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Abstract: The vegetation coverage on the Loess Plateau (LP) of China has clearly increased since
the implementation of the Grain for Green Project in 1999, but there is a debate about whether the
improved greenness was achieved at the expense of the balance between the supply and demand
of water resources. Therefore, developing reliable indicators to evaluate the water availability is
a prerequisite for maintaining ecological sustainability and ensuring the persistence of vegetation
restoration. This study was designed to evaluate water availability on the LP during 2000–2015, using
the evaporative stress index (ESI) derived from a remote sensing dataset. The relative dependences
of the ESI on climatic and biological factors (including temperature, precipitation and land cover
change) were also analyzed. The results showed that the leaf area index (LAI) in most regions
of the LP showed a significant increasing trend (p < 0.05), and larger gradients of increase were
mainly detected in the central and eastern parts of the LP. The evapotranspiration also exhibited an
increasing trend in the central and eastern parts of the LP, with a gradient greater than 10 mm/year.
However, almost the whole LP exhibited a decreased ESI from 2000 to 2015, and the largest decrease
occurred on the central and eastern LP, indicating a wetting trend. The soil moisture storage in the
0–289-cm soil profiles showed an increasing trend in the central and eastern LP, and the area with
an upward trend enlarged with the soil depth. Further analysis revealed that the decreased ESI
on the central and eastern LP mainly depended on the increase in the LAI compared with climatic
influences. This work not only demonstrated that the ESI was a useful indicator for understanding
the water availability in natural and managed ecosystems under climate change but also indicated
that vegetation restoration might have a positive effect on water conservation on the central LP.

Keywords: drought index; evapotranspiration; MODIS LAI; soil moisture; vegetation restoration

1. Introduction

Vegetation is one of the most important land surface components, not only because
it contributes to land surface greening, but also because it regulates land surface energy
partitioning and the water cycle by interacting with the hydrosphere, atmosphere and bio-
sphere [1–3]; thus, vegetation dynamics can be viewed as a key indicator of environmental
quality and ecological function [4,5]. Water availability is a vital prerequisite for vegetation
growth and sustainable ecological development, particularly in an ecologically fragile arid
and semi-arid region [6,7]. However, vegetation can deplete soil moisture and result in
water loss in the form of evapotranspiration (ET) in soil profiles, consequently leading to
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vegetation deterioration due to increasing soil moisture stress [8–10]. The Loess Plateau
(LP) region of China (covering an area of approximately 640,000 km2) is one of the most
prominent regions in terms of balancing the trade-off between ecological water demand
and water resources [11,12]. Therefore, it is imperative to identify the water availability in
the LP region to better understand the links between ET and vegetation health.

The LP region, located in the middle reach of the Yellow River and the transition
zone between the southeast humid monsoon climate and northwest inland arid climate, is
well known for severe soil erosion and chronic water scarcity [13]. In 1999, the Chinese
government launched the largest vegetation restoration program called the Grain for
Green Project. This project is a rapid landscape scale shift in land use and ground cover
and also known as the conversion of cropland to forest and grassland program or the
sloping land conversion program, in which a large proportion of sloping (more than 15◦)
croplands and barren land were converted into forest or grassland. With the increase in
vegetation coverage, soil erosion has been controlled effectively, and the sediment yield
in the mainstream Yellow River and its tributaries has been reduced significantly [13].
Despite these achievements, the water discharge of the Yellow River has decreased, and
extensive forestation has consumed more of the limited water resources and has resulted in
reduced soil moisture, which is detrimental to vegetation growth and threatens ecosystem
services [14,15]. Moreover, the temperature has persistently increased on the LP in recent
decades, and the precipitation pattern (including annual precipitation, seasonal distribution
of precipitation and precipitation intensity) has changed accordingly [16,17]. Climate
change increases the difficulty of assessing the availability of water resources because of
the complexity of the interaction between vegetation growth and water availability under
the context of global warming.

