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Abstract: Scene understanding of satellite and aerial images is a pivotal task in various remote
sensing (RS) practices, such as land cover and urban development monitoring. In recent years,
neural networks have become a de-facto standard in many of these applications. However, semantic
segmentation still remains a challenging task. With respect to other computer vision (CV) areas, in
RS large labeled datasets are not very often available, due to their large cost and to the required
manpower. On the other hand, self-supervised learning (SSL) is earning more and more interest in CV,
reaching state-of-the-art in several tasks. In spite of this, most SSL models, pretrained on huge datasets
like ImageNet, do not perform particularly well on RS data. For this reason, we propose a combination
of a SSL algorithm (particularly, Online Bag of Words) and a semantic segmentation algorithm,
shaped for aerial images (namely, Multistage Attention ResU-Net), to show new encouraging results
(i.e., 81.76% mIoU with ResNet-18 backbone) on the ISPRS Vaihingen dataset.

Keywords: semantic segmentation; self-supervised learning; linear attention; Vaihingen dataset

1. Introduction

In a wide range of real-world applications, varying from urban planning to precision
agriculture, including land cover, infrastructure management and so on, semantic seg-
mentation of aerial and remote sensing (RS) imageries is a pivotal task, which continues
to attract great interest [1]. Semantic labeling, that consists in assigning a category to
every pixel of the image, is particularly challenging in urban applications [2,3]. In fact,
the complicated urban structure leads to interactions among objects, causing occlusions,
shadows, and other noisy effects, which worsen the radiometric information of the im-
ages [4]. Moreover, artificial manufacts have at least two main issues. On the one hand,
objects belonging to different classes could retrieve very similar radiometric information
(e.g., low vegetation and trees, or roads and pavements). On the other hand, manufacts of
the same semantic class can present very different characteristics, such as color, texture,
and shape [5]. Eventually, it could be asserted that semantic segmentation in urban scenes
is characterized by a strong intra-class variance and a reduced inter-class one [6,7].

In recent years, deep learning (DL) methods reached state-of-the-art, surpassing tradi-
tional methods, in several computer vision (CV) tasks. Many of these find large application
also in RS, such as object detection, instance segmentation, and semantic labeling. It is
unanimously recognized that DL methods have high generalization capabilities, succeed-
ing in extracting robust and efficient features [8,9]. However, supervised training of these
models depends on annotations. More than in other fields, for aerial and RS images, it is
difficult to rely on a labeled dataset, in light of the high cost and the amount of effort and
time that are required, along with a well founded expertise.

Remote Sens. 2021, 13, 3275. https://doi.org/10.3390/rs13163275 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1442-7155
https://orcid.org/0000-0003-0881-8344
https://doi.org/10.3390/rs13163275
https://doi.org/10.3390/rs13163275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163275
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13163275?type=check_update&version=2


Remote Sens. 2021, 13, 3275 2 of 17

The advent of self-supervised learning (SSL) could handle this problem, reducing
the amount of annotated data needed [10–12]. The goal of SSL is to learn an effective
visual representation of the input using a massive quantity of data provided without any
label [11,13]. To solve this task in CV, we can see the problem as the need to build a
well-structured and relevant set of features, able to represent an object in a fruitful way
for several downstream tasks. Thus, intelligent systems need not to be structured a priori,
but should instead learn about the conformation of the provided data in an unsupervised
way [14]. In particular, the majority of unsupervised approaches can be divided into
two classes: generative and discriminative. Generative strategies learn to generate pixels
in the input space. However, pixel-level generation can be computationally expensive.
Discriminative approaches are based on learning the representation of the unlabeled data
to solve downstream tasks. Among these techniques, in contrastive learning the goal is to
generate a representation of the input, such that similar instances are near each other and
far from dissimilar ones [13,15]. Other approaches fulfill the goal of reconstructing a target
image, after perturbing it [16,17]. Essentially, SSL is earning more and more interest in CV,
reaching state-of-the-art performances in several tasks.

In this technical letter, we propose a new approach, that combines a SSL algorithm
(that is, online bag of words [12]) and a semantic segmentation algorithm shaped for aerial
images (properly, Multistage Attention ResU-Net [18]), based on a linear attention mech-
anism (LAM). Particularly, we decided to train the encoder of the Multistage Attention
ResU-Net (MAResU-Net), that is a ResNet-18 [19], with the Online Bag of Words (OBoW)
method, given its high capability of learning visual representations, that are effective for
several downstream task. This characteristic is fundamental, because most of available SSL
pretrained models do not perform particularly well on RS data. In fact, due to the prob-
lems that we addressed previously, aerial and RS imageries have peculiar characteristics,
different from the images taken with close-range cameras. Indeed, unlike, for example, the
ImageNet dataset, the RS images present an enormous amount of details to look after, to
correctly segment the objects. Moreover, in addition to the aforementioned variance issues,
the shapes, the colors and the scale of the objects are crucial in this task [20]. In particular,
the edges must have high consideration, as they are changeable and labile much more than
in close-range camera images [7].

