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Abstract: Radar reflectivity (RR) greater than 35 dBZ usually indicates the presence of severe convec-
tive weather, which affects a variety of human activities, including aviation. However, RR data are
scarce, especially in regions with poor radar coverage or substantial terrain obstructions. Fortunately,
the radiance data of space-based satellites with universal coverage can be converted into a proxy
field of RR. In this study, a convolutional neural network-based data-driven model is developed to
convert the radiance data (infrared bands 07, 09, 13, 16, and 16–13) of Himawari-8 into the radar
combined reflectivity factor (CREF). A weighted loss function is designed to solve the data imbalance
problem due to the sparse convective pixels in the sample. The developed model demonstrates an
overall reconstruction capability and performs well in terms of classification scores with 35 dBZ as
the threshold. A five-channel input is more efficient in reconstructing the CREF than the commonly
used one-channel input. In a case study of a convective event over North China in the summer using
the test dataset, U-Net reproduces the location, shape and strength of the convective storm well.
The present RR reconstruction technology based on deep learning and Himawari-8 radiance data is
shown to be an efficient tool for producing high-resolution RR products, which are especially needed
for regions without or with poor radar coverage.

Keywords: aviation; deep learning; convective storms; weather radar reflectivity; Himawari-8

1. Introduction

Severe convective weather caused by convective storms poses a significant risk to
aircraft flight safety [1]. Weather radar can provide decision-making support for airlines by
accurately detecting the occurrence, movement, and disappearance of convective storms.
Radar reflectivity greater than 35 dBZ tends to indicate the presence of severe convective
weather [2]. However, weather radar equipment is lacking in certain areas [3] such as
alpine areas and the ocean.

Space-based satellite observations provide key data to obtain radar reflectivity in-
formation. For example, some sensors carried by satellites provide infrared brightness
temperature (BT) data that can detect the activity of convective clouds. Satellite sensors
also feature high spatial and temporal resolutions, allowing them to track convective events
in a timely manner. The threshold characteristics of satellite bands (such as single bands),
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brightness temperature differences (BTDs), and their temporal trends can be used to iden-
tify convective systems [4–7]. Moreover, compared with radar data, space-based satellite
observations cover larger areas, enabling the reconstruction of data such as the radar
reflectivity, vertical liquid water content (a type of weather radar data), and precipitation
to represent severe convective weather.

Some traditional precipitation reconstruction algorithms use the physical properties of
cold and warm clouds to establish the relationship among the cloud-top BT and the rainfall
probability and intensity [8]. For instance, Arkin and Meisner [9] developed the Geostation-
ary Operational Environmental Satellite (GOES) Precipitation Index algorithm based on the
coverage of cold clouds (with a cloud-top BT below 235 K). More recently, Sun et al. [10]
established a rain intensity check table to estimate rainfall by matching Himawari-8 mul-
tichannel infrared BT data, infrared BTDs, and global precipitation measurement core
observatory rainfall data.

Recently, deep learning (DL) has greatly accelerated the development of artificial
intelligence [11], and remarkable progress has been achieved in some industries. For
example, DL is known for its strong image processing capabilities in the field of computer
vision [12–16] and medical diagnosis [17,18]. Compared to traditional algorithms, DL
algorithms can map non-linear processes through the filtering capabilities of a nonlinear
activation functions. In particular, with its rapid development, DL has gradually shown
substantial potential in the earth sciences. DL can not only fully understand the spatial
shape of an event (such as a typhoon or a thunderstorm) but also can determine the
dynamic evolution of the event by integrating the time series [19].

