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Abstract: In recent years, research on increasing the spatial resolution and enhancing the quality
of satellite images using the deep learning-based super-resolution (SR) method has been actively
conducted. In a remote sensing field, conventional SR methods required high-quality satellite images
as the ground truth. However, in most cases, high-quality satellite images are difficult to acquire
because many image distortions occur owing to various imaging conditions. To address this problem,
we propose an adaptive image quality modification method to improve SR image quality for the
KOrea Multi-Purpose Satellite-3 (KOMPSAT-3). The KOMPSAT-3 is a high performance optical
satellite, which provides 0.7-m ground sampling distance (GSD) panchromatic and 2.8-m GSD multi-
spectral images for various applications. We proposed an SR method with a scale factor of 2 for
the panchromatic and pan-sharpened images of KOMPSAT-3. The proposed SR method presents
a degradation model that generates a low-quality image for training, and a method for improving
the quality of the raw satellite image. The proposed degradation model for low-resolution input
image generation is based on Gaussian noise and blur kernel. In addition, top-hat and bottom-hat
transformation is applied to the original satellite image to generate an enhanced satellite image
with improved edge sharpness or image clarity. Using this enhanced satellite image as the ground
truth, an SR network is then trained. The performance of the proposed method was evaluated by
comparing it with other SR methods in multiple ways, such as edge extraction, visual inspection,
qualitative analysis, and the performance of object detection. Experimental results show that the
proposed SR method achieves improved reconstruction results and perceptual quality compared to
conventional SR methods.

Keywords: super-resolution; KOMPSAT-3; remote sensing; deep learning; top-hat and bottom-hat
transformation

1. Introduction

The term super-resolution (SR) imaging refers to the ill-posed problem of reconstruct-
ing a high-resolution image from a single low-resolution image. In the past, the method
was mainly used for multiple images. However, single-image SR techniques which are able
to learn a mapping relationship from a low-resolution (LR) space to a high-resolution (HR)
space using deep learning have been recently studied. Therefore, interest in SR techniques
has been increasing with regards to their practical applications. Thus far, deep learning-
based research has focused on designing networks of various structures to improve the
performance of natural datasets.

Dong et al. [1] proposed a simple network architecture consisting of three convo-
lutional layers, called super-resolution convolutional neural network (SRCNN), which
outperformed previous machine learning-based SR approaches. Kim et al. [2] proposed
a very deep convolutional network based on VGG-net (VDSR), which was used in the
ImageNet classification competition. VDSR demonstrated the capability to reconstruct HR
images better than SRCNN by using 20 convolution layers in a very deep network. This
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performance may be attributed to the network’s large receptive field, which was achieved
using multiple layers, and its ability to exploit contextual information over wide image
regions. Processes designed to learn residuals between bicubic interpolated images and
HR target images, as well as using high learning rates with adaptive gradient clipping,
were used to alleviate slow training convergence, which is a common problem in very
deep networks. In addition, Kim et al. [3] proposed a neural network applying a recursive
method called Deeply-Recursive convolutional neural network (DRCN); they claimed that
raising the recursion depth without adding new convolution parameters enabled improved
performance. Lim et al. [4] proposed an enhanced deep residual network called EDSR to
train the very deep layers; they demonstrated superior performance on benchmark datasets
compared to state-of-the-art methods.

Tai et al. [5] proposed a deep recursive residual network as a compact network
of residual layers and recursive learning. However, their model involved significant
computational complexity owing to the pre-amplified input image generation method and
deep network. Meanwhile, Haris et al. [6] proposed a deep back project network (DBPN)
connecting iterative up- and down- sampling steps. The proposed network showed that
the SR result was improved up to eight times by applying a method providing a feedback
mechanism for the projection error at each step. Zhang et al. [7] proposed a residual density
block (RDB) to extract abundant local features. The performance of their proposed network
was improved by linking all levels from the prior RDB state to a current RDB state directly.
Zhang et al. [8] created a network that improved the peak signal-to-noise ratio (PSNR) by
using a channel attention mechanism; this network showed the effect of increasing detail
by learning high spatial frequencies from general images.

Meanwhile, the generative adversarial network (GAN) method, involving networks ap-
plying generator/discriminator pairs, has shown great promise in SR research. Ledig et al. [9]
first applied the GAN technique to SR, and their proposed method showed a high level of
visual quality compared to the existing mean square error (MSE)-based technique even at
the four times up-scaling resolution of the original image. Sajjadi et al. [10] proposed En-
hanceNet, in which perceptual loss and texture transfer loss were combined with the GAN
method. Tan et al. [11] proposed a feature super-resolution GAN, called FSRGAN, which
was able to transform the raw poor features of small images into highly discriminative
features in the feature space. Wang et al. [12] proposed a new network that removed the
batch normalization layer from the SRGAN and added a residual-in-residual dense block
(RRDB). In particular, in contrast to the prior GAN techniques, they achieved improved
spatial resolution performance by adding a relativistic loss that compares the difference
between HR and SR to the discriminator. Although the subjective image quality of images
resulting from the use of GAN-based SR is improved, the texture is not restored correctly
compared to the original image with the SRGAN method. The GAN method adds new in-
formation to the image textures that was not present in the original picture. As restorations
with significant differences from the original images occur frequently, such method should
be carefully applied in the case of important facts [13].