On the other hand, attention exploits the ability of grasping long-term dependencies
of the feature maps, exploring global contextual information of the data. Dot-product
attention mechanism, generating response at each pixel by weighting features in the
previous layers, expands the receptive field to the whole input feature maps, reaching state-
of-the-art performance in many fields [21–23]. However, the memory and computational
overhead of the dot-product attention mechanism increases quadratically along with the
spatio-temporal size of the input. To alleviate the huge computational costs, ref [24] reduced
the complexity from O(N2) to O(N

√
N); ref [25] to O(N log N); and [18,26,27] to O(N).

To sum up, the three major contributions offered by the proposed technical letter are
the following:

• we show how the SSL approach, designed for generic CV downstream tasks, performs
well even on more sectorial areas of image analysis, such as RS;

• we highlight that SSL methods are effective to reduce dependence on well-annotated
dataset, currently required to reach high performances in RS tasks, since they require
high costs and great need of time, effort, and knowledge to be produced;

• we obtain the best results in literature for the semantic segmentation of the ISPRS Vai-
hingen benchmark dataset [28] with ResNet-18 as encoder. This confirms an excellent
trade-off between the number of parameters and the performance of the model.

The remainder of this technical note is organized as follows: in Section 2 the related
works, divided in three subsections, concerning, respectively, semantic segmentation
(Section 2.1), semantic segmentation for aerial and RS imageries (Section 2.2) and SSL
(Section 2.3), are illustrated; in Section 3 OBoW and MAResU-Net methodologies are briefly
explained; in Section 4 the experimental results and the ablation studies are presented.
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Finally, in Section 5, a discussion of the results, including the limitations of the proposed
strategy, and further developments are dispensed.

2. Related Works
2.1. Semantic Segmentation

Fully convolutional network (FCN) methods have experimented huge progresses
in semantic segmentation, following mainly two approaches. On the one hand, dilated
convolutions [29,30] have established a strong capability to retain the receptive field-of-
view and enhance the performance of the backbone. On the other hand, the encoder–
decoder architectures utilize an encoder to obtain multi-level feature maps, which are
then incorporated into the final prediction through a decoder [31]. These two strategies
can also be combined. An effective example is PSPNet [32], which adopts a pyramid
parsing module that exploits global context information by different region-based context
aggregations. The local and global clues, concatenated together, make the final prediction
more performing.

In addition, several architectures, based on the attention mechanism, often combined
with what has been described so far, have been proposed. For example, DANet [23] in-
tegrates local features with global dependencies, in an adaptive way. Specifically, the
architecture provides two types of attention modules on top of traditional dilated FCN,
which model the semantic inter-dependencies, respectively, in spatial and channel dimen-
sions, regardless of their distances. The outputs of these two attention modules are finally
summed for the prediction. Other examples of this set of architectures are: PSANet [33],
OCNet [34], and CFNet [35].

2.2. Semantic Segmentation for Remote Sensing and Aerial Images

In the last few years, several methodologies specifically shaped for RS images have
been proposed. These methods succeed in reaching better performance on this specific
task, thanks to their capability of taking in account the variable shapes, scale and edges of
the represented objects. In fact, in light of the massive quantity of details in a RS image,
the CV semantic segmentation methods often fragment one object into pieces, or confuse
adjacent objects, thus failing to segment these objects correctly [20].

Particularly, ResUNet-a [7] uses a U-Net encoder-decoder structure, in combination
with residual connections, dilated convolutions, pyramid scene parsing pooling and multi-
tasking inference. ResUNet-a infers sequentially the boundaries of the objects, the distance
transformation of the segmentation mask, the segmentation mask, and a colored recon-
struction of the input. In addition, the authors introduce a novel loss function, modifying
the dice loss.

EaNet [20] incorporates a large kernel pyramid pooling module to capture multi-scale
context with robust continuous feature relations. An edge-aware loss function (EA loss),
based on the dice loss, is presented to guide the EaNet to refine both the pixel-level and
context-level information directly from the semantic segmentation prediction.

CE-Net [36] mainly consists of three parts: a ResNet encoder, a context extractor
and a decoder module. The context extractor module is formed by a novel dense dilated
convolution block and a residual multi-kernel pooling block.