Some studies have investigated the reconstruction of data based on DL and infrared
BT data. Beusch et al. [20] developed and compared satellite rainfall retrievals based on
generalized linear models and artificial neural networks, and showed that the latter further
improves prediction skills by additionally reducing false alarms. Veillette et al. [21] used
a convolutional neural network (CNN) to reconstruct vertical liquid water content data
from GEOS-R and a numerical weather prediction, and demonstrated that CNNs can
fuse heterogeneous geospatial data to extrapolate data to regions beyond the coverage
of the weather radar. Wang et al. [22] developed a novel DL-based infrared precipitation
estimation algorithm using a CNN and verified the effectiveness of a CNN combined with
multichannel physical inputs in the retrieval of infrared precipitation information; the
results showed that a five-channel input is more efficient at estimating precipitation than
the commonly used one-channel input. Hilburn et al. [23] aimed to develop techniques
through U-Net to assimilate GOES-R observational radiation data and lightning data
in precipitation scenarios to improve the short-term convective-scale prediction of high-
impact weather disasters; they found unique values of lightning observations that can
pinpoint the locations of strong radar echoes. In particular, U-Net is a good architecture
for reconstructing radar reflectivity information from satellite data and has considerable
application potential in the United States, which is within the GOES-R coverage area [23].

In this study, we extend the U-Net method to another geostationary satellite, namely
Himawari-8, for the reconstruction of radar reflectivity and we take North China as the
study area. Unlike GOES-R, Himawari-8 does not acquire lightning data. Hence, this study
focuses on the reconstruction and evaluation of the combined reflectivity factor (CREF) with
values greater than 35 dBZ, which has extensive value for aviation applications within the
coverage area of the Himawari-8 satellite. The model constructed herein can be extended
to areas with no radar coverage to reconstruct convective storms.

The second section introduces the data and experimental procedures used. The third
section describes the design of the model structure and loss function. The fourth section
presents the model results and a case study. The fifth section presents the conclusion.



Remote Sens. 2021, 13, 3330 3 of 12

2. Data and Method
2.1. Data
2.1.1. Satellite Data

Data with a high spatial resolution and high temporal resolution from the Advanced
Himawari Imager (AHI) sensor carried by Himawari-8 were extracted as the input variables
of the model. The AHI onboard Himawari-8 was equipped with 16 observation bands,
including visible bands (central wavelengths ranging from 0.47 µm to 0.64 µm), near-
infrared bands (central wavelengths ranging from 0.86 µm to 2.3 µm), and infrared bands
(central wavelengths ranging from 3.9 µm to 13.3 µm). The AHI performed a full-disk scan
in 10 min (plus five subareas) and a regional scan in 2.5 min. The resolution of Band 03
(central wavelength of 0.64 µm) was 0.5 km, Band 01 (central wavelength of 0.47 µm), Band
02 (central wavelength of 0.51 µm), and Band 04 (central wavelength of 0.86 µm) was 1 km,
and the resolution of Bands 05~16 (center wavelengths of 3.9 µm ~13.3 µm) was 2 km.

We downloaded the full-disk data from June to August for the period 2016–2018 by
registering on the Japan Aerospace Exploration Agency (JAXA) website (https://www.
eorc.jaxa.jp/ptree/) accessed on 1 June 2020. As the visible light and near-infrared bands
collect data only during the day, we used only the infrared bands to obtain a general day
and night model. Table 1 shows the central wavelengths and physical meaning of the bands
selected in this study. We choose Band 07, Band 09, and Band 13 according to Hilburn
et al. [23]. The BTD between Band 16 and Band 13 (denoted as Band 16–13) can be used to
detect the cloud phase state, which indicates liquid or ice particles on the cloud top [22]
and can identify the developmental characteristics of both deep and shallow convective
systems [24]. We also added Band 16 to represent the cloud-top height.

Table 1. Parameters of the input features (central wavelengths and physical meaning).

Band Central Wavelength Physical Meaning

Band 07 3.9 µm Shortwave infrared window, low clouds, fog
Band 09 6.9 µm Mid-level water vapor
Band 13 10.4 µm Clean and dry atmospheric window, cloud-top temperature
Band 16 13.3 µm Cloud-top height

Band 16–13 - Cloud phase state

2.1.2. Combined Reflectivity Factor

The label used by the model was the MICAPS3.1 mosaic product CREF with a 6-min
time interval and a spatial resolution of 0.01◦. We collected samples from North China
(Figure 1), across which weather radar stations are widely deployed. The latitudinal and
longitudinal ranges of this region are 32◦N–42◦N and 110◦E–120◦E, respectively. The grid
data with equal latitudes and longitudes were arranged from north to south and west to east.
CREF is a volume sweep product by projecting the maximum base reflectivity factor found
in the constant elevation azimuth scanning onto cartesian grid points. CREF can be used to
determine the strength structure and variation trend of convective storms. Considering
summer convective weather events occur frequently in North China, convective samples
from June to August were selected to form the dataset.

https://www.eorc.jaxa.jp/ptree/
https://www.eorc.jaxa.jp/ptree/
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Figure 1. A topographic map of the study area. The black box represents North China (32◦N–42◦N,
110◦E–120◦E).