In the abovementioned study, bicubic down-sampling was used to acquire LR images
for training super-resolution networks. The bicubic down-sampling technique for LR
image acquisition has been widely used as a benchmark to evaluate SR methods owing
to its simplicity. However, recent studies have been actively conducted on degradation
models for obtaining LR images that are more sophisticated than bicubic down-sampling
techniques. Essentially, the relationship between the LR image and the HR image is defined
by a degradation model, which specifies how the LR image degrades in the HR image.
According to Efrat et al. [14], an accurate estimate of the blur kernel is more important
than a sophisticated image prior. As a result, the quality of the super-resolution image is
determined by how well the blur kernel is predicted. Previous studies [15,16] conducted
for estimating the blur kernel have shown inaccurate results. Kai et al. [17] designed a
new SR degradation model to utilize the existing blind deblurring method for blur kernel
estimation. Their proposed blur kernel used three types of kernels (Gaussian, motion,
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and disk) to create LR images. Based on their proposed method, they designed a super-
resolution framework: a deep plug-and-play super-resolution (DPSR) that predicted the
blur kernel and demonstrated high-quality performance in natural images. In a similar
study, Kai et al. [18] proposed a denoising network for super-resolution: a deep unfolding
network for super-resolution (USRNET) that produced clearer HR images instead of clearer
LR images, as proposed by DPSR. The methods proposed in DPSR and USRNET had
the disadvantage of having to repeatedly pass through the network to obtain a better
super-resolution image. Therefore, iteration schemes typically consumed more inference
time and required more human intervention to select the optimal number of iterations.
To address this issue, some recent studies [19,20] proposed a non-iterative framework by
introducing a more accurate performance degradation estimation or more efficient function
adaptation strategy.

Unlike natural images, the various blur kernels proposed in previous studies [17–20]
are rarely applied to satellite images owing to a variety of external conditions. For example,
the quality of satellite images varies according to the external conditions such as weather
and satellite altitude. Moreover, due to the extreme distance between the sensor and
the objects on earth, it is possible to have extensive coverage; however, the number of
targets in one scene is huge compared to that of natural images, and the resolution may
be low depending on sensor performance [21]. In this situation, when the conventional
SR methods are applied to satellite images, the quality of the obtained SR images may
deteriorate. Consequently, it is essential to design sophisticated degradation models due to
the difference in image characteristics for satellite images different from natural images.

Recently, much research has been conducted on the practical implementations of SR
in satellite imaging. Jiang et al. [22] proposed a novel, deep distillation recursive network
(DDRN) for remote sensing satellite image SR reconstruction using an end-to-end training
method. They proposed ultra-dense residual blocks, which provide additional opportu-
nities for feature extraction via ultra-dense connections that correspond to the uneven
complexity of image content. They also built distillation and compensation mechanisms to
compensate for the loss of high-frequency details. Kwan [23] proposed a review of recent
image resolution enhancement algorithms for hyperspectral images, including single super-
resolution and multi-image fusion methods. The author also proposed some proactive
ideas for addressing the aforementioned issues in practice. In the absence of hyperspectral
images, the author proposed using band synthesis techniques to generate high resolution
(HR) hyperspectral images from low resolution (LR) MS images. In addition, many studies
have been attempted to apply the super-resolution algorithm to unmanned aerial vehicle
(UAV) applications. Burdziakowski [24] demonstrated super-resolution (SR) algorithms
for improving the geometric and interpretive quality of the final photogrammetric product.
They evaluated its impact on photogrammetric processing accuracy and the traditional
digital photogrammetry workflow. Haris et al. [25] proposed a super-resolution method
for UAV images based on sparse representation by adapting multiple pairs of dictionaries
that are classified by edge orientation. Consequently, they demonstrated the proposed
method’s effectiveness in reconstructing 3-D images. Kang et al. [26] proposed an im-
proved regularized SR method for UAV images by combining the directionally-adaptive
constraints and multiscale non-local means filter. By estimating the color of a HR image
from a set of multispectral LR images using intensity–hue–saturation image fusion, they
were able to overcome the physical limitations of multispectral sensors.

Although satellite images may be obtained from the same orbit, perfectly identical
image pairs for a specific area are impossible to obtain owing to many factors that cannot
be controlled, such as weather conditions, sensors used, and moving objects on the ground.
For this reason, the importance of the single-image SR (SISR) method is further emphasized
in the field of remote sensing [27]. Among the notable studies applying SISR to satellite
and overhead imagery, Bosch et al. [28] analyzed several satellite images and showed up
to eight times resolution improvement with a GAN-based network configuration. The
subjective image quality of the resulting image was improved; however, some differences



Remote Sens. 2021, 13, 3301 4 of 24

between the reconstructed image and the original image were revealed. Lui et al. [21]
developed a deep neural network model simultaneously enabling SR and colorization
through multitask learning. Liebel and Körner [29] proposed SRCNN for multispectral
remote sensing images using domain-specific datasets to introduce the multispectral band
characteristics of Sentinel-2. Shermeyer and Van [30] applied a deep learning-based SR
(×2, ×4, ×8) model to satellite images of five different spatial resolutions. They revealed
that SR improved performance on object detection tasks and land-cover change mapping.
In addition, Rabbi et al. [31] confirmed the superior detection performance effect compared
to a standalone state-of-the-art object detector of an edge-enhanced SR GAN (EESRGAN).
Thus, many studies have shown that SR can improve object detection performance in the
field of remote sensing, or that SR technology itself can be used as a pre-processing step for
level products.