A solution conceived through the use of a transformer has also been recently pro-
posed. Ref. [37] proposes the Swin Transformer [38] as the backbone to extract the context
information and designs a decoder of densely connected feature aggregation modules to
produce the segmentation map, after restoring the resolution of the input.

All the presented architectures are supervised, that means that are in need of labeled
data. The only effort in the direction of SSL applied to RS is presented in [39]. Namely
shaped for change detection, the authors propose a self-supervised approach capable to
capture better representation for semantic understanding of RS images. Specifically, the
network, imitating the discriminator of a generative adversarial network (GAN), is asked
to identify different sample patches taken from two temporal images.



Remote Sens. 2021, 13, 3275 4 of 17

2.3. Self-Supervised Learning

Initially, most SSL methods were based on pre-text tasks. The strategies were several,
such as patch context [40,41], in-painting [42], colorization [43,44], jigsaw puzzles [45],
noise [46], generation [47], rotation [16]), and counting [48].

On the other hand, contrastive-based approaches were proposed. In [11], the authors
propose a contrastive framework under which several other algorithms (e.g., Augmented
Multiscale Deep InfoMax, i.e., AMDIM [49]; Contrastive Predicting Coding, i.e., CPC [50];
and a simple framework for contrastive learning of visual representations, i.e., SimCLR [13])
can be considered special cases. Yet Another Deep InfoMax (YADIM) [11] is characterized
by five parts: data augmentation, needed to generate the anchor, the positive and the nega-
tive instances; the encoder, generally a ResNet [19]; the representation extractor, to compare
two or more representations [13,50,51]; the similarity measure (e.g., dot product [49,50],
cosine similarity [13,51], or bi-linear transformation); and the loss function (e.g., negative
contrastive estimation (NCE) [52], triplet loss [53], and InfoNCE [14]). Outside the YADIM
framework, there are many other effective approaches. For example, ref [15] proposes
a momentum contrast (MoCo) architecture. MoCo uses a moving average network to
maintain an effective representation of negative samples taken from a memory bank. An-
other approach is the one proposed in [54]. Contrastive Multiview Coding (CMC) learns a
representation that maximizes the mutual information among various views of the same
scene. Barlow Twins [10] proposes an objective function that avoids collapses by measuring
the cross-correlation between the outputs of two identical networks fed with distorted
versions of a sample.

Nevertheless, to address some of the limitations of contrastive-based approaches
(e.g., need for large batch sizes [51] or pairwise comparison), most recently teacher-student
(e.g., OBoW [12]), as well as clustering-based (e.g., DeepCluster [55]) approaches have
been proposed. For example, Bootstrap Your Own Latent (BYOL) [56] uses a moving
average network to produce prediction targets as a mean of stabilizing the bootstrap step.
SimSiam [57] maximizes the similarity between two augmentations of one image, using a
Siamese network. Swapping Assignments between multiple Views (SwAV) [58] predicts
the cluster assignment of a view from the representation of another view of the same image.

3. Methodology

To deal with the challenge of limited annotated training data for RS segmentation,
we rely on SSL to learn powerful representations, that can tap on the potential of the
large amount of unlabeled data, readily available in RS. Particularly, we decided to use
OBoW [12], because it exploits the use of visual words, which are visual concepts localized
in the spatial domain (as opposed to global concepts as in most other SSL methods). This
could be beneficial for dense prediction tasks, such as semantic segmentation. Furthermore,
it exhibits very strong empirical performance. On the other hand, we decided to rely on
MAResU-Net, for the semantic segmentation task, because of several reasons. U-Net-based
architectures have proven to be an excellent choice for image segmentation tasks. Moreover,
the use of a self-attention mechanism has shown to provide high-capacity models that can
properly take advantage of large scale datasets. Finally, to deal with the high computational
cost of self-attention, we extend the solution proposed by MAResU-Net.

In the following subsections, we provide details about the chosen architectures.

3.1. Self-Supervised Learning for Remote Sensing Using Online Bag of Visual Words

In [17], the authors propose BoWNet, which offers the idea of using Bag of Visual
Words (BoW) as targets for SSL. This approach, despite its effectiveness and innovativeness,
had some limitations, such as a static visual words vocabulary.

These limits were tackled in [12], where the authors propose an improved solution,
that is OBoW.

The BoW reconstruction task involves a student convolutional neural network (CNN)
S(·) that learns image representations, and a teacher CNN T(·) that generates BoW targets
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used for training the student network. The student S(·) is parameterized by θS and the
teacher T(·) by θT .

Inspired by [15], the parameters θT of T(·) are an exponential moving average of the
student parameters. As a consequence, the teacher has the same architecture as the student,
though maintaining different batch-norm statistics.