2.2. Method

Figure 2 illustrates the workflow of this study. First, the spatial and temporal resolu-
tions of the two kinds of data were matched. We sampled the CREF data on a 0.02◦ grid to
make its spatial resolution consistent with that of the infrared data. Similarly, to ensure that
the CREF data corresponded to the infrared data in time, we employed an hourly temporal
resolution. In total, we obtained 6332 samples during the summer of 2016–2018.
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Second, approximately 20% of the samples from July and August 2018 were defined
as the test set, while the remaining data were defined as the training set.

Third, we applied maximum and minimum normalization, which scales the input
and output to between 0 and 1. We selected the maximum and minimum values for each
channel from the sample. We assigned a CREF value of less than 0 dBZ to 0 dBZ, and the
maximum normalized value was 80 dBZ.

Fourth, we investigated the effects of different inputs on the model performance.
Specifically, we set up two experiments: one with a five-channel input (U-Net_full) and
another with a single-channel input (U-Net_single). Only Band 13 was used in U-Net_single
because it is the most important band for reconstructing radar reflectivity (Hilburn et al.,
2020).

Finally, we evaluated the U-Net_full performance over the whole study period (from
June to August 2016–2018) to confirm the generalizability of the model. Additionally, we
compared the effects of the two models during the test period (from July to August 2018).

3. Model and Settings
3.1. Choosing the CNN Architecture

U-Net has been shown to demonstrate good performance in image segmentation [25].
Thus, we selected U-Net to reconstruct CREF data to identify and segment the edges of
convective systems. However, we modified the traditional U-Net architecture according
to Hilburn et al. [23]. We employed one convolution operation instead of two in each
convolution block to decrease the possibility of overfitting. In addition, we closed the skip
connections because the high-resolution spatial information they provide is not necessarily
helpful.

The U-Net architecture is illustrated in Figure 3. It consists of a contraction path
(left side) and an expansion path (right side). In the contraction path, each convolution
block is followed by a 2 × 2 pooling layer. Each convolution block encapsulates a batch
normalization layer, a 3 × 3 convolution layer, and a rectified linear unit (ReLU) activation
function in sequence. U-Net doubles the number of filters going down the encoding branch
and halves the number of filters going up the decoding branch. The expansion path consists
of an upsampling layer through nearest interpolation and a convolution block. In the last
layer of U-Net, a 1 × 1 convolutional layer maps the tensor from sixteen channels to one
channel.
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Ioffe et al. [26] confirmed that adding a batch normalization layer to the network
structure improves the training effect of the model. Regarding the other training settings,
the optimizer was Adam [27]. The learning rate was initially set as 0.001 and then multiplied
by 0.1 every 100 epochs. The model is trained for a total of 300 epochs.

3.2. Setting the Loss Function

Upon calculating the probability distribution function (PDF) of the CREF in the
sample, we found a significant data imbalance in the dataset. We therefore used a weighted
loss function to solve the sample imbalance problem. Considering precipitation is a low-
probability event, there are few pixels with convective radar echoes. Thus, we divided
the CREF data into five ranges that correspond approximately to different rainfall levels
(Table 2).

Table 2. Probability statistics of CREF data in the dataset.