In this study, we propose a target-specialized SR technique able to obtain the overall im-
age quality of KOrea multi-purpose Satellite-3 (KOMPSAT-3) images. The main contributions
of this study are summarized below.

1. In this study, we propose a new degradation model for generating LR images required
for training to obtain high-quality SR images from KOMPSAT-3 imaging data. This
degradation model generates various input images by adding Gaussian noise and
blur kernel to the training LR input images. Using the proposed degradation model,
we were able to obtain clear and sharpened SR images with noise removed.

2. In addition, we propose an adaptive image quality modification technique that applies
top-hat and bottom-hat transformation and guided filter to HR images to generate the
sharpened edge and reduced the noise on SR images compared to the original images.

3. In comparison with other SR methods, the effect of improving edge sharpness and
reducing noise was verified through various experiments. Three diverse types of
analysis methods were introduced to verify the SR performance. First, the reconstruc-
tion performance was evaluated with visual comparison and reference quantitative
indices, PSNR and structural similarity index (SSIM). In addition, we performed the
no-reference quantitative evaluation index with proposed SR method and other SR
methods. Second, to evaluate improvement performance, we extracted edges from
the super-resolved panchromatic (PAN) images and compared them with the refer-
ence target specification. Finally, the effect of the SR images on the object detection
performance was analyzed by applying the object detection algorithm to the obtained
SR image.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method in detail. Section 3 introduces a dataset of KOMPSAT-3 imagery, explains the
experimental environment, and presents the experimental results and analyses. Section 4
discusses the similarities and differences between the conventional SR methods and the
proposed SR method; finally, Section 5 concludes the paper.

2. Methodology

In this study, we propose an adaptive image quality modification method for SR
network, i.e., a degradation model to generate LR images for training input and the
HR enhancement process for obtaining enhanced HR images (HRe) for use as ground
truth, as depicted in Figure 1. All training and testing conducted in this work consisted
of panchromatic and pansharpened images collected by KOMPSAT-3. In addition, we
described a CNN-based SR model, which was trained by applying the proposed method.
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Figure 1. Architecture of the proposed SR method for training phase.

2.1. Degradation Model for Training LR Images

As shown in Figure 1, we propose a degradation process for generating LR input
images for training. In the conventional SR methods [1,2,4,6] the bicubic down-sampling
method has been mainly used to generate an LR image used as the training input from the
original HR image (HR0), as expressed in Equation (1).

y = x↓s, (1)

where the LR image y is degraded by bicubic downsampling from the HR0 and ↓s is the
down-sampling operation with scale factor s.

However, the degradation model obtained by this bicubic downsampling is most
suitably applied to the case where the original HR image (HR0) has very sharp, vivid
edges, and almost no included noise. In general, satellite images show quite different
image qualities depending on external imaging conditions such as altitude, weather, and
camera angle. Therefore, it is known that most of the SR images obtained by applying the
bicubic degradation model to satellite images with a large amount of noise or distortion of
sharpness and edges have problems of blurred edges or relatively amplified noise [14,32].
Therefore, in this study, a degradation model that minimizes the distortion of the SR image
by reflecting the characteristics of the KOMPSAT-3 satellite image is used, as expressed in
Equation (2) below.

y = (x↓s ⊗ k) + n, (2)

where x is the HR image, y is the LR image obtained using the proposed degradation
model, and k is the Gaussian blur kernel. In addition, ↓s is a down-sampling operation
with a scale factor s, which is equal to 2 in this study. Further, n denotes the additive white
Gaussian noise with sigma σ. During training, the value which determines the degree of
blur was randomly changed within the range of 0.2–0.8 for every iteration and every LR
image to generate a training image. The resulting SR images trained in this manner were
able to minimize artifacts and halos.

In contrast, most satellite images contain a significant amount of noise because of
various factors, such as noise affecting the camera sensor and weather phenomena. As the
goal of the SR process is to increase the resolution while maintaining the characteristics of
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the original image as much as possible, noise was added when generating the LR image
to simulate the noise of recorded images. Consequently, training was performed from
an input image that was noisier than the original image, and it was similar to learning a
denoising process to sharpen the image by removing the noisy part in the network. In this
study, we assumed that the noise in the KOMPSAT-3 images was Gaussian noise, then
estimated it and added it to the LR images [33]. The predicted Gaussian noise from the
KOMPSAT-3 satellite image for training was confirmed through an experiment in which
the mean was zero and the standard deviation ranged from 0.001 to 0.02. During training,
the standard deviation was randomly changed to LR, and Gaussian noise was added to the
image. As shown in Figure 2, the images obtained with the proposed degradation model
was more noisy and blurrier than the images obtained with the bicubic degradation model.