To generate a BoW representation yT(x) out of an image x, the teacher first extracts the
feature map Tl(x) ∈ Rcl×hl×wl , of spatial size hl × wl with cl channels, from its last layer l.
It quantizes the cl-dimensional feature vectors Tl(x)[u] at each location u ∈ 1, . . ., hl × wl
of the feature map over a vocabulary V = [v1; . . .; vK] of K visual words of dimension cl .
The vocabulary V of visual words is a K-sized queue of random features. At each step,
after computing the assignment codes over the vocabulary V, V is updated by selecting
one feature vector per image from the current mini-batch, removing the oldest item in the
queue if its size exceeds K. The feature selection consists of a local average pooling with a
3× 3 kernel of the feature map Tl(x) followed by a uniform random sampling of one of the
resulting feature vectors. Thus, assuming that the local features in a 3× 3 neighborhood
belong to one common visual concept, local averaging selects a representative visual-word
feature from this neighborhood. This quantization process produces for each location u
a K-dimensional code vector q(x)[u] that encodes the assignment of T(x)[u] to its closest
visual word. Then, the teacher reduces the quantized feature maps q(x) to a K-dimensional
BoW ỹT(x) by channel-wise max-pooling. For this step, a soft-assignment is preferable due
to the fact that the vocabulary of visual words is continuously evolving. The soft assign-
ment depends on an adaptive parameter δ. Finally, ỹT(x) is converted into a probability
distribution over the visual words by L1-normalization, i.e.,

yT(x)[k] =
ỹT(x)[k]

∑k′ ỹT(x)[k′]
(1)

To learn effective image representations, the student must predict the BoW distribution
over V of an image using as input a perturbed version of that same image. In OBoW, the
vocabulary is constantly updated. Therefore, a dynamic BoW-prediction head that can
adapt to the evolving nature of the vocabulary is proposed. To that end, the authors employ
a generation network G(·) that takes as input the current vocabulary of visual words V and
produces prediction weights for them as G(V) = [G(v1); . . .; G(vK)], where G(·): Rcl → Rc

consists in a 2-layer multilayer perceptron (MLP) whose input and output vectors are
l2-normalized and G(vk) represents the prediction weight vector for the kth visual word.
Therefore, ỹS(x) is computed as follows:

yS(x̃)[k] =
exp

(
κ ·G(vk)

>S(x̃)
)

∑k′ exp
(

κ ·G(vk′)
>S(x̃)

) (2)

where κ is a fixed coefficient that equally scales the magnitudes of all the predicted weights
G(V). The K-dimensional vector yS(x̃)[k] is the predicted softmax probability of the target
yT(x). Hence, the training loss that is minimized for a single image x is the cross entropy
between the softmax distribution yS(x̃)[k] predicted by the student from the perturbed
image x̃, and the BoW distribution yT(x) of the unperturbed image x given by the teacher.

The architecture described so far is represented in Figure 1.
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Figure 1. OBoW architecture.

3.2. MAResU-Net

MAResU-Net proposes a modified U-Net architecture. In fact, first of all, the encoder
S is made up of a ResNet. Moreover, the blocks of the encoder S and the decoder D
are not simple skip connections, but are replaced by attention modules. To reduce the
computational times, these modules combine a conventional attention mechanism and a
linear one, i.e. LAM.

The loss function follows the formula:

L = − 1
M

C

∑
c=1

M

∑
m=1

wc · yc
m · log(hθ(xm, c)) (3)

where M is the number of training examples, C the number of classes, yc
m the target label

for training example m of class c, wc the weight for the class c, xm the input for the training
example m and hθ the model with the weights θ.

Particularly, if all the wc are set to 1 and soft assignment is performed, the loss
becomes a soft categorical cross entropy (SCE), otherwise it is a weighted categorical cross
entropy (WCE).

Eventually, the LAM is presented in the next Section 3.2.1, while the whole architecture
is shown in Figure 2.

Figure 2. MAResU-Net architecture (left) and MAResU-Net attention block (right).