In recent years, many studies have focused on the hydrological response to vegetation
restoration and climate change in the LP region, including the contributions of land cover
change and climate change to water discharge and sediment load [18–20], soil moisture
dynamics under vegetation restoration [14,21,22] and the ET estimations associated with
revegetation [23–25]. However, these studies have focused on comparative analyses of
hydrological variability in different land covers, and few have quantified changes attributed
purely to land cover change. Indeed, it is challenging to quantify the water availability
at the regional scale due to the heterogeneities of the land surface, the complexity of
hydrometeorological processes and the multiple impact factors including climate, land
cover change and human activities.

An accurate identification of the current water status is a prerequisite for initiating
early drought warnings; thus, the development of robust drought indicators has become
an alternative to comprehensively assess the water availability of a regional ecosystem.
Currently, several indices have been applied to monitor drought characteristics and their
spatial extent, such as the standardized precipitation index (SPI), Palmer drought severity
index (PDSI) and standardized precipitation evaporation index (SPEI). The SPI is expressed
as standard deviations, and the observed precipitation deviates from the long-term mean;
thus, the SPI depends only on precipitation and represents anomalous precipitation [26].
Although a precipitation deficit is an important factor in drought quantification and can
provide valuable information concerning hydrologic and meteorological drought, other
climatic factors can be important drivers in the depletion of soil moisture and lead to
drought. The PDSI was developed by Palmer (1965), who attempted to identify droughts
using more than just precipitation data by considering the temperature, precipitation and
moisture stored in the soil [27]. Nonetheless, some studies have demonstrated that the
potential ET (PET) is a useful variable in quantifying drought severity [28–30], because
the biophysical processes of the land surface involving water and energy exchange play
an important role in controlling soil moisture conditions and drought occurrence. A
newly developed drought index, the SPEI, is an extension of the SPI and is designed
to consider both precipitation and PET in determining drought [31]. From hydrological
and ecological perspectives, drought represents an imbalance between the water supply
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and demand, which has inevitably had profound influences on vegetation growth, while
vegetation exerts an important influence on regional hydrology and climate, and the
ecological function varies among plant species. However, the abovementioned metrics
have limitations in characterizing the ecological impacts of hydroclimatic change if a region
experiences large-scale land cover change. Hence, there is a growing need to use physically
based drought metrics to consider the feedback between the land surface and atmosphere
in assessing water availability.

A high evaporative demand of vegetation under high temperature and low precipita-
tion, especially when combined with a limited soil moisture supply, can induce plant water
stress. To reduce water loss and maintain physiological metabolic activity, water-stressed
plants typically close their stomata, leading to growth restrictions and a greater suscep-
tibility to disease and insects. A remote sensing-based indicator proposed by Anderson
et al. (2007), the evaporative stress index (ESI), can convey useful information about the
magnitude and direction of short- and long-term moisture stress [32]. The ESI combines
the influences of terrestrial and climatic variables on land surface moisture status and can,
therefore, provide early warning of drought initiation and intensification [33,34]. In this
study, we first investigated the land cover change and vegetation dynamics on the LP since
the implementation of the Grain for Green Project based on remote sensing products. Then,
the ESI was applied to quantify the water status and the percentage of an area experiencing
and affected by water stress. Finally, the potential drivers of ESI change and its connection
to the known drought indices were examined.