(a) Bicubic degradation model (b) Proposed degradation model

 

Figure 2. Comparison of low-resolution images: (a) bicubic degradation model and (b) proposed degradation model.

2.2. Image Quality Enhancement for HR Images

The LR training input images generated through the degradation method described
in Section 2.1 were produced by learning the characteristics of the HR original image as
a target. The deep learning network trained using the KOMPSAT-3 original image (HR0)
image as the ground truth may generate SR results including noise, because there many
of the original images in the dataset contain artifacts such as noise. The adaptive image
quality modification model is proposed based on the assumption that high-quality SR
images can be obtained when training with newly obtained enhanced HR (HRe) which
improves the contrast and edge sharpness by applying the technique to the target. In this
study, two methods are considered for improving the quality of the original image: First
is improving the sharpness of the edges, and the other is reducing noise. A top-hat and
bottom-hat transformation was used to emphasize the edge, and a guided filter was used
to reduce noise.

The top-hat and bottom-hat transformation (T&B) [34] technique was firstly applied
to the HR0 original image to generate the HRe image. This method was proposed by
Serra [35], and it has been widely used for pattern recognition and image processing. The
T&B technique can strengthen the image contrast by using a n× n rectangular structural
element. The operation was applied to two sets of images, original image, I (x,y) and a
structuring element, M(u,v), and is performed by combining dilation (+) and erosion (−)
operations. The erosion and dilation operations for I (x,y) and M(u,v) are defined as given
in Equation (3).
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I 	M = min
u,v

(I(x + u, y + v)−M(u, v)),

I ⊕M = max
u,v

(I(x− u, y− v) + M(u, v)),
(3)

where x and u are the width and y and v are the height of each image. We used the
structuring element, M(u,v), with a rectangular shape and the size of the kernel (3,3).

Meanwhile, based on dilation and erosion operations, opening (◦) and closing (•) for I
(x,y) and M(u,v) are defined in Equation (4). The open operation is dilation operation of
erosion result and the close is erosion operation of dilation result.

I ◦M = (I 	M)⊕M,

I •M = (I⊕M)	M.
(4)

After combining the opening and closing operations of Equation (3), the T&B are
derived, as expressed in Equation (5).

Itop = I − (I ◦M),

Ibottom = (I •M)− I.
(5)

The top-hat transform extracts brightness corresponding to the used structuring
element M(u,v) like high-pass filter and subtract the open operation result of original image
from the itself. And the bottom-hat transformation leaves dim part and subtract the original
image from its close operation result. A standard method to improve the quality of an
image involves the emphasis of the contrast between the light and dim parts of the original
image. Therefore, the image quality can be improved through contrast enhancement by
adding a bright part and subtracting the dim part from the original image, as expressed in
Equation (6).

It&b = I + (Itop − Ibottom), (6)

where Itop is top-hat transform, Ibottom is bottom-hat transform, and It&b is a top-hat and
bottom-hat transformation.

Meanwhile, not only enhancement of contrast, but we also consider noise reduction to
improve the image quality. As we described in Section 2.1, Gaussian noise is added to the
LR image as mentioned. It is assumed that the effect can be maximized by not only adding
noise to the LR image, but also by reducing the noise from the HR image. When T&B is
applied, the edge is strengthened, but the noise stays prominent. To suppress the noise, the
Guided filter is applied in the HR0 image to obtain a denoising effect. An edge-preserving
guided filter is a smoothing filter with guided images that acts as a bilateral filter, but is
known to show better performance at the boundary [36]. In this study, when calculating
T&B in Equation (7), a guided filtered image was applied instead of the original image. In
this case, the noise is reduced compared to the original, and the edge was strengthened.
Finally, as described in Equation (7), T&B was applied to HRguided where a guided filter was
utilized on HR0. The weight between T&B and the guided filter was adopted to generate
the enhancement HR image (HRe).

HRe = HRguided + α(Top(HRguided)− Bottom(HRguided)), (7)

where the used parameter in Equation (7) are r = 1 and eps = 0.0005 in the guided filter, and
the α is weight between the guided filter and T&B operation defined as 0.95. When α was
small, the noise of the image is reduced, but the detail of the image was weakened at the
same time, and when it was larger than 1, the noise increased compared to the original.
An optimized value of 0.95 was obtained through several experiments to minimize this
phenomenon. When the proposed T&B technique was applied to the original images
recorded by KOMPSAT-3, as shown in Figure 3, it was confirmed that not only the contrast
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enhancement effect of the image described in [37] but also the complex noise removal
measures were effective.

(a) original image (HR0) (b) enhanced image (HRe)

Figure 3. Comparison of high-resolution images: (a) original image, (b) enhanced image by top-hat and bottom-hat
transformation.