3.2.1. Linear Attention Mechanism

Providing N and C as the length of input sequences and the number of input channels,
where N = H ×W, with H and W the height and width of the input, with the input
feature X = [x1, . . ., xN ] ∈ RN×C, dot-product attention utilizes three projected matrices
Wq ∈ RDx×Dq , Wk ∈ RDx×Dk , and Wv ∈ RDx×Dv to generate the corresponding query
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matrix Q, the key matrix K, and the value matrix V. The attention is, according to [21],
computed as follows:

D(Q, K, V) = softmax
(

QKT
√

dk

)
V (4)

where dk is a scale factor. As Q ∈ RN×Dk and KT ∈ RDk×N , the product between Q and KT

belongs to RN×N , which leads to O(N2) memory and computational complexity. Thus, the
ith row of result matrix generated by the dot-product attention module can be written as:

D(Q, K, V)i =
∑N

j=1 eqT
i kj vj

∑N
j=1 eqT

i kj
(5)

First generalizing (5), then approximating eqT
i kj with first-order Taylor expansion,

finally l2-normalizing the resulting equation, (5) can be written as:

D(Q, K, V) =
∑j Vi,j +

(
Q
‖Q‖2

)T
((

K
‖K‖2

)T
V
)

N +
(

Q
‖Q‖2

)
∑j

(
K
‖K‖2

)T

i,j

(6)

As ∑N
j=1

((
kj/
(∥∥kj

∥∥
2

))
vT

j and ∑N
j=1

((
kj
)
/
(∥∥kj

∥∥
2

))
is common to every query, com-

plexity of this linear attention mechanism is O(N). Nevertheless, for the channel dimension
dot-product-based attention is computed, considering that the channels of the input C
are much less than the pixels. Thus, by taking the ResNet as the backbone, MAResU-Net
combines low and high-level feature maps through attention block in multiple stages.

4. Experimental Results

As previously affirmed, we combined OBoW and MAResU-Net, in order to enhance
semantic segmentation performances, and validated this intuition on ISPRS Vaihingen
benchmark dataset [28]. The general strategy adopted to determine the training process,
and summed up in Table 1, is as follows:

• For the OBoW training, we have followed the procedure presented in [12]. We
have, thus, selected the hyperparameters that the authors utilized in the semantic
segmentation downstream task;

• For the MAResU-Net training, we started from the configuration provided in [18].
First of all, we made some considerations on some issues, concerning the activation
function and the loss, then, we explored different sets of hyperparameters, following
different intuitions, as we discuss in Section 4.3.

After briefly presenting the data in Section 4.1, we go in the deep on the experimental
results in Section 4.2. Finally, the ablation studies are presented in Section 4.3.

4.1. Vaihingen Dataset

To evaluate the performances of the presented strategy, we chose the benchmark
dataset of Vaihingen, provided by ISPRS [28]. The dataset contains 33 tiles of variable sizes,
each consisting of a true orthophoto (TOP). The ground sampling distance of the images is
9 cm. The images are 8 bit TIFF with three bands, corresponding to near infrared (NIR),
red (R), and green (G). The corresponding masks are divided into six classes: background,
impervious surface, car, building, low vegetation and trees. Following the approach of [7],
we cropped each TOP in a variable number of 256 × 256 overlapping patches. We ended
up with a dataset of more than 7500 images. Then, we divided it in train and validation,
respectively, 85% (∼6500 images) and 15% (∼1000 images) of the total.
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Table 1. Summary of the training process. In (a) the principal training hyperparameters of the two methods are shown.
Most of them trace the one presented in [12,18]. In (b,c) some details about OBoW configuration are offered. In particular, in
(c) we show the augmentation applied for the training. In (d) the training times are shown.

(a) Training hyperparameters

Method Batch Size LR (final LR) Optimizer Scheduler Augm. Epochs

OBoW 256 0.3 (0.003) Adam Cosine Radiometric 40
MAResU-Net 64 0.003 Adam Step No 150

(b) OBoW Configuration

Num. Image Crops Crop Size Num. Patches Patch Size 1/δ Num. Words κ

2 160 × 160 5 of 9 96 × 96 15 8192 8

(c) Data Augmentations application probability (p) (d) Training time with Tesla V100-SXM2 32 GB GPU

Transformation p Method Training Time (it/s)

Color Jittering 0.9 OBoW 1.39
Grayscaling 0.2 MAResU-Net 1.09

Gaussian Blurring 0.7

4.2. Experimental Settings

For the training phase, a single Tesla V100-SXM2 32 GB GPU has been used. Thus, we
trained, through OBoW, a ResNet-18 feature extractor, used as encoder in the following
MAResU-Net. With specific reference to the latter, we fine tuned the ResNet-18 encoder
and trained the decoder. The overall accuracy (OA), accuracy per class, mean intersection
over union (mIoU), and F1-score (F1) are the selected evaluation indexes. The background
class is excluded from the evaluation, except for the OA, as in [18]. The pretrained model
that reaches the best performances is available at the following link: https://github.com/
VMarsocci/MARE (accessed on 6 July 2021).