2. Materials and Methods
2.1. Datasets

The annual land cover types from 2000 to 2015 in the LP region were acquired
from satellite observation-based global land cover datasets, which were produced by
the European Space Agency (ESA) Climate Change Initiative (CCI) land cover project
(http://www.esa-landcover-cci.org/; accessed on: 16 August 2020). The ESA CCI version
2.0 land cover data describe the Earth’s terrestrial surface in 37 original land cover classes
based on the United Nations Land Cover Classification System, with a 300-m spatial res-
olution at an annual scale during 1992–2015. To simplify the analysis, the original land
cover classes of the ESA CCI were grouped into the following six major land cover classes:
crop, forest, grass, shrub, mosaic vegetation and non-vegetated (Table 1). The leaf area
index (LAI) data used for monitoring vegetation growth from 2000 to 2015 on the LP
were obtained from the Global Land Surface Satellite (GLASS) LAI product (downloaded
from the National Earth System Science Data Center, http://www.geodata.cn; accessed on:
1 August 2020), and these data were generated and released by the Center for Global
Change Data Processing and Analysis of Beijing Normal University [35]. The GLASS LAI
product is derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)
reflectance data (MOD09A1) and has a spatial resolution of 1 km and a temporal resolution
of eight days.

Monthly 2-m air temperature and precipitation data for the period of 2000–2015 in
the LP region, with a spatial resolution of 1 km, were acquired from a dataset devel-
oped by Peng et al. (2017) [36] and released by the National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn accessed on: 16 August 2020). The dataset was spatially down-
scaled from the Climatic Research Unit TS v4.02 dataset with the climatology dataset
of WorldClim v2.0 and was evaluated using 496 weather stations in China. ET and
PET datasets, with a spatial resolution of 500 m, were obtained from the global eight-
day (MOD16A2) terrestrial ecosystem ET dataset, which was released by the Land Pro-
cesses Distributed Active Archive Center of the United States Geological Survey (https:
//lpdaac.usgs.gov/products/mod16a2v006/ accessed on: 16 August 2020). The MOD16
algorithm is based on the logic of the Penman–Monteith equation, which uses daily meteo-
rological reanalysis data and 8-day remotely sensed vegetation property dynamics from
MODIS as inputs [37]. The spatiotemporal change in soil moisture during 2000–2015 on
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the LP was investigated using the ERA5-land reanalysis product, which combines histor-
ical observations (including satellite data and in situ data provided by WMO WIS) into
advanced modelling and data assimilation systems to provide a consistent view of global
land-surface and water resource estimates [38]. ERA5-land provides soil moisture estimates
at four soil profiles, including 0–7, 7–28, 28–100, and 100–289 cm, and the data have a
latitude/longitude grid of 0.1◦ × 0.1◦ with a monthly time step. To compare land-surface
and atmospheric variables from a consistent spatial resolution, all datasets were resampled
to 1-km resolution using bilinear interpolation.

Table 1. Land cover reclassification in this study based on ESA-CCI classification.

Land Cover Types Used in
This Study Code in ESA-CCI ESA-CCI Classification

Crop 10, 11, 12 Cropland, rainfed
20 Cropland, irrigated or post-flooding

Forest

50 Tree cover, broadleaved, evergreen, closed to open (>15%)
60, 61 Tree cover, broadleaved, deciduous, closed to open (>15%)

70 Tree cover, needle-leaved, evergreen, closed to open (>15%)
170 Tree cover, flooded, saline water

Grass 130 Grassland

Shrub

100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
110 Mosaic herbaceous cover (>50%)/tree and shrub (<50%)

120, 122 Shrubland
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water

Mosaic vegetation
30 Mosaic cropland (>50%)/natural vegetation (tree, shrub,

herbaceous cover) (<50%)

40 Mosaic cropland (<50%)/natural vegetation (tree, shrub,
herbaceous cover) (>50%)

Non-vegetated

190 Urban areas
200, 201, 202 Bare areas

210 Water bodies
220 Permanent snow and ice

2.2. Drought Indices

The ESI is a physically based drought index linked to evaporative demand that
includes land surface (via ET) and atmospheric feedbacks (via PET). The ESI was calculated
as follows: ESI = 1 − (ET/PET) [32]. It is a dimensionless index that ranges from 0 to 1,
depending on the evaporative demand of the land surface and atmosphere. When the ESI
is close to 0, there is ample moisture and no water stress, while when the ESI is close to 1,
the ecosystem indicates water stress due to stomatal closure and/or complete depletion of
the soil moisture. To convey convincing information about the water status on the LP, the
robustness of the ESI for monitoring water stress was assessed using the SPEI and aridity
index (AI). A lower SPEI indicated that drought severity increased in the study period,
while a higher SPEI reflected that environmental conditions tended to be wet. The AI is
the ratio of PET to annual precipitation [39]. Generally, the water status can be divided
into the following five types: humid (AI ≤ 1.0), semi-humid (1.0 < AI ≤ 1.5), semi-arid
(1.5 < AI ≤ 4.0), arid (4.0 < AI ≤ 16.0), severe arid (AI > 16.0).