2.3. Proposed CNN-Based SR Network

In this study, as shown in Figure 4, the SR network architecture was modified and
designed to obtain improved results based on the existing SRResNet [9]. The characteristics
of the proposed model differ from those of the existing models. A residual block deeper
than the original network was designed, and the batch norm was removed at each step. A
residual learning technique that adds the final network output and the bicubic interpolated
image is used to learn the network only the residual signal of the image. Moreover, we
used a LeakyReLU activation function for our proposed SR network. The LeakyReLU
is one attempt to address the “dying ReLU” issue. When input of activation function is
negative, instead of the function being zero, the LeakyReLU will have a small positive
slope, such as 0.1.

LR input images and SR output images

·  Panchromatic : 1 channel

·  Pansharpened : 3 channels

…

Conv

(64×256)

Residual 

block

Pixel

shuffle

RB1

Conv

(1×64)
Conv

(64×64)

Conv

(64×1)

LReLU

Conv

(64×64)

LReLU

+

Conv

(64×64)

RB16LR Image ILR

SR Image ISR

+

Bicubic ×2

Figure 4. Architecture of the proposed SR network for panchromatic.
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To learn the proposed CNN-based SR, the learning rate, scheduler, and optimizer were
also improved. The learning rate was initiated as 2 × 10−4, and the scheduler determining
the update time of the learning rate applied the cosine annealing technique. In addition,
the weights were initialized using the uniform distribution, and no biases were used to
reduce the number of parameters. The L1 loss was used as a cost function instead of L2 loss.
The proposed SR network was trained using Adam optimizer. The batch size was set to 16,
the patch size was determined to be 128, and the proposed CNN-based SR structure used a
parameter of approximately 1.3 M. Finally, the adaptive image quality modification method
mentioned in Sections 2.1 and 2.2 was applied during network training. The difference in
the proposed CNN architecture that processes panchromatic and pansharpened images
is that the first convolutional layer and the last convolutional layer have 1 channel and
3 channels, respectively.

3. Experiment

The Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) are optical HR remote
sensing satellites that were launched in 2012 and 2015 as part of a geographical information
system and have been operating for more than 7 years. KOMPSAT-3 provides 0.7 m ground
sampling distance (GSD) panchromatic (PAN) image and 2.8 m GSD multi-spectral (Visible:
R, G, B, NIR) band image and K3A provides a 0.55 m PAN image, as described in Table 1.
In this study, images acquired from KOMPSAT-3 and KOMPSAT-3A were mixed to form
the training dataset and the subject of the quality evaluation was KOMPSAT-3. L1G-level
images with PAN and pansharpening (PS) spatial correction processing were used; to create
an optimized model for KOMPSAT-3, training data was composed of images including
various conditions. The training dataset has consisted with the cloud coverage limited
from 0% to 10% and the tilt angle range was −30◦ to 30◦.

Table 1. Data Specification of Korea Multi-Purpose Satellite-3/3A.

KOMPSAT-3 KOMPSAT-3A

Ground
Sampling Distance

PAN: 0.7 m
MS: 2.8 m

PAN: 0.54 m
MS: 2.16 m

Spectral Bands

PAN: 450∼900 nm
Blue: 450∼520 nm

Green: 520∼600 nm
Red: 630∼690 nm

PAN: 450∼900 nm
Blue: 450∼520 nm

Green: 520∼600 nm
Red: 630∼690 nm

View Angle Roll: −30∼30 deg
Pitch: −30∼30 deg

Roll: −30∼30 deg
Pitch: −30∼30 deg

Data Quantization 14 bits/pixel 14 bits/pixel

The original KOMPSAT-3/3A files have a maximum size of 30,000 × 30,000 pixels and
approximately occupy 1.5 GB per scene. After data acquisition, the original images were
analyzed and a data cleaning process was performed. In this process, artifacts such as light
exposure and poor weather conditions such as snow/clouds and the pixels filled with zeros
due to image cutting during the geometric correction process was removed. The dataset
used in this study is of PAN and PS images from KOMPSAT-3. Both band data have a 0.7 m
spatial resolution. A PAN image is a single-channel image, whereas a pansharpened is a
three-channel color image. As the images selected after the cleaning process were large and
difficult to use directly for training, they were cut into 1024 × 1024 pixel size images, and
the number of images finally included in each sub-dataset was 32,176 for KOMPSAT-3 and
56,474 for KOMPSAT-3A. However, the cropped 1024 × 1024 images were still too large to
be used for training. Hence, they were randomly cropped with a patch of 128 × 128 sizes
in the image to constitute a ground truth dataset. A random crop means that different
patches were configured for each iteration and used for training. Although this involves
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the disadvantage of increasing the training time, it can solve the problem of lack of data
and is a generalized training method that has been widely used in existing SR studies. In
addition, the number of training data was increased by augmentation, such as rotation and
flipping of the corresponding patch during the training process. Approximately 10% of the
total KOMPSAT-3 images were used for testing. As previously described, the proposed SR
network is trained with patches of 128× 128 size randomly cropped from 1024 × 1024, but
a 1024 × 1024 image is used for inference. As a result, the SR image size after inference is
2048 × 2048. In summary, the size of the SR result of PAN image is 2048 × 2048 × 1 and
the size of the SR result of PS image is 2048 × 2048 × 3. Figure 5 shows the selections of
PAN and PS images of KOMPSAT-3/3A used for training and testing.

