irrigated crops in arid or semi-arid areas, produc-
ing variations in evapotranspiration from surrounded areas to the crop. Other cases of
heterogeneous landscapes can include land and water bodies or topography variations.
This aspect should be considered when evaluating the evapotranspiration from crops
growing under these conditions. Although more local studies should be done to evaluate
the advection, the spatial resolution of current thermal missions can monitor changes in
heat fluxes at synoptic or mesoscale.

In this study, two Moderate Resolution Imaging Spectroradiometer (MODIS) products
were considered for TIDI calculation: (1) MYD11A1: daily MODIS/Aqua LST (K) at
1-km resolution, which includes atmospherically corrected per-pixel temperature and
emissivity values, and (2) MYD09GA: daily MODIS/Aqua surface reflectance at 500-m
resolution, which provides surface spectral reflectance corrected of atmospheric scattering
and absorption for bands 1 to 7. Both products include cloud-free images; thus, cloudy
pixels with value = 0 were masked out. Aqua satellite covers the hours of maximum
atmospheric demand, so these data were used to analyze the influence of water availability
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on TIDI. Also, the analyzed months (January, February, and November) cover the period
of full vegetation cover of summer and winter crops, respectively, minimizing the bare
soil signal.

LST and reflectance data were reprojected into geographic latitude/longitude coordi-
nates, Datum WGS-84 with the MODIS Conversion toolkit. LST product was resampled
to 500-m resolution to match up the MYD09GA resolution [42]. Then, 2 images for each
day were mosaicked to cover the entire study area. After that, daily 2-D scatterplots of
LST in function of the NIR-SWIRindex were analyzed to obtain daily values of the TIDI.
It should be noted that a, b, and c parameters of LSTmax and LSTmin are characteristic of
each image, varying mainly in the function of hydric conditions in the study area (see
Figure 3). Daily scatterplots during the study period were analyzed to define the extreme
edges and standardize the study series of the index. The extreme LSTmin (linear adjustment
with the lowest intercept and slope) would represent maximum evapotranspiration if the
study period includes wet periods. The extreme LSTmax (highest quadratic equation in the
scatterplot) indicates the driest condition over the study period.

Figure 4 includes a summary of the applied method.
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3. Results and Discussion
3.1. Relationship between NIR-SWIR, LST and Leaf Water Content at Field Scale

Reflectance spectra of leaves obtained in the laboratory during the dehydration process
indicate that the combination of NIR and SWIR reflects changes in leaf water content
(Figure 5). The spectra show high reflectance in NIR, especially for high leaf water content,
while SWIR reflectance increases due to decreasing amounts of leaf water. These results are
consistent with several previous studies that showed strong absorption of liquid water in
SWIR (e.g., [5,43]). High and intermediate RWC (60% and 44%) showed similar reflectance,
around 1.6 µm. Conversely, the highest differences in SWIR were observed approximately
at a wavelength higher than 2 µm. This wavelength includes atmospheric windows where
the absorption by water vapor in the atmosphere is low. Also, it should be noted that the
quality of band 6 of MODIS is not optimal because of noisy detectors [44]. Considering
these points, bands 2 and 7 were used to compute the TIDI.