4.2.1. OBoW

Among the several experiments we conducted, the best OBoW configuration, in terms
of loss, was trained with a batch size of 256. As optimizer, Adam was preferred, with a
cosine scheduler, with a first epoch of warmup. The learning rate started from 0.03 and
finished to 0.003. Moreover, κ was set to 8 and the number of words of the dictionary is 8192.
The net was trained for 40 epochs. The data have been augmented with strong radiometric
transformation, consisting in: color jittering, gray-scaling, and Gaussian blurring. The
input images of the student network consist in two sets of crops. The first ones are obtained
performing two overlapping crops of size 160 × 160 on each augmented image. Finally,
the second ones are 5 random patches, selected from 9 overlapping crops of size 96 × 96
of the input image. An example is provided in Figure 3. The training speed time was
1.38 iteration per second.

Figure 3. An example of the input images of the OBoW student network.

https://github.com/VMarsocci/MARE
https://github.com/VMarsocci/MARE
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Moreover, in Figure 4, we provide some examples from the conv4 teacher feature maps
of the ResNet-18 OBoW model. Since we use a queue-based vocabulary that is updated
online, for the visualizations we used the state of the vocabulary at the end of the training.
For the visualization, the patches with the highest assignment score for a specific visual
word are retrieved. As it can be noticed, visual words encode high level visual concepts.

Figure 4. Examples of visual-word members from the conv4 layer of ResNet-18.

4.2.2. MAResU-Net

In the second step, we took the ResNet-18 feature extractor, obtained with OBoW and
used it as the encoder of the MAResU-Net. The best performances for the MAResU-net
were achieved with the following configuration. A batch size of 64 was set. An Adam
optimizer, with starting learning rate of 0.0003 and a step scheduler was selected. The net
was trained for 150 epochs, with an early stopping, expected after 20 epochs of patience.
Finally, no data augmentation was performed on input data. Moreover, w.r.t. the original
paper [18], we introduce a slight modification to the original architecture: ReLU activation
function was replaced with a leaky-ReLU, that seems to be more stable, avoiding zero
gradient flows for some neurons [59]. The training speed time was 1.09 iteration per second.

In Table 2, the results compared to the one provided by [18] are presented, while, in
Figure 5, a segmentation mask comparison is offered.

It looks important to note how MARE obtains the best results w.r.t. all the architectures
with a ResNet-18, and all but MAResU-Net with a ResNet-34 as the backbone. This, of
course, could be explained by the number of parameters of the model: with a ResNet-18 as
backbone, the net has 16.2 M of parameters; with a ResNet-34, it has 26.3 M. In particular,
MARE outperforms MAResU-Net18, reaching 87.95% for F1, 90.35% for the OA and 81.76%
for the mIoU. This means that, on the one hand, the MAResU-Net architecture can capture
refined and detailed features; on the other hand, the representations learned by OBoW
feature extractor are effective. These results are more encouraging if we think that, often,
state-of-the-art performances are reached thanks to very huge backbone (e.g., ResNet-101
in [20]). Thus, we can consider these results from two points of view:

• We reached a very important trade-off between high performance (e.g., 81.76% mIoU)
and number of parameters (just 16.2 M);
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• We showed the effectiveness of the new approach, that is to find new techniques to
exploit the high amount of unlabeled data in RS.

To better assess the performance of the model, we trained on our machine MAResU-
Net, with a pretrained on ImageNet ResNet-18 as backbone, using the characteristics
provided in [18]. The quantitative and qualitative results can be, respectively, observed in
Table 3 and Figure 6.

Table 2. Experimental results on Vaihingen dataset [28] w.r.t. the results proposed in [18]. We can observe how MARE
reaches the best results with a ResNet-18 encoder in all the adopted metrics.

Method Backbone
Accuracy per Class

Mean F1 OA mIoU
Imp. Surf. Car Building Low Veg. Tree

U-Net [31] - 84.33 40.82 86.48 73.13 83.89 73.73 82.02 61.36
ResUNet-a [7] - 86.71 57.10 88.32 76.79 85.43 78.87 84.35 67.00
PSPNet [32] ResNet-34 90.27 51.10 94.22 82.76 88.61 81.39 88.82 71.59
DANet [23] ResNet-34 91.13 62.98 94.82 83.47 88.92 84.27 89.52 74.73
EaNet [20] ResNet-34 92.17 80.56 95.20 82.81 89.25 88.00 89.99 80.22

CE-Net [36] ResNet-34 92.68 81.24 95.53 83.36 89.94 88.46 90.40 81.49
MAResU-Net [18] ResNet-18 91.97 78.28 95.04 83.73 89.35 87.68 90.05 80.75
MAResU-Net [18] ResNet-34 92.91 88.33 95.26 84.95 89.94 90.28 90.86 83.30

MARE ResNet-18 91.58 80.68 94.92 83.99 89.62 87.95 90.35 81.76

Figure 5. Visualization of the comparison among the different methods on the Vaihingen dataset [28].
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Table 3. Comparison among MAResU-Net trained with a ResNet-18 backbone and MARE. The SSL pretraining strategy of
the ResNet-18 encoder is effective, allowing the architecture to achieve the best results (e.g., 81.76% mIoU) in literature with
this type of encoder.