(b) A selection of the KOMPSAT-3/3A pansharpened images for training and testing.

(a) A selection of the KOMPSAT-3/3A panchromatic images for training and testing.

Figure 5. Selected dataset of PAN and PS images of KOMPAT-3/3A.

4. Results and Discussion

In Section 4, the performance of the proposed SR method and other SR methods was
performed in two ways. First, the performance of the restoration results from the degraded
original image was described in Section 4.1. The performance of the improvement results
from the original image was described in Sections 4.1 and 4.2.
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4.1. Quantitative and Qualitative Analysis

A reference restoration metric is defined as a comparison with the original image, and
the performance of the restoration is calculated numerically. This reference restoration
metric is a popular method in super-resolution studies. We apply the peak signal to noise
ratio (PSNR) as a widely used evaluation index. As commonly used evaluation measure of
image quality loss information, the higher the PSNR, the higher the similarity between two
images compared.

PSNR(x, y) = 10 log10
MAX2

MSE
(8)

In Equation (8), MAX is a value corresponding to the image depth of the satellite
image. Since the KOMPSAT-3 image has a 14-bit dynamic range, the MAX value is 16,383.
Further, as shown in Equation (9), the structural similarity index (SSIM) was calculated;
SSIM is a method for evaluating the similarity between two images x and y by combining
brightness, contrast, and structural information.

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (9)

where µx, µy, σx, σy and σxy are the local means, standard deviations, and cross-covariance
for image x,y and C1,C2 are small constants.

In addition, the natural image quality evaluator (NIQE) [38] method, which is a no-
reference evaluation index, was used to evaluate the image quality. NIQE calculates the
performance of the image quality improvement by comparing images with a basic model
calculated from a normal image. A lower NIQE score indicates better visual quality. The test
images used for quantitative numerical comparison were calculated by randomly selecting
25 KOMPSAT-3 satellite images, excluding the training images. The performance of prior
SR methods including nearest neighbor, bicubic, SRResNet [9], RCAN [8], RRDB [12],
DPSR [17] and USRNET [18] models were compared with the proposed SR method.

As presented in Table 2, it can be seen that the proposed SR method has relatively
lower PSNR and SSIM values than other SR methods. However, in NIQE, which is a
no-reference measure, the proposed method exhibited better performance than the other
methods. Next, a qualitative experiment was conducted to confirm image quality. In the
KOMPSAT-3 satellite images, both panchromatic and pansharpened (PS) images were
tested. As shown in Figures 6 and 7, the experimental results of the panchromatic (PAN)
images show that the SR images obtained by the proposed SR method represents the clear
text on the ground and had clearer edge compared to the other SR methods. Furthermore,
as shown in Figure 8, it may be observed that the noise was reduced throughout the image.
As shown in Figure 8, although other SR methods improve the clarity of the white sign in
the traffic mark on the road, the distortion at the boundary with the road surface remains
prominent unlike the proposed SR method. In addition, in the case of Figure 9, noisy
patterns appear separately on the road surface from the improvement in the sharpness of
the text on the road, which may be attributed to the noise included in the original image
being distorted or emphasized through the SR process. This phenomenon appears in
various parts, such as around vehicles or buildings. Contrarily, the proposed SR results
show that this distortion is minimized and the sharpness at the structure’s boundary is
improved. In addition, the experimental results applied to the PS satellite images are
shown in Figures 9–11. In PS images, it was confirmed that, similar to the PAN images,
the SR images to which the proposed SR method was applied showed relatively enhanced
image quality, compared to other SR methods, in terms of clarity and edge sharpness.
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Table 2. Comparison between the difference methods under upscale factor ×2 on KOMPSAT-3
dataset. (The bold values are the best among all the methods).

PSNR (dB) SSIM NIQE

Nearest Neighbor 40.56 0.8096 22.94
Bicubic 42.74 0.8672 22.98

SRResNet [9] 47.63 0.9224 22.79
RRDB [12] 47.78 0.9234 22.80
RCAN [8] 47.65 0.9226 22.76
DPSR [17] 47.34 0.9182 22.76

USRNET [18] 47.69 0.9229 22.53
Proposed 47.39 0.9158 22.47

(b)  Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 6. Visual qualitative comparisons of the proposed method with other SR methods on a panchromatic image, Two
Stroke To Turbo LTD, England.
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(b) Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 7. Visual qualitative comparisons of the proposed method with other SR methods on a panchromatic image,
Weehawken Stadium, USA.
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(b)  Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 8. Visual qualitative comparisons of the proposed method with other SR methods on a panchromatic image, Henry
Hudson Parkway, USA.
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(b)  Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 9. Visual qualitative comparisons of the proposed method with other SR methods on a pansharpened KOMPSAT-3
image, Dubai In-ternational Airport, UAE.
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(b)  Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 10. Visual qualitative comparisons of the proposed method with other SR methods on an pansharpened KOMPSAT-3
image, VA Southern Nevada Healthcare System, USA.
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(b) Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 11. Visual qualitative comparisons of the proposed method with other SR methods on pansharpened KOMPSAT-3
image, North Las Vegas Readiness Center, USA.