2.3. Data Analysis

The Mann–Kendall nonparametric statistical test (M–K) was used to examine the
change tendency of variables in a temporal series [40,41], and a significance level of 0.05
was applied to examine the statistical significance of the trend. We used the Sen slope
test to detect the slope of trend [42]. The partial correlation coefficients between the ESI
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and the atmospheric and land surface variables were calculated to examine their relative
dependence, and the t-test at the 95% confidence level was applied to assess the significance
of the correlations. To identify the primary drivers of ESI variability, we used multiple
regression analysis and partial correlation analysis between the time series of the ESI and
the climatic variable and LAI changes [43]. A summary of the methods used in this study
is shown in Figure A1.

3. Results
3.1. Vegetation Cover Changes from 2000 to 2015

According to the merged land cover classification data, the land cover types on the LP
exhibited evident zonal distributions (Figure 1). In the northwestern LP, the dominant land
cover type was grass, accounting for approximately 40% of the area on the LP (Table 2). The
main land cover types for the southeastern LP were crops and forests, which occupied 25%
and 11% of the area on the LP, respectively. Shrubs were sparsely distributed on the LP and
had the smallest area, with percentages below 3%. The central and northwestern parts of
the region comprise the transition zone, which is mainly distributed with mosaic vegetation,
including forests, shrubs and grass, with an area percentage of approximately 18%. As a
result, the LAI on the LP exhibited an increasing trend from the northwest to southeast
(Figure 2a). Although the occupied area of all land cover types has remained stable since
2000 (Table 2), the LAI exhibited an increasing trend (Figure 2b). In particular, the LAI for
forests had the largest increase, with values from 1.5 in 2000 to 2.0 in 2015, followed by
mosaic vegetation, with an increased magnitude of 0.2. Spatially, the LAI in most regions of
the LP showed a significant increasing trend, and larger gradients of increase were mainly
detected in the central-eastern part of the LP (Figure 2c), where the regions are mainly
covered by forest and mosaic vegetation. After calculating the area percentage of the LAI
with a significant increasing trend (Figure 2d), the region with a significant increasing trend
for all land cover types except shrubs accounted for approximately more than 50% of the
respective area, with the largest percentage of 78% detected for mosaic vegetation.
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Table 2. The area percentage change of the main land cover types on the LP from 2000 to 2015.

Year
Land Cover Types

Crop Forest Grass Shrub Mosaic
Vegetation Non-Vegetated

2000 25.32% 10.58% 39.84% 2.75% 18.61% 2.90%
2005 25.17% 10.88% 40.86% 2.24% 17.90% 2.95%
2010 25.03% 10.93% 41.04% 2.18% 17.65% 3.17%
2015 24.80% 10.94% 41.12% 2.17% 17.54% 3.43%
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3.2. Characteristics of ET and ESI on the LP