The reflectance index obtained in the laboratory during the dehydration process
for samples of soybean and barley leaves showed a positive correlation with RWC, as
reported in several previous studies (e.g., [8–10], among others) (Figure 6). Also, a positive
correlation was observed considering wavelengths around 1.650 (R2 = 0.7). However, a
low correlation was observed between LST and RWC, showing that LST are not directly
related to leaf water content. Commonly, when the turgor pressure decreases because of
water deficit, the partly closed stomata results in a reduction in transpiration and hence
the movement of water from the soil to leaves. In general, moderate or short-time water
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stress frequently does not produce significant changes in leaf water content since the
plant tries to maintain a certain level compatible with physiological processes, reducing
transpiration [39]. This behavior should be more noticeable in isohydric crops, which can
constantly regulate the water loss within a certain range to avoid damage due to water
deficit. On the other hand, in anisohydric crops (e.g., soybeans and barley), the stomatal
response to fluctuations in water potential is reduced, and they can maintain photosynthetic
capacity during moderate stress. However, under more intense water stress, increases in
LST should be a clear sign of water deficit. Also, it should be noted that the differences
between these two types of crops are frequently difficult to note at a regional scale. Thus,
the combination of NIR-SWIR data as a proxy of leaf water content and LST indicator of
evapotranspiration can contribute to the monitoring of interdependent processes associated
with the effects of water scarcity on vegetation.
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Field measurements of LST and spectra were consistent with the general interpretation
of the NIR-SWIR/LST relationship proposed in Figure 3 (Figure 7). In Figure 7, data
from MODIS/Aqua for a subset (approximately 68,600 km2, January–February 2019) are
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included to contextualize the field measurements. Water deficit produced significant
increases of LST for different NIR-SWIRindex values, describing a behavior similar to a
quadratic function for maximum LST. Corn showed a slight trend to high LST values more
frequently than soybean and barley, given that corn is more susceptible to water stress.
Also, the limiting effect of low soil moisture increases as atmospheric conditions favor high
potential rates of transpiration. Corn leaf rolling, a clear sign of water stress, was observed
in the field where the highest LST were measured. Although a lag between transpiration
and water absorption can produce symptoms of water stress in leaves exposed to the sun
during midday of hot summer days, such leaf rolling was observed throughout the whole
days of lowest water availability. Signs of wet conditions were more frequently observed
in barley, given that it is a winter crop and there is less atmospheric evaporative demand
during winter and spring.
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On the other hand, surface soil moisture measurements over bare soil took negative
values of NIR-SWIRindex with minimum LST for near-saturated soils. It should be noted
that measurements were taken over Typic Argiudoll. Changes in reflectance can be expected
in other soil types, depending on different factors such as bulk density, organic matter
content, mineral composition. This point has been reported in previous studies such as [34]
that showed changes in spectral reflectance of different soils for various levels of surface
volumetric water content.

3.2. Parameters and Spatial Variability of TIDI

Daily LST/NIR-SWIRindex scatterplots during January and mid-March 2012 show
the existence of high variability of water availability for vegetation use (Figure 8). These
dates cover the main growth stages of summer crops in the study area. Although the
classification of crop types was not carried out, the study area is a vast surface of flatlands
containing quite homogeneous rain-fed croplands, with corn and soybeans being the
dominant summer crops. Given that the study is focused on vegetation, bare soil and low
vegetation cover were omitted in the scatterplots with a mask for EVI ≤ 0.3. Thus, the
lower linear edge with a negative slope and the quadratic upper limit were better defined.
Observations were consistent with the proposed conceptual model, decreasing LST with the
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increases of NIR-SWIRindex. Flat scatterplots characterized by low slope and intercept were
expected under regional humid conditions, mostly due to the generalized cooling of the
surface. These low maximum LST were observed on certain dates as 26 January–2 February
and 16 March (monthly rainfall around 50 mm greater than the historical average for
120 years). A predominance of positive NIR-SWIRindex values suggesting wet conditions
was noticeable mainly on 16 March. On 3 January, positive values were also evident,
but the slope of LSTmin and the pattern of LSTmax suggested that the thermal data gave
complementary information to optical ones. Although a wide range of NIR-SWIRindex was
evident, LST showed higher variability, reflecting more sensitivity to short-time fluctuations
of hydric conditions.
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Figure 8. Examples of daily scatterplots of LST (K) (y-axis) and NIR-SWIRindex (x-axis) from MODIS/Aqua measurements
for vegetated surfaces in the study area during January and mid-March 2012.

As mentioned previously (Section 2.3), the TIDI parameters are characteristic of each
image, so the minimum LSTmin and maximum LSTmax of the study period were defined to
compute daily TIDI: LSTmax = −27.3(NIR− SWIRindex)

2 + 0.09(NIR− SWIRindex) + 329.3;
LSTmin = −24.6(NIR−SWIRindex)+ 303.7. It should be noted that a large area (68,600 km2)
was considered in the scatterplots to include a wide range of water availability; otherwise,
homogeneous hydric conditions would produce a poor estimation of these parameters.
Also, the calculated edges reflect the expected regional maximum and minimum water
availability for vegetation use during the study period.