4.2. Edge Detection Performance by Target Site

Since satellite images are taken at high altitudes, the image quality evaluation is
carried out by installing a structure comprising various large structural components with
an accurately known length on the ground, and then analyzing satellite images of the
known installation. To evaluate the performance of the developed SR method in this study,
an image quality test field, which is officially used for satellite image quality evaluation,
was used, obtained from [39]. The USGS provides sites that can evaluate the quality of
satellite images in three categories: radiometric, geometric, and spatial.

The images of spatial resolution calibration sites were used to evaluate the perfor-
mance of the image quality improvement as a reference. As the test images of the site were
not acquired for calibration purpose and did not satisfy conditions such as camera angle,
geometrical correction, and weather, there is a difference between the specification of the
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structure in the original calibration site and test image. All performances of SR methods
results were evaluated under the same edge extraction condition.

The Baotou site selected for this experiment is located in China (l = 40.85, b = 109.63),
and it is used for comprehensive calibration and validation of satellite system. These per-
manent artificial targets have the advantages of year-round availability, lower maintenance
operations, and long lifetime, and are an excellent reference for satellites. In consideration
of the local environment and climate conditions, knife-edge targets, fan-shaped targets,
and bar-pattern targets were designed on the ground at the Baotou site [40]. We extracted
the edges of those targets from the nearest neighbor, bicubic, SRResNet [9], RCAN [8],
RRDB [12], DPSR [17], USRNET [18] and proposed SR method results, then we overplotted
the extracted edge lines on the SR result images to compare the performance in terms of
resolution improvement.

The first analysis target was a fan-shaped that spread out to 155◦ and shown on the
left side of Figure 12, with 31 black and white sectors spaced at 5◦ intervals; The black
or white sector width at the limit target radius where the black and white lines of the
target image can be differentiated is referred to as spatial resolution. The second analysis
structure consisted of 15 groups of black bars of various shapes with thicknesses from
0.1 m to 5 m. As a bar target shown in the yellow box in Figure 12, the structure had the
same thickness from the bottom to the 5th bars, and the thickness or spacing decreases
from 0.9 m to 0.1 m; hence, it was used as a resolution measurement criterion.

0.9m

0.8m

0.7m

0.6m

0.5m

0.2m 4m

5 deg

2m

48m

Figure 12. Targets design and specification of Baotou site.

In Figures 13 and 14, a performance was evaluated on the sharpness of the edges and
the degree of resolvability for the above two targets. As shown in Figure 13, the result
image of the proposed method and the USRNET [18] method discriminated the structure
closest to the center of the fan shape compared to other SR methods results. The two red
dash lines in Figure 13 represents arcs with different diameters which can be helpful to
interpret the spatial resolution performance.

As shown in Figure 14, in the case of DPSR [17], it can only draw the edge lines up to bar
with size of 0.8 m and it might be probably due to the strong smoothing effect. In addition,
SRResNet [9], RCAN [8] and RRDB [12] were extracted more lines than DPSR [17], however,
there were many square lines that were not perfectly extracted, therefore, the performance
was determined to be 0.8 m. The nearest neighbor, bicubic and USRNET [18] extracted
well up to a bar with a size of 0.7 m which is smaller than the previous SR methods. In
the case of USRNET [18], some edges of 0.6 m bars appear connected, the performance
was determined to be 0.7 m. Finally, our proposed SR method represents the clear edge
extraction line up to 0.6 m bar. In contrast, the structure in the red box in Figure 12 consists
of five white bars with a length of 4 m and a width of 0.2 m. It may be observed that only
the proposed SR method was able to distinguish the structure clearly.
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(b)  Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 13. Fan-shaped target SR results: (a) Original, (b) Nearest Neighbor, (c) Bicubic, (d) SRResNet, (e) RCAN, (f) RRDB,
(g) DPSR, (h) USRNET, (i) Proposed.

The proposed method not only improved the clarity of the structure in original image,
but also maintained the clarity of the texture compared to the USRNET [18] and RRDB [12]
methods. As described above, the original resolution of KOMPSAT-3 images is 0.7 m.
However, it should be noted that the original resolution did not appear as it is because the
images used were not captured image to satisfy the conditions for calibration. Nevertheless,
as this experiment evaluated the performance of the algorithm under the same criterion, it
is meaningful that the image generated by the proposed method was improved the image
quality with relatively high precision.
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0.7m 0.7m

0.8m 0.8m

0.8m 0.7m

0.6m

0.8m

(b)  Nearest Neighbor(a) Original (c) Bicubic

(d) SRResNet [9] (e) RCAN [8] (f) RRDB [12]

(g) DPSR [17] (h) USRNET [18] (i) Proposed

Figure 14. Bar-pattern target SR results: (a) Original, (b) Nearest Neighbor, (c) Bicubic, (d) SRResNet, (e) RCAN, (f) RRDB,
(g) DPSR, (h) USRNET, (i) Proposed.