The annual average ET during 2000–2015 on the LP showed clear zonal variation
(Figure 3a). The northwestern LP had less ET, with values less than 350 mm, while most
regions in the southeastern LP had more ET, with values larger than 450 mm. Overall, the
spatial pattern of ET was consistent with the land cover distribution on the LP. From 2000 to
2015, the ET on the whole LP showed an increasing trend, with a statistical significance level
of 0.05 (Figure 3b). The largest increases were detected in the central and southeastern LP,
where the LAI had a clear increase (Figure 2c), with a trend slope greater than 10 mm/year.
The partial correlation between ET and LAI that eliminated the influences of precipitation
and temperature was further analyzed, and larger correlation coefficients were obtained in
the central and southeastern LP, with values ranging from 0.8 to 1 (Figure 3c). Notably, the
area of increased ET for different land cover types with statistical significance (p < 0.05)
accounted for approximately 70% of the respective area, and the approximately 65% of the
area with an increased ET for mosaic vegetation had a strong connection with increased
LAI (Figure 3d).
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The annual average ESI on the LP during 2000–2015 showed evident spatial varia-
tion, with a smaller ESI in the southeastern LP and a larger ESI in the northwestern LP
(Figure 4a); additionally, the largest ESI was detected in the region where the dominant
land cover was grass, indicating that grassland had the greatest evaporative stress. Almost
the whole LP exhibited a decreased ESI from 2000 to 2015, while the temporal trends were
spatially uneven (Figure 4b). The northern LP had the smallest slope of the decreasing
trend, and the slopes of the decreasing trend intensified southward. Most of the zonal
region from the southwestern LP to eastern LP had the largest slopes of the decreasing
trend, which was similar to the temporal variation in the LAI on the LP (Figure 2c).
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3.3. Identifying the Dependence of ESI on Climatic and Vegetative Factors

The spatial distributions of annual average temperature and precipitation during
2000–2015 are shown in Figure 5. The lowest temperature was observed in the northern
and western LP (<8 ◦C), where the annual temperature increased at slopes greater than
0.01 ◦C, while the highest temperature was located on the southern edge of the LP (>12 ◦C),
where the annual average temperature exhibited a decreasing trend (Figure 5b). The
annual average precipitation on the LP was characterized by a clear zonal pattern, and the
precipitation gradually increased from the northwestern to the southwestern LP (Figure 5c),
with the lowest precipitation of less than 300 mm in the northwestern LP and the highest
value of more than 600 mm in the southeastern LP. Trend analysis revealed that precipitation
tended to increase in most regions of the LP (Figure 5d), and the highest magnitudes of
trends were found in the central and southeastern LP with slopes greater than 6 mm/year.
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To examine the dependence of the ESI on the potential driving factors, the partial
correlation between the ESI and the LAI was plotted and is shown in Figure 6a, and the
obtained coefficients were generally negative at the statistically significant level of 0.05,
with the strongest correlations (coefficients ranging from −1 to −0.8) occurring for the
central and southeastern LP; this result indicated that the evaporative stress decreased
with increasing LAI in these regions. Similarly, the western and northeastern LP showed a
negative partial correlation between the ESI and precipitation, with coefficients ranging
from −0.8 to −0.6 (Figure 6b), meaning that the decreased ESI mainly relied on increases in
precipitation in these regions. In contrast, a positive partial correlation was found between
the ESI and temperature in the southeastern LP (Figure 6c), indicating that the evaporative
stress decreased with the decreasing temperature in the southeastern LP. Obviously, the
dependences of ESI in different regions varied among the driving factors. To clearly
identify the potential drivers in different regions, the calculated relative dependences were
plotted and are shown in Figure 7. Both multiple regression analysis (Figure 7a) and partial
correlation analysis (Figure 7b) had consistent results. In most parts of the central and
southeastern LP, there was a good relationship between the decreased ESI and LAI change;
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thus, the decreased evaporative stress was mainly driven by the increased LAI. Along the
northwestern edge of the LP, the evaporative stress mainly depended on precipitation, and
the increased precipitation was the main reason for the decreased evaporative stress. In the
western LP, the precipitation, temperature and LAI were found to be the important factors
influencing evaporative stress.
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4. Discussion
4.1. Suitability of the ESI for Indicating the Status of Water Availability on the LP