CREF (dBZ) Proportion (%) The Corresponding Echo Level

0 ≤ y < 5 80.877% No echo
5 ≤ y < 20 10.945% Drizzle

20 ≤ y < 35 6.506% Small to moderate rain
35 ≤ y < 50 1.543% Large to heavy rain
50 ≤ y ≤ 80 0.130% Heavy rain to the rainstorm (the hail)

We set the weight (w) for the mean square error (MSE) loss function (loss) according to
the five ranges of the PDF in Table 2, where n is the sample number, yi is the reconstructed
CREF value, and y is the true CREF value, as shown in Functions (1) and (2). The weights
of the five intervals are 1.24, 9.20, 15.21, 62.79, and 743.84. This procedure is equivalent to
data augmentation and has a better effect on reconstructing CREF values above 35 dBZ.

loss =
1
n ∑n

i=1 w(y) ∗ (yi − y)2 (1)

w(y) = 1/PDF(y) (2)

3.3. Model Evaluation

Classification scores were utilized to evaluate the reconstruction ability of the model
for CREF above 35 dBZ, which constitute an aviation concern. The classification scores used
in this study were the probability of detection (POD), false alarm rate (FAR), Critical Success
Index (CSI) [28], Heidke skill score (HSS) [29], and accuracy (ACC). To identify convective
storms, these scores were used to describe the consistency between the occurrence and
observation of convective storms. Table 3 lists the meaning of each parameter in the
classification score formulas. Events and nonevents were distinguished based on whether
the output pixel was greater than a given threshold. For Functions (3)–(8), n, yi, and y have
the same meanings as in Functions (1) and (2).

Table 3. Contingency table of the classification score parameters.

Real Category

1 0

Predicted category 1 True positive (TP) False positive (FP)
0 False negative (FN) True negative (TN)
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The regression score root-mean square error (RMSE) reflects the discrepancy between
the reconstructed data and the real observations, and thus reflects the overall accuracy of
the reconstructed CREF data.

RMSE =

√
1
n ∑n

i=1(yi − y)2 (dBZ) (3)

POD =
TP

(TP + FN)
(4)

FAR =
FP

(FP + TP)
(5)

CSI =
TP

(TP + FP + FN)
(6)

HSS =
2 ∗ (TP ∗ TN − FN ∗ FP)

(FN ∗ 2 + FP ∗ 2 + 2 ∗ TP ∗ TN + (FN + FP) ∗ (TP + TN))
(7)

ACC =
(TP + TN)

(TP + FN + FP + TN)
(8)

4. Results
4.1. Model Performance
4.1.1. Model Performance of U-Net_Full

The RMSEs in the training set and test set is 9.442 dBZ and 9.357 dBZ, respectively, which
are on the same order of magnitude as that (5.29 dBZ) in a previous study [23]. One
reason that their value was lower than those found herein is that their radar reflectivity
was between 0 and 60 dBZ, while the CREF used in this study is between 0 and 80 dBZ.
The other reason is that Himawari-8 does not acquire lightning data, unlike GOES-R.
As shown in Figure 4a, the median RMSE for the training set is 9.336 dBZ and that for
the test set is 8.953 dBZ. U-Net_full is not overfitted and exhibits a good generalization
effect on the test set. With increasing convection coverage, the RMSE of the sample also
increases (Figure 4b). The sample coverage of values exceeding 35 dBZ is less than 15%
and is relatively concentrated in less than 5%. We can see that by using satellite multiband
radiation data, the U-Net-based radar reflectivity reconstruction algorithm can achieve
good results.
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4.1.2. The Performance of Different Inputs in the CREF Reconstruction

Figure 5 shows the performance of the two experiments in terms of RMSE, POD,
FAR, CSI, HSS, and ACC. For both RMSE and FAR, the higher the value, the worse the
effect; in contrast, for POD, CSI, HSS, and ACC, the higher the value, the better the effect.
Regarding the overall error, the RMSE of U-Net_full is smaller than that of U-Net_single.
The POD35 and FAR35 results indicate that the hit rate and false alarm rate of U-Net_full
are better than those of U-Net_single. Moreover, due to the increase in POD35 and the
decrease in FAR35, the CSI35 of U-Net_full is superior to that of U-Net_single and thus
the HSS35 of U-Net_full is also superior to that of U-Net_single. The ACC35 values of
the two models are both above 0.97, but that of U-Net_full is slightly better than that of
U-Net_single. In conclusion, the comprehensive performance of U-Net_full at a threshold
of 35 dBZ with respect to the adopted classification scores and regression scores is better
than that of U-Net_single.
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The performance of the experiment is shown in more detail in Figure 6, in which the
model performs better at a given point the closer the point is to the upper right corner. In
the range of 20 dBZ ~ 50 dBZ, the performance of U-Net_full is obviously better than that
of U-Net_single. We also find that above 20 dBZ, the score worsens, which is related to a
decrease in the number of high-value pixels within the sample. In summary, U-Net_full
demonstrates superior abilities over U-Net_single to identify the occurrence of convection
(greater than 35 dBZ) and reconstruct the overall accuracy of the convection. Hence, a
U-Net architecture with multichannel input is more helpful for accurately estimating radar
reflectivity.
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4.2. Case Study