4.3. Object Detection Performance Test

In this section, we evaluate the improvement of object detection performance accord-
ing to the SR effect. Vehicles appear very often in satellite images but tend to be as small
as 10 pixels and can appear in any direction. Therefore, it is often difficult to detect small
vehicles such as cars in the LR images. However, small vehicles detection and analysis are
important techniques used in fields such as economy, social analysis, and security, and var-
ious studies are being conducted to improve detection performance. For object detection,
S2A-Net [41] was used in this experiment and the small vehicle detection performance was
analyzed before and after applying the proposed SR method result. Figure 15a shows a
small vehicle detected in the original image as cyan boxes and Figure 15b shows the same
small vehicle detected in the SR image obtained by the proposed method. As shown in
Figure 15a, closely parked small vehicles were not detected well in the original image, but it
can be confirmed that the detection performance was improved in the SR image as depicted
in Figure 15b. Consequently, the object detection performance was effectively improved
using the proposed SR technique. In addition, we performed an additional quantitative
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experiment for the performance of the object detection improvement. A total of 25 test
images, including those of small vehicles, were used for the experiment. The total number
of small vehicles in the test images is 3618. The Intersection over Union (IoU) criterion for
quantitative evaluation was used; it measures the detected box’s overlapping image with
the ground truth box. When detecting objects, the confidence score threshold was set to
0.05 and the IoU threshold to 0.1. Small objects in the image, such as cars, have a smaller
number of pixels; thus a lower IoU value improves detection performance. As shown in
Table 3, for object detection evaluation, the metrics of true positive (TP), false positive (FP),
and average precision (AP) were calculated. As a result of evaluating the performance
using the proposed SR method as a pre-processing for object detection, it was confirmed
that the AP performance improved by approximately 13.5% as described in Table 3.

(a) Original + S2A-Net [41] (b) Proposed SR + S2A-Net [41]

Figure 15. Object detection performance results on Hyogo, Japan: (a) detected small vehicles in
original image (left) and (b) detected small vehicles in super resolved image (right).

Table 3. Comparison results for original image and scaled image with scale factor 2 using proposed
SR method for small vehicle detection using S2A-Net.

Method TP FP AP

Original + S2A-Net [41] 2778 840 0.768
Proposed SR + S2A-Net [41] 3154 464 0.872

4.4. Discussion

In this study, the adaptive image quality modification method including the degra-
dation model and image quality improvement were proposed to improve the SR results.
First, the degradation model is proposed that generates noisy input images by randomly
applying a Gaussian noise and Gaussian blur kernel to each training image. In addition, to
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generate an enhanced HR image, top- and bottom-hat transformations and guided filters
are applied to the original HR image to emphasize the edges and reduce noise from the
original HR image. The performance of the proposed SR network is confirmed through
various experiments, such as qualitative visual comparisons with other SR methods and
quantitative numerical comparisons such as NIQE, PSNR, and SSIM. For the PSNR and
SSIM score, the performance of the proposed method showed that the SR images obtained
were lower than those obtained with other SR methods. However, in terms of NIQE score,
the proposed SR method outperformed the other SR methods. Visual inspection confirmed
that the proposed SR method significantly reduced image noise on the road surface or
roof of a building compared to other SR methods. Furthermore, the proposed SR method
significantly improved the clarity of structures and characters.

Next, the edge extraction using a validation site image was performed, assuming that
the edge extraction would be effective if the sharpness of structures such as buildings in
the image was improved through the proposed SR method. The validation site image was
extensively used to verify the image quality of the satellite using various sizes or shapes of
the bar- and fan-shaped target. Compared to other SR methods, the proposed SR method
produced the most effective results in extracting various target edges, with excellent spatial
resolution performance confirmed.

Finally, by applying the super-resolution method to the satellite image object detection
tasks, it was verified that the proposed super-resolution method could improve the perfor-
mance of small object-detection techniques. In the case of small objects such as automobiles
in the satellite image, the detection performance differs according to the resolution of the
satellite image. The object detection performance improved by the proposed SR method,
therefore, the proposed SR method is expected to function as a practical pre-processing
step in various object detection applications.

5. Conclusions

In this study, a super-resolution method with adaptive image quality modification to
improve the resolution of KOMPSAT-3 satellite images is proposed. First, a degradation
model is proposed that generates noisy input images by randomly applying a Gaussian
noise and Gaussian blur kernel to each training image. In addition, top-hat and bottom-
hat transformation and guided filter were applied to the original HR image to increase
the contrast and emphasize the edges and reduce the noise compared to the original HR
image, thereby improving the quality of the generated SR image. The performance of the
proposed SR network is confirmed through various experiments such as qualitative visual
comparisons with other methods, quantitative numerical comparisons, and edge extraction
using validation site images. Finally, by applying the proposed SR method to the satellite
image object detection tasks, it is verified that the proposed super-resolution method is
able to improve the performance of small object detection techniques. The proposed SR
method is expected to be highly useful as a pre-processing step for various object detection,
segmentation and analysis application because the image quality performance improve-
ment over other algorithms. In this study, low-resolution input images are generated based
on Gaussian noise, but in the future, optimized noise kernel modeling will be reviewed to
process KOMPSAT-3 and 3A images. In addition, we intend to expand the model so that
it can be applied to a wide area by using not only specific images but also heterogeneous
data with similar resolution.
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