Daily maps of TIDI show high spatial variability of water availability for vegetation
(Figure 9). The general pattern is consistent with changes in topography, groundwater, and
oceanic influence [45,46]. Thus, wet areas are located on the east and north-east edge due to
the oceanic and shallow groundwater table influences. The water deficit was more evident
westward, consistent with a semi-arid climate and sandy soils [28]. Dry areas were observed
during early January, especially on 1 January. This water deficit is crucial for summer crops,
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given the occurrence of critical growth stages during January and February, which largely
determine crop yield [25]. On 1 January, water scarcity was noticeable westward in the
semi-arid Pampas, especially in the upper areas of east-west valleys characterized by sandy
soils with low water retention capacity, which favors moisture-stressed areas.
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It should be noted that the spatial pattern of TIDI is expected to be related not only
to atmospheric and vegetation cover variables (e.g., rainfall, atmospheric water demand,
solar radiation, phonological phases) but also to subsurface soil moisture. Thus, in rapid
drying soils, the spatial variability of TIDI would be more related to deep than surface soil
moisture, which could be associated with different factors like water retention capacity of
the soil, shallow groundwater table and capillarity effect or physical limitation to water
movement (e.g., horizon with low hydraulic conductivity).

At this point, diverse positive characteristics related to the applicability of the TIDI can
be highlighted. One is its suitability for hydrological and water stress vegetation studies
with limited data availability, given the dependence on satellite data. Its calculation from
satellite missions with frequent overpasses can provide near real-time estimation of water
availability over large areas. However, some points should be taken into account for a good
performance of the TIDI. Given the assumption that water availability is the main factor
affecting the index, the study area should be reasonably uniform in atmospheric conditions,
incoming solar radiation, and aerodynamics properties. On the other hand, despite its
simple parameterization, the study area should be sufficiently heterogeneous to include
a wide range of soil moisture. In this manner, the empirical LSTmin and LSTmax obtained
from NIR-SWIRindex scatterplots are almost equal to the theoretical edges (potential evapo-
transpiration and minimum evapotranspiration, respectively), avoiding an overestimation
(underestimation) of LSTmin (LSTmax) in case of a predominance of dry (wet) conditions.
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The influence of cloud cover on surface reflectance and LST should be considered if a
continuous calculation of the index is needed, not only due to the lack of data but also the
effect of cloud shadows (e.g., Figure 9, 16 March). In this study, cloudy areas and cloud
shadows were masked. In addition, LST is dependent on emissivity and atmospheric effect,
although the scattering effect on NIR-SWIRindex is significantly lower than in Visible bands.
Finally, the applicability over native vegetation (e.g., native grassland) with an expectable
resilience to water deficit should be analyzed in future studies.

3.3. The TIDI Sensitivity with Soil Moisture

After the calculation of daily TIDI images, a point comparison between subsurface
soil moisture and the index was carried out to evaluate the sensitivity of the method to
fluctuations in water availability for vegetation growth. The use of extreme LSTmax and
LSTmin to obtain TIDI and then to analyze data in different stations was considered, given
that these edges would reflect the extreme water availability of the area and period studied.
Figure 10 shows the temporal evolution of TIDI and rainfall during the analyzed period.
The index is sensitive to hydric conditions, decreasing after rain events (e.g., DOY 50–60
for both stations). The first days of the analyzed period (DOY 1–20) were characterized by
high values of the index. Although one rainfall event occurred (44 mm in La Ydalina and
28 mm in Tandil), the index showed insignificant changes, which would suggest that such
an event was not enough to increase the water content in the soil profile, especially in the
summer. In both stations, the minimum soil moisture was registered on these days (e.g., La
Ydalina ≈ 8.1–12.0% at 60 cm depth, Tandil ≈ 15.1–16.2% at 20–40 cm depth).
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The comparison with soil moisture was conducted considering values of a 3 × 3 ker-
nel size centered on La Ydalina and Tandil stations. Although the relationship between
optical/thermal and root-zone soil moisture is dependent on the vegetation types and
climate zones, a strong negative trend was observed in both stations, with high values of
the index according to low water availability in the root zone (Figure 11). These results
are consistent with the process of water absorption, evapotranspiration, and changes in
optical/thermal variables of plants ([26,47]. Also, they are in agreement with several
studies that showed the correlation between vegetation indices and root zone soil moisture
(e.g., [48–50]). Ref. [34] proposed a linear model for surface soil moisture estimation based
on SWIR bands. They reported, under well-controlled laboratory conditions, the greatest
sensitivity around 2.21 µm on different bare soil types. However, as these authors stated,
optical methods have shallow penetration depths, as well as limited direct applicability
in vegetated soils. Later, [33] suggested a model based on a linear physical relationship
between soil moisture and NDVI/SWIR reflectance. They parameterized the model con-
sidering the pixel distribution within the SWIR/NDVI space, assuming linear dry and
wet edges. Also, they assumed a linear relationship between soil- and vegetation-water
contents and then the correlation of SWIR/NDVI with root zone soil moisture. However,
experimental evidence of that is scarce and, although they showed volumetric moisture
content estimation errors below 0.05 cm3 cm−3, they referred to 0–5 cm depth.
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Hapludoll, sandy loam texture, depths of soil moisture measurements: 5 cm, 60 cm, 120 cm) and (b) Tandil station (N = 15,
soil: Typic Argiudoll, silty loam texture in shallow horizons and silty clay texture in deeper horizons, depths of soil moisture
measurements: 0–10 cm, 20–40 cm).