To vividly and intuitively illustrate the model effect, we choose the test set as an
example for an in-depth analysis. As U-Net_full achieves the best effect, we use this model
for a case study.

During 15–17 July 2018, heavy rain fell over North China. Affected by the pulsation
of the external low-level jets of the subtropical high pressure and the cold air in the
north, rainfall reaching 25–100 mm occurred extensively across North China, with the
precipitation exceeding 100 mm in some areas. The rainfall process was characterized by a
long duration with obvious showers, strong local rainfall, and large precipitation [30].

At 7:00, as shown in Figure 7a–c, several convective cells are arranged horizontally
to form a northeast-southwest squall line. The model reconstructs the location, shape
and strength of the squall line well. Then, from 8:00 to 9:00, the model results show that
the system gradually strengthens and expands as it moves eastward, consistent with the
observation results. This is in accordance with the scoring performance in Table 4. Band
13 in the left column shows that the BT value at the center of the convection is below
approximately 210 K (marked with color).

Table 4. CREF regression and classification scores for the model on 16 July 2018. The values of
POD35, FAR35, CSI35, HSS35, and ACC35 refer to the classification scores at 35 dBZ, which reflect
the ability of the model to reconstruct convective storm.

RMSE POD35 FAR35 CSI35 HSS35 ACC35

07:00 12.361 0.686 0.721 0.248 0.343 0.879
08:00 12.527 0.680 0.736 0.235 0.316 0.855
09:00 12.364 0.603 0.705 0.247 0.323 0.852
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The model correctly captures the location of the convective system center, although it
tends to overestimate in magnitude. This study is more concerned with the occurrence of
values greater than 35 dBZ based on aviation application. Therefore, one reason for the
result to be overestimated is that when we designed the loss function, points greater than
35 dBZ in the sample are assigned a large weight value. In addition, this is also related to
the large convection coverage of the case we selected. Figure 4b shows that the larger the
sample coverage of values exceeding 35 dBZ, the higher the RMSE value. As can be seen
from Figure 4a, the PDF corresponding to the RMSE value in this case is relatively small
and the RMSEs of most samples are less than 12 dBZ. In conclusion, the model performs
well, especially in locating the convective storm center.

5. Conclusions

In this paper, we trained an image-to-image U-Net for North China that can transform
observation data from multiple satellite bands of Himawari-8 into CREF data. A weighted
loss function is used to weaken the unbalanced distribution of CREF data acquired during
convective weather. In comparative experiments, we show that U-Net with multichannel
inputs exhibits better performance than U-Net with a single channel. In the case of severe
convective weather in North China, U-Net can reconstruct CREF data well to identify the
location, shape, and strength of convective systems. As discussed above, the RMSE is of
the same order of magnitude as that in previous studies, our method can be more easily
used to monitor convective storms in real-time during flights over East Asia.

Instead of using U-Net to classify the occurrence of severe convection directly, we
regress the radar reflectivity. This approach is taken for two reasons. First, the center of
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the convective system is visible, making it more user-friendly. Second, the reconstruction
results can be used for the nowcasting of severe convective storms.

This paper is a preliminary attempt to reconstruct CREF data by utilizing DL and
Himawari-8 observations in China. The model may be more generalizable when geograph-
ical factors are taken into account. To extend the application of this method to the open
sea, due to the differences between the underlying surfaces of the ocean and land, we can
acquire samples offshore and apply the model to the open sea to ensure aviation safety.

Our plan for subsequent research is to extend the application of the proposed model
to areas lacking deployed radar equipment. Considering these areas without radar have
no observations to verify, the application of the model in such ocean areas will require the
uncertainty to be assessed using offshore areas with radar.
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