As a multivariate phenomenon influenced by climatic and environmental factors,
ET links the water-energy cycle between the land surface and atmosphere and plays a
key role in water resource management. Thus, the ESI calculated from ET can reflect
the status of water availability at the regional scale [44]. In this study, the ESI showed
a decreasing trend from 2000 to 2015, indicating that the LP became wetter during this
period. To validate this finding, the spatiotemporal patterns of drying or wetting indicated
by the SPEI and AI, based on climatological records, are plotted in Figure 8. Overall,
there was good spatial correspondence among the ESI, SPEI and AI at the annual scale
(Figures 4a and 8a,c). Moreover, the tendency toward wetting displayed by the ESI agreed
well with that indicated by the SPEI and AI in most regions of the LP (Figures 4b and 8b,d).
On the northern and southern edges of the LP, there was no good agreement among
the three indices. One explanation for why the SPEI and AI did not convey consistent
information with the ESI is that the northern LP had higher magnitudes of increased
temperature and relatively stable precipitation, which was beneficial for capturing drought
information using the SPEI and AI [45]. Another possible reason was that the LAI of grass
in the northern LP had a weak increase along with vegetation restoration, and the current
climatic conditions may have enabled grass to continue to meet elevated evaporative
demand with increased transpiration, consequently leading to a decreased ESI [46]. Some
previous studies also reported that the ESI had reasonable spatial and temporal correlations
with the SPI, SPEI and PDSI [44,47], while these three indices were calculated over a
relatively long time scale and were, therefore, limited as indicators of short-term drought
monitoring [48].
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In terms of the wetting trend on the LP, a similar result was reported by Zhao et al.
(2018), who investigated the spatiotemporal evolution of drought on the LP from 1998–2014
using multi-satellite precipitation data and found that the LP region has become wetter
since the implementation of the Grain for Green Project [16]. However, Wu et al. (2018)
evaluated drought characteristics on the LP and concluded that the LP experienced an
increased tendency toward both meteorological and hydrological droughts over the period
1961–2013 [49]. The inconsistent results mentioned above are mainly due to different
research periods. For example, Li et al. (2019) compared different climate change trends
before and after 1999 on the LP and found a warming and drying trend during 1982–1999
and a wetting trend during 1999–2015 [50]. Some of previous studies indicate that the
sea surface temperature (SST) anomalies in the western Pacific and Indian Ocean are the
important driver of climate variability in the LP of China [51,52].

4.2. The Responses of Soil Water Availability to the Grain for Green Project

After the implementation of the Grain for Grain Project in 1999, the vegetation cover-
age in most of the LP increased significantly, and the water demand of vegetation inevitably
increased. Fortunately, there was a warming and wetting trend on the LP, which could
provide more water resources for vegetation growth and promote carbon sequestration [53].
According to the calculated ESI, we found that the current status of water availability could
satisfy the evaporative demand of increased vegetation coverage because the ESI exhibited
a decreasing trend on almost the whole LP. For arid and semiarid regions, water is the dom-
inant factor affecting vegetation growth, and, therefore, these results raised the question
of whether the increased water demand for ET could be replenished by a wetting climate.
To answer this question, we analyzed the spatiotemporal change in the soil moisture in
the 0–289-cm soil layers based on the ERA5-land dataset (Figure 9). The area-averaged
annual soil moisture in the different soil layers showed a decreasing trend because the
increased precipitation could not replace the additional water demand of ET caused by
vegetation restoration. As a consequence, the restored vegetation might consume more soil
moisture and likely trigger drought. However, it is notable that increased soil moisture was
observed in the central and eastern LP, and the area with increased soil moisture enlarged
with increasing soil depth (Figure 9c,f,I,l). In other words, increased vegetation coverage
exerted a positive effect on local water resources in the central and eastern LP. A similar
conclusion was reported by Wang et al. (2019), who used four normalized soil water indices
to assess the drought intensity on the LP and found increased water storage in the eastern
LP during 2001–2016 [54]. Mosaic vegetation, including grass, forests and shrubs, occupied
a large proportion of the central and eastern LP, and had the function of water resources
conservation [15].