Although in our study measurements were taken at different depths, there was a
trend to lower water content in the soil profile and higher index in sandy loam soils of La
Ydalina (TIDI ≈ 0.3–0.8) than Tandil (≈0.1–0.7) station (Typic Argiudoll, and silty loam
texture). The former is also characterized by low organic matter content (2–3% in the A
horizon vs. 3–5% in Tandil) and poorly structured soils [51]. The correlation between the
index and subsurface soil moisture also depends on the structure and depth of the root
system and physical limitations for root development like soil resistance to penetration
([52,53]. This would explain the correlation in deeper horizons in La Ydalina. Inversely,
in Tandil, where no correlation at 60 cm depth was observed (not shown), a strong Bt
horizon exists at 40 cm depth which would be a soil physical limitation producing shallow
soil exploration by roots. In La Ydalina, data at 5 cm depth were included to show the
behavior of surface soil moisture. Although a high R2 can be obtained, two groups of points
with high and low soil moisture would be producing such a correlation. Low correlation
with surface data should be expected in soils with poor vertical integration (e.g., coarse
texture, poor vegetation cover, and high atmospheric water demand), given the frequent
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decoupling between surface and deep horizons. For example, [54] reported that the LST of
a vegetated area is less responsive to surface soil moisture than the LST of bare soil because
plants can extract deep water to maintain transpiration. Ref. [32] found NIR-SWIR/LST
scatterplots consistent with hydric conditions in Spain. They used these data from MODIS
for resampling of SMOS images, showing a high correlation with soil moisture at 0–5 cm
depth. However, the association of NIR-SWIR/LST with sub-surface soil moisture deserves
more attention. Although more studies should be done to evaluate the performance of
NIR-SWIR/LST methods over different vegetation covers, the inclusion of NIR and SWIR
to thermal data could be a complement or advance for remote monitoring of vegetation
water stress in relation to traditional VI/LST methods (e.g., [25–27,55,56]).

4. Conclusions

Given the impact of water vegetation status in several plant-soil-atmosphere processes,
the development of remotely sensed methods to estimate water availability for plant use
is crucial. In this study, the integration of in situ and remotely sensed data of NIR and
SWIR reflectance as an indicator of vegetation water content to thermal data as a proxy
of energy balance changes was carried out. Field and laboratory measurements showed
that NIR-SWIR reflectance reflects the changes in leaf water content. The relationship with
thermal data was consistent with previous studies that separately analyzed vegetation
water content indices and land surface temperature.

Daily NIR-SWIRindex/LST scatterplots from MODIS/Aqua were coherent with in situ
measurements of spectra and LST. TIDI (Temperature-Infrared Dryness Index) maps were
coherent with regional characteristics of the study area (e.g., increasing dry conditions
and sandy soils westward, oceanic influence eastward). The preliminary comparison of
this index calculated from MODIS/Aqua data with daily root zone soil moisture over
cultivated areas (R2 > 0.7) suggests the potential to reflect water availability for vegetation.

The TIDI can be an alternative to traditional VI/LST indices for vegetation dryness es-
timation. NIR-SWIRindex adds to thermal data information associated with early symptoms
of water stress like stomatal conductance, while vegetation indices that consider NIR and
Visible show photosynthetic damage produced by advanced water stress. Thus, indices like
NDVI or EVI are conservative indicators of water deficit [28]. It should also be noted that
the scattering produced by the atmosphere is significantly lower in SWIR than in Visible
and NIR; therefore, its use is encouraged. The application of the method is recommended
for large vegetated areas, which should have heterogeneous soil water availability for a
good definition of the NIR-SWIRindex/LST space. Although the parameters of the index
are characteristic of a heterogeneous study area with uniform atmospheric forcing, their
estimation is simple. The parameterization of the model for a specific region would allow
the use of this method over other croplands. The results obtained are promising, showing
that the most dynamic LST fluctuations associated with the evapotranspiration process
should be a complement to previous NIR-SWIR indices of the vegetation water content for
comprehensive monitoring of the soil-plant system. In future studies, a full validation on
different vegetation covers can be analyzed to evaluate the performance of the method for
the whole estimation of the soil-plant water status. Finally, there is also a potential, not only
for vegetation water stress analyses, but also in the context of hydrological and climate
modeling as an input of water availability. This might play a more important role in the
context of climate change, in which extreme conditions of soil moisture can be expected.