Method Backbone
Accuracy per Class

Mean F1 OA mIoU
Imp. Surf. Car Buildings Low Veg. Tree

MARE ResNet-18 91.58 80.68 94.92 83.99 89.62 87.95 90.35 81.76
MAResU-Net ResNet-18 92.01 78.31 94.84 83.87 89.44 87.73 90.02 80.75

Figure 6. Segmentation masks comparison between MAResU-Net and MARE, both with a ResNet-18
as the backbone.

To better understand the behavior of our strategy, some ablation studies were per-
formed and presented in the following Section 4.3.

4.3. Ablation Studies
4.3.1. OBoW

The results of the performed ablation studies could be observed in Table 4. Only a
limited set of hyperparameters were changed to perform these experiments. In fact, for
the more proper parameters of the algorithm (e.g., κ, size of dictionary, ecc. . . ) we referred
to the values proposed in [12], in light of the best results achieved in several downstream
tasks with this configuration, including semantic segmentation.

We could observe that, first of all, although it is widely recognized that robust data
augmentation leads to better results, for this type of images, the insertion of geometric
deformations (consisting in a random affine and a random perspective transformation)
does not lead the network to a better understanding of which are the invariants to the
context of the images, without being able to go beyond 0.96 of loss. Thus, only a strong



Remote Sens. 2021, 13, 3275 12 of 17

radiometric augmentation was needed to reach the lowest loss (0.59). In addition, regarding
the batch size, we can observe how, on the one hand, 256 is the same batch size that leads to
the best results in [12], on the other hand that a large enough batch size allows the machine
to select the best words to insert in the dictionary, without overburdening the computation.
Indeed, batch size of 64 leads to the second best loss, that is 0.77. Further on, we show
ablation studies to demonstrate that lower losses of OBoW training correspond to better
semantic segmentation performances.

Table 4. An overview of the OBoW configuration. We can observe that the best configuration is
reached with a strong radiometric augmentation. The other hyperparameters are in line with those
proposed in [12].

Obow Config. LR Batch Size Optimizer Augmentation Min Loss

1 0.005 256 adam Rad. 0.59
2 0.005 64 adam Rad. 0.77
3 0.005 256 adam Rad./Geom. 0.96
4 0.003 256 adam Rad. 0.94
5 0.005 256 SGD Rad. 1.90

4.3.2. MAResU-Net

Table 5 shows the results of the first set of ablation studies, in which we tried various
combinations of training losses, data augmentations, and batch sizes. In Figure 7, the
values of the respective mIoUs could be observed.

Table 5. Ablation studies investigating losses, augmentations, and batch sizes. The best model is
highlighted in bold.

Loss Augm. BS OA Acc. per Class Mean F1 mIoU

SCE

No
16 89.94 87.43 87.28 80.33
64 90.35 88.16 87.95 81.76

256 89.67 87.51 87.34 80.83

Yes
16 89.13 87.01 86.37 79.91
64 89.91 87.29 86.43 80.98

256 89.02 87.28 86.39 80.61

WCE

No
16 89.52 87.51 86.93 80.50
64 90.02 87.81 87.32 81.15

256 89.68 87.42 87.04 80.67

Yes
16 88.31 86.99 85.81 79.13
64 88.53 86.91 85.93 79.83

256 88.05 86.91 85.93 79.43

First of all, we can observe that the presence or not of data augmentation leads to
almost the same results with a slight preference for the configuration without augmentation.
Indeed, considering the best model, the mIoU (81.76%) exceeds by less than one point the
results obtained with the data augmentation (80.98%). This can be explained by the fact
that, during the training of the feature extractor, a strong radiometric augmentation was
performed on the same data. Therefore, the MARes-UNet encoder weights are already ben-
efiting by this enhancement. Thus, the configuration without augmentation was preferred,
also as it is faster.