4.3. The Sustainability and Prospect of the Grain for Green Project on the LP

The concrete measures of the Grain for Green Project are also an important aspect for
planning and implementing revegetation activities. In our study, we found that the effects
of vegetation cover on soil moisture conservation were evident in the central and eastern
LP, where the regions are mainly covered by mosaic vegetation. Moreover, the precipitation
in these regions tended to increase, providing more water for vegetation growth and ET
enhancement. Notably, our result showed that the ET in the central and eastern LP had an
increasing trend, which might exacerbate the water consumption. Consequently, it not only
influenced water availability but also threatened ecosystem services and environmental
health. The central part of the LP is the main region of the implementation of Grain
for Green Project, and the main land cover type is mosaic vegetation, implying that the
vegetation composition was an important determinant of water availability on the LP.
Previous studies reported that the different vegetation types and vegetation compositions
had different effects on the regional water availability. For example, Cheng et al. (2019)
found that the natural shrub was the best vegetation type to conserve soil moisture and
exerted a positive effect on soil moisture conversation on the LP [55]. Yan et al. (2021)
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analyzed the response of the soil moisture to the different vegetation types and found that
the shrubs with moderate coverage had a higher soil moisture content and ground water
recharge relative to other vegetation types [56]. Duan et al. (2016) suggested that the BOL
(Bothriochloa ischaemum L) was the most suitable species on the steep slopes of the LP
region by investigating the water balance change in the context of revegetation, because
the region covered by BOL had the lowest runoff, which was beneficial to the vegetation
growth [57]. Furthermore, Yang et al. (2014) highlighted that the high planting density was
the main driving factor for the severe depletion of soil moisture on the LP [58]. Although
we found mosaic vegetation was beneficial to water availability under the condition of
increased precipitation, the hydrological effects of specific vegetation types remained
unclear. Further study should explore the potential impacts of specific vegetation types on
the water availability, especially under climate change conditions, to provide guidance for
improving water availability on the LP.
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Figure 9. Spatiotemporal features of soil moisture on the LP during the period of 2000–2015. The left column shows the
spatial pattern of linear trends (mm/year) in the 0–7-cm (a), 7–100-cm (d), 100–289-cm (g) and 0–289-cm (j) soil layers. The
middle column shows the annual mean soil moisture for the 0–7-cm (b), 7–100-cm (e), 100–289-cm (h) and 0–289-cm (k)
soil layers, and the areas with a significant change (p < 0.05) based on t-test are stippled. The right column shows the
area-averaged annual soil moisture and its linear trends (mm/year) in the 0–7-cm (c), 7–100-cm (f), 100–289-cm (i) and
0–289-cm (l) soil layers.
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5. Conclusions

This study explored the water availability on the LP during 2000–2015 using the ESI
in the context of vegetation restoration coupled with climate change as well as the relative
roles of biological and climatic factors in the ESI change. Along with the implementation
of the Grain for Green Project, the evaporative stress decreased in most regions of the
LP, largely attributable to the increases in the LAI and precipitation. In particular, the
region occupied by mosaic vegetation had the largest decrease in the ESI, which mainly
occurred in the central and eastern LP. However, our study did not illustrate how the
vegetation species and structure influence the water resource dynamics, thus more attention
needs to be paid to optimizing vegetation composition and function to explore a more
sustainable approach for implementing ecological restoration in the LP. Combined with the
soil moisture analysis, we found that the increased LAI and decreased ESI did not occur at
the cost of consuming more soil moisture in the central and eastern LP, even though the area-
averaged soil moisture had a decreasing trend, reflecting the positive effect of vegetation
restoration on soil water conservation in these regions. These updated results from this
study may have important implications, not only for understanding the hydrological effect
of vegetation restoration under climate change, but also for guiding future ecological
restoration strategies. However, for future studies, we encourage conducting sensitivity
simulation experiments to assess the hydrological effects of different vegetation cover
species, compositions and ages at the regional scale, seeking an optimum restoration plan.
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