Author Contributions: Conceptualization, M.E.H. and R.E.R.; methodology, M.E.H., R.E.R. and
M.I.B.; software, M.I.B.; validation, M.E.H. and M.I.B.; formal analysis, M.E.H.; investigation, M.E.H.;
writing—original draft preparation, M.E.H.; writing—review and editing, M.E.H. and R.E.R.; visual-
ization, M.E.H.; supervision, R.E.R.; project administration, R.E.R.; funding acquisition, R.E.R. and
M.E.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Remote Sens. 2021, 13, 3371 17 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: Satellite images were downloaded from https://search.earthdata.
nasa.gov/, accessed on 20 June 2021. Complementary field and laboratory data can be accessed at
Holzman, M.; Rivas, R.; Bayala, M.; Pasapera, J. Measuring land surface temperature, near-infrared
and short-wave infrared reflectance for estimation of water availability in vegetation. MethodsX 2021,
8, 101172, doi:10.1016/j.mex.2020.101172 or https://data.mendeley.com/datasets/5hjyy6z436/1,
accessed on 20 June 2021.

Acknowledgments: This study was supported by CONICET (Consejo Nacional de Investigaciones
Científicas y Técnicas) and IHLLA (Instituto de Hidrología de Llanuras “Eduardo J. Usunoff”). The
authors also would like to thank CIC (Comisión de Investigaciones Científicas de Buenos Aires),
UNCPBA (Universidad Nacional del Centro de la provincia de Buenos Aires), Oficina de Riesgo
Agropecuario. Also, we really appreciate the contribution of the reviewers that have helped us to
improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric.

For. Meteorol. 2013, 173, 74–84. [CrossRef]
2. Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Verrelst, J.; Rivera, J.P.; Moreno, J. Retrieval of canopy water content of

different crop types with two new hyperspectral indices: Water absorption area index and depth water index. Int. J. Appl. Earth
Obs. Geoinf. 2018, 67, 69–78. [CrossRef]

3. Zhang, C.; Liu, J.; Shang, J.; Cai, H. Capability of crop water content for revealing variability of winter wheat grain yield and soil
moisture under limited irrigation. Sci. Total Environ. 2018, 631–632, 677–687. [CrossRef]

4. Roberto, C.; Lorenzo, B.; Michele, M.; Micol, R.; Cinzia, P. Optical remote sensing of vegetation water content. In Remote Sensing of
Vegetation. Hyperspectral Indices and Image Classifications for Agriculture and Vegetation; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.;
CRC Press: Boca Raton, FL, USA, 2018; pp. 183–200. ISBN 9781138066038.

5. Fensholt, R.; Huber, S.; Proud, S.R.; Mbow, C. Detecting canopy water status using Shortwave Infrared reflectance data from
polar orbiting and geostationary platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 271–285. [CrossRef]

6. Levitt, J. Responses of Plants to Environmental Stresses; Academic Press: New York, NY, USA, 1980.
7. O’Toole, J.; Cruz, R. Response of leaf water potential, stomatal resistance and leaf rolling to water stress. Plant Physiol. 1980, 65,

428–432. [CrossRef] [PubMed]
8. Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from

MODIS Near- and Short-Wave Infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [CrossRef]
9. Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping

using Landsat data derived Normalized Difference Water Index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482.
[CrossRef]

10. Anderson, M.C.; Neale, C.M.U.; Li, F.; Norman, J.M.; Kustas, W.P.; Jayanthi, H.; Chavez, J. Upscaling ground observations of
vegetation water content, canopy height, and Leaf Area Index during SMEX02 using aircraft and Landsat imagery. Remote Sens.
Environ. 2004, 92, 447–464. [CrossRef]

11. Yilmaz, M.T.; Hunt, E.R.; Goins, L.D.; Ustin, S.L.; Vanderbilt, V.C.; Jackson, T.J. Vegetation water content during SMEX04 from
ground data and Landsat 5 Thematic Mapper imagery. Remote Sens. Environ. 2008, 112, 350–362. [CrossRef]

12. Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data.
Remote Sens. Environ. 2010, 114, 2875–2887. [CrossRef]

13. Ullah, S.; Skidmore, A.K.; Ramoelo, A.; Groen, T.A.; Naeem, M.; Ali, A. Retrieval of leaf water content spanning the Visible to
Thermal Infrared spectra. ISPRS J. Photogramm. Remote Sens. 2014, 93, 56–64. [CrossRef]

14. Datt, B. Remote sensing of water content in eucalyptus leaves. Aust. J. Bot. 1999, 47, 909–923. [CrossRef]
15. Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from

remote sensing data: Part 2. Validation and Applications. Remote Sens. Environ. 2002, 82, 198–207. [CrossRef]
16. Ghulam, A.; Li, Z.L.; Qin, Q.; Yimit, H.; Wang, J. Estimating crop water stress with ETM+ NIR and SWIR data. Agric. For. Meteorol.

2008, 148, 1679–1695. [CrossRef]
17. Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.M. Detecting vegetation leaf water content using reflectance in the

optical domain. Remote Sens. Environ. 2001, 77, 22–33. [CrossRef]
18. Fensholt, R.; Sandholt, I. Derivation of a Shortwave Infrared Water Stress Index from MODIS Near- and Shortwave Infrared data

in a Semiarid Environment. Remote Sens. Environ. 2003, 87, 111–121. [CrossRef]
19. Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from

remote sensing data: Part 1: Theoretical Approach. Remote Sens. Environ. 2002, 82, 188–197. [CrossRef]

https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://data.mendeley.com/datasets/5hjyy6z436/1
http://doi.org/10.1016/j.agrformet.2013.01.007
http://doi.org/10.1016/j.jag.2018.01.002
http://doi.org/10.1016/j.scitotenv.2018.03.004
http://doi.org/10.1109/JSTARS.2010.2048744
http://doi.org/10.1104/pp.65.3.428
http://www.ncbi.nlm.nih.gov/pubmed/16661206
http://doi.org/10.1016/j.rse.2005.07.008
http://doi.org/10.1016/j.rse.2003.10.021
http://doi.org/10.1016/j.rse.2004.03.019
http://doi.org/10.1016/j.rse.2007.03.029
http://doi.org/10.1016/j.rse.2010.07.005
http://doi.org/10.1016/j.isprsjprs.2014.04.005
http://doi.org/10.1071/BT98042
http://doi.org/10.1016/S0034-4257(02)00036-6
http://doi.org/10.1016/j.agrformet.2008.05.020
http://doi.org/10.1016/S0034-4257(01)00191-2
http://doi.org/10.1016/j.rse.2003.07.002
http://doi.org/10.1016/S0034-4257(02)00037-8


Remote Sens. 2021, 13, 3371 18 of 19

20. Bowyer, P.; Danson, F.M. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy Level.
Remote Sens. Environ. 2004, 92, 297–308. [CrossRef]

21. Danson, F.M.; Bowyer, P. Estimating live fuel moisture content from remotely sensed reflectance. Remote Sens. Environ. 2004, 92,
309–321. [CrossRef]

22. Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: San Diego, CA, USA, 1995; ISBN 0124250602.
23. Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodriguez, M.L.; Ricardo, C.P.P.; Osório, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How

plants cope with water stress in the field. Photosynthesis and Growth. Ann. Bot. 2002, 89, 907–916. [CrossRef]
24. Porporato, A.; Laio, F.; Ridol, L.; Rodriguez-iturbe, I. Plants in water-controlled ecosystems: Active role in hydrologic processes

and response to water stress III. Vegetation water stress. Adv. Water Resour. 2001, 24, 725–744. [CrossRef]
25. Holzman, M.E.; Carmona, F.; Rivas, R.; Niclòs, R. Early assessment of crop yield from remotely sensed water stress and solar

radiation data. ISPRS J. Photogramm. Remote Sens. 2018, 145, 297–308. [CrossRef]
26. Holzman, M.E.; Rivas, R.; Bayala, M. Subsurface soil moisture estimation by VI-LST method. IEEE Geosci. Remote Sens. Lett. 2014,

11, 1951–1955. [CrossRef]
27. Nutini, F.; Stroppiana, D.; Busetto, L.; Bellingeri, D.; Corbari, C.; Mancini, M.; Zini, E.; Brivio, P.A.; Boschetti, M. A weekly

indicator of surface moisture status from satellite data for operational monitoring of crop conditions. Sensors 2017, 17, 1338.
[CrossRef]

28. Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature
and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [CrossRef]

29. Holzman, M.E.; Rivas, R. Early maize yield forecasting from remotely sensed temperature/vegetation index measurements. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 507–519. [CrossRef]

30. Fabre, S.; Lesaignoux, A.; Olioso, A.; Briottet, X. Influence of water content on spectral reflectance of leaves in the 3–15 µm
Domain. IEEE Geosci. Remote Sens. Lett. 2011, 8, 143–147. [CrossRef]

31. Buitrago, M.F.; Groen, T.A.; Hecker, C.A.; Skidmore, A.K. Changes in Thermal Infrared spectra of plants caused by temperature
and water stress. ISPRS J. Photogramm. Remote Sens. 2016, 111, 22–31. [CrossRef]

32. Sánchez-Ruiz, S.; Piles, M.; Sánchez, N.; Martínez-fernández, J.; Vall-llossera, M. Combining SMOS with Visible and
near/Shortwave/Thermal Infrared satellite data for high resolution soil moisture estimates. J. Hydrol. 2014, 516, 273–283.
[CrossRef]

33. Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture
applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [CrossRef]

34. Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using Short Wave
Infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [CrossRef]

35. Holzman, M.; Rivas, R.; Bayala, M.; Pasapera, J. Measuring land surface temperature, near-infrared and short-wave infrared
reflectance for estimation of water availability in vegetation. MethodsX 2021, 8, 101172. [CrossRef]

36. Holzman, M.; Rivas, R.; Carmona, F.; Niclòs, R. A method for soil moisture probes calibration and validation of satellite estimates.
MethodsX 2017, 4, 243–249. [CrossRef]

37. Niclos, R.; Rivas, R.; Garcia-Santos, V.; Dona, C.; Valor, E.; Holzman, M.; Bayala, M.; Carmona, F.; Ocampo, D.; Soldano, A.; et al.
SMOS Level-2 soil moisture product evaluation in rain-fed croplands of the pampean region of Argentina. IEEE Trans. Geosci.
Remote Sens. 2016, 54, 499–512. [CrossRef]

38. Gao, B.C.; Goetz, A.F.H. Retrieval of equivalent water thickness and information related to biochemical components of vegetation
canopies from AVIRIS data. Remote Sens. Environ. 1994, 4, 155–162. [CrossRef]

39. Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups; Springer Science & Business Media:
Berlin, Germany, 2003; ISBN 9783540435167.

40. Tian, J.; Philpot, W.D. Spectral reflectance features with varied soil properties during drying process. In Proceedings of the
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3106–3109.
[CrossRef]

41. Tian, J.; Philpot, W. Spectral transmittance of a translucent sand sample with directional illumination. IEEE Trans. Geosci. Remote
Sens. 2018, 56, 4307–4317. [CrossRef]

42. Bayala, M.I.; Rivas, R.E. Enhanced sharpening procedures on edge difference and water stress index basis over heterogeneous
landscape of sub-humid region. Egypt. J. Remote Sens. Sp. Sci. 2014, 17, 17–27. [CrossRef]

43. Galvao, L.S.; Neves Epiphanio, J.C.; Breuning, F.M.; Formaggio, A.R. Crop type discrimination using hyperspectral data. In
Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press: Boca Raton, FL, USA, 2012;
pp. 397–422.

44. Wang, L.; Qu, J.J.; Xiong, X.; Hao, X.; Member, S.; Xie, Y.; Che, N. A new method for retrieving band 6 of Aqua MODIS. IEEE
Geosci. Remote Sens. Lett. 2006, 3, 1–5. [CrossRef]

45. Bohn, V.; Rivas, R.; Varni, M.; Piccolo, C. Using SPEI in predicting water table dynamics in Argentinian plains. Environ. Earth Sci.
J. 2020, 79, 1–16. [CrossRef]