Concerning the loss, we observed that, due to the unbalanced classes, the WCE
performs better than the SCE on the segmentation of the less frequent classes: cars and low
vegetation. In particular, the accuracy are, respectively: 85.64% (WCE) vs. 80.68% (SCE) for
the cars and 86.12% (WCE) vs. 83.99% (SCE) for the low vegetation. However, it should
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be noted that the algorithm tends to overestimate these classes, performing worse on the
other classes, and, in general, on the overall metrics. For example, we can observe a drop
of the accuracy of the easiest class to detect, the buildings: 90.81% (WCE) vs. 94.92% (SCE).
The experimental results could be observed in Table 6.

Figure 7. mIoU values of the experiments performed with different losses, i.e., soft cross entropy
(SCE) and weighted cross entropy (WCE); application or not of data augmentations and various
batch sizes (16, 64, 256).

Table 6. Ablation study about training loss. We can observe how the WCE performs better on the unbalanced classes,
i.e., cars and low vegetation, w.r.t. the SCE, but worse on the other ones.

Method Loss
Accuracy per Class

Mean F1 OA mIoU
Imp. Surf. Car Buildings Low Veg. Tree

MARE SCE 91.58 80.68 94.92 83.99 89.62 87.95 90.35 81.76
MARE WCE 88.20 85.64 90.81 86.16 88.23 87.32 90.02 81.15

As far as the activation function is concerned, we conducted experiments with the
ReLU and the leaky-ReLU, as presented in Table 7. We can observe how the results of the
two configurations are very similar: the ReLU overperforms the Leaky-ReLU only in the
OA, just of 0.05 (respectively, 90.40% vs. 90.35%). On the other hand, the widest gap among
the performances of the two activation functions is 0.32, in the mIoU: 81.44% (ReLU) vs.
81.76% (leaky-ReLU). In light of this and because, as said, the ReLU could lead to the death
of some neurons [59], we replaced it with a leaky-ReLU.

Table 7. Ablation study about activation functions: the leaky-ReLU overperforms by very little the
ReLU in all the metrics, but the overall accuracy (OA).

Activation OA Acc. per Class Mean F1 mIoU

ReLU 90.40 87.91 87.84 81.44
Leaky-ReLU 90.35 88.16 87.95 81.76

Finally, concerning the OBoW feature extractor, we wanted to make sure that lower
losses corresponded to lower performance for the downstream task. Particularly, we selected
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the two best OBoW feature extractors (see Table 4) that, respectively, reach 0.59 (configuration
n. 1) and 0.77 (configuration n. 2) as loss value during the OBoW training process. This
intuition would seem to find confirmation in the experiments conducted, although the metrics
differ slightly (less than 1 point), as shown in Table 8.

Table 8. Ablation study about OBoW configuration: lower losses in the OBoW training process of the
ResNet-18 feature extractor correspond to lower performances in the downstream task.

OBoW Loss value OA Acc. per Class Mean F1 mIoU

1 0.59 90.35 88.16 87.95 81.76
2 0.77 89.64 87.63 87.27 80.35

5. Conclusions
5.1. Review and Conclusion of the Accomplished Work

Semantic segmentation in RS remains a challenging and pivotal task. On the other
hand, cutting-edge methods, such as SSL, and the attention mechanism are gaining increas-
ing interest, finding a wide range of applications in real-world tasks. The application of a
SSL model, such as OBoW, can lead to the creation of robust features that can improve the
representation of the considered data, tackling, at least partially, the important problem of
annotated data scarcity in RS. Furthermore, the attention mechanism allows the net to take
into account the long-term dependencies also in specific sub-domains of images, such as
RS. Following this intuition, in this letter we successfully combine existing methods in a
technically sound manner in order to deliver a segmentation method that is efficient and
high-performing.

5.2. Limitations and Outlook of the Proposed Approach

The set of experiments presented here shows how SSL methods are highly effective in
RS, making it possible to exploit large amounts of non-annotated data, partially freeing seg-
mentation systems from the need of annotated datasets. Furthermore, the foundations are
laid for the validation of the effectiveness of SSL techniques on a wide range of downstream
tasks related to different sectors of image analysis. However, the study presents only a first
step in this direction. First of all, it would be interesting to extend the range of experiments,
showing the behavior of this approach with the modification of some parameters, such
as the size of the encoder or the SSL strategy. However, once again it is stated that the
trade-off obtained between the number of parameters and excellent performance (the best
with a ResNet-18 as an encoder) is very important.

5.3. Further Developments

On the one hand, further developments will be to extend this research, not only to
other self-supervised algorithms, but also to assess how SSL affects the performances in
other downstream tasks, connected to the RS area, such as object detection or disparity
map creation, to further reduce the need of annotated data, exploiting at the maximum
the available images. Moreover, it would be interesting to evaluate how such approaches,
which exploit information from non-annotated data, behave as the number of labeled
data decreases.
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