46. Ares, M.G.; Holzman, M.; Entraigas, I.; Varni, M.; Fajardo, L.; Vercelli, N. Surface moisture area during rainfall–runoff events to
understand the hydrological dynamics of a basin in a plain region. Hydrol. Process. 2018, 32, 1351–1362. [CrossRef]

http://doi.org/10.1016/j.rse.2004.05.020
http://doi.org/10.1016/j.rse.2004.03.017
http://doi.org/10.1093/aob/mcf105
http://doi.org/10.1016/S0309-1708(01)00006-9
http://doi.org/10.1016/j.isprsjprs.2018.03.014
http://doi.org/10.1109/LGRS.2014.2314617
http://doi.org/10.3390/s17061338
http://doi.org/10.1016/j.jag.2013.12.006
http://doi.org/10.1109/JSTARS.2015.2504262
http://doi.org/10.1109/LGRS.2010.2053518
http://doi.org/10.1016/j.isprsjprs.2015.11.003
http://doi.org/10.1016/j.jhydrol.2013.12.047
http://doi.org/10.1016/j.rse.2017.05.041
http://doi.org/10.1016/j.rse.2015.04.007
http://doi.org/10.1016/j.mex.2020.101172
http://doi.org/10.1016/j.mex.2017.07.004
http://doi.org/10.1109/TGRS.2015.2460332
http://doi.org/10.1016/0034-4257(95)00039-4
http://doi.org/10.1109/IGARSS.2016.7729803
http://doi.org/10.1109/TGRS.2018.2810815
http://doi.org/10.1016/j.ejrs.2014.05.002
http://doi.org/10.1109/LGRS.2006.869966
http://doi.org/10.1007/s12665-020-09210-0
http://doi.org/10.1002/hyp.11492


Remote Sens. 2021, 13, 3371 19 of 19

47. Chang, T.-Y.; Wang, Y.-C.; Feng, C.-C.; Ziegler, A.D.; Giambelluca, T.W.; Liou, Y.-A. Estimation of root zone soil moisture using
apparent thermal inertia with MODIS imagery over a tropical catchment in Northern Thailand. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2012, 5, 752–761. [CrossRef]

48. Liu, S.; Roberts, D.A.; Chadwick, O.A.; Still, C.J. Spectral responses to plant available soil moisture in a Californian grassland. Int.
J. Appl. Earth Obs. Geoinf. 2012, 19, 31–44. [CrossRef]

49. Santos, W.J.R.; Silva, B.M.; Oliveira, G.S.; Volpato, M.M.L.; Lima, J.M.; Curi, N.; Marques, J.J. Soil moisture in the root zone and its
relation to plant vigor assessed by remote sensing at management scale. Geoderma 2014, 221–222, 91–95. [CrossRef]

50. Wang, X.; Xie, H. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J.
Hydrol. 2007, 340, 12–24. [CrossRef]

51. Ares, M.G.; Bongiorno, F.; Holzman, M.; Chagas, C.; Varni, M.; Entraigas, I. Water erosion and connectivity analysis during a year
with high precipitations in a watershed of Argentina. Hydrol. Res. 2016, 47, 1239–1252. [CrossRef]

52. Brady, N.C.; Weil, R.R. Soil architecture and physical properties. In The Nature and Properties of Soils; Englewood, C., Ed.;
Prentice-Hall: Hoboken, NJ, USA, 2008; pp. 148–157.

53. Whiteley, G.M.; Dexter, A.R. Elastic response of the roots of field crops. Physiol. Plant. 1981, 51, 407–417. [CrossRef]
54. Sun, H. Two-Stage trapezoid: A new interpretation of the land surface temperature and fractional vegetation coverage space.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 336–346. [CrossRef]
55. Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness

index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. [CrossRef]
56. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface Temperature/Vegetation Index space for the

assessment of surface moisture stress. Remote Sens. Environ. 2002, 79, 213–224. [CrossRef]

http://doi.org/10.1109/JSTARS.2012.2190588
http://doi.org/10.1016/j.jag.2012.04.008
http://doi.org/10.1016/j.geoderma.2014.01.006
http://doi.org/10.1016/j.jhydrol.2007.03.022
http://doi.org/10.2166/nh.2016.179
http://doi.org/10.1111/j.1399-3054.1981.tb05578.x
http://doi.org/10.1109/JSTARS.2015.2500605
http://doi.org/10.1016/j.agrformet.2009.03.004
http://doi.org/10.1016/S0034-4257(01)00274-7

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data 
	Leaf and Canopy Spectral/Thermal Measurements 
	Vegetation Water Content 
	Soil Moisture 

	Relationship between NIR-SWIR/LST in 2D Space from Satellite Data 

	Results and Discussion 
	Relationship between NIR-SWIR, LST and Leaf Water Content at Field Scale 
	Parameters and Spatial Variability of TIDI 
	The TIDI Sensitivity with Soil Moisture 

	Conclusions 
	References

