
remote sensing  

Article

An Adaptive Weighted Phase Optimization Algorithm Based on
the Sigmoid Model for Distributed Scatterers

Shijin Li 1,2 , Shubi Zhang 1, Tao Li 2,*, Yandong Gao 1,2 , Xiaoqing Zhou 2, Qianfu Chen 2, Xiang Zhang 2

and Chao Yang 2

����������
�������

Citation: Li, S.; Zhang, S.; Li, T.; Gao,

Y.; Zhou, X.; Chen, Q.; Zhang, X.;

Yang, C. An Adaptive Weighted

Phase Optimization Algorithm Based

on the Sigmoid Model for Distributed

Scatterers. Remote Sens. 2021, 13, 3253.

https://doi.org/10.3390/rs13163253

Academic Editors: Lei Zhang and

Zhong Lu

Received: 13 July 2021

Accepted: 13 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Environment Science and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China; shijin_li@cumt.edu.cn (S.L.); zhangsbi@cumt.edu.cn (S.Z.); ydgao@cumt.edu.cn (Y.G.)

2 Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China,
Beijing 100048, China; zhouxq@lasac.cn (X.Z.) chenqf@lasac.cn (Q.C.); zhangx@lasac.cn (X.Z.);
yangc@lasac.cn (C.Y.)

* Correspondence: lit@lasac.cn; Tel.: +86-186-1137-5841

Abstract: Distributed scatterers (DSs) have been widely used in the time series interferometric syn-
thetic aperture radar technique, which compensates for the insufficient density of persistent scatterers
(PSs) in nonurban areas. In contrast to PS, DS is vulnerable to temporal and geometric decorrelation
effects. Thus, phase optimization processing for DS is essential for reliable deformation parameter
estimation. Advanced research has revealed that the application of all possible interferometric pairs
will be more conducive to the reduction in phase biases. However, the low-coherence pixels will
inevitably increase the difficulty of phase optimization and introduce unpredictable negative effects,
which will reduce the effect of phase optimization. Therefore, this study proposed an advanced
adaptive weighted phase optimization algorithm (AWPOA). In the AWPOA, the adaptive weighting
strategy based on the sigmoid model was first proposed to assign more reasonable weights to pixels
of different quality, which can efficiently reduce the negative influence of low-coherence pixels and
improve the optimization performance. Moreover, coherence bias correction based on the second-
kind statistics and an efficient solution strategy based on eigenvalue decomposition were derived
and applied to achieve optimal phase series retrieval. The experimental results validated against
both simulated and two sets of TerraSAR-X data demonstrated the overall superiority of the AWPOA
over traditional phase optimization algorithms (POAs). Specifically, the processing efficiency of the
eigenvalue decomposition solution strategy used in AWPOA was nearly 20 times faster than that of
the PTA iterative solution strategy under the case without bias correction. Although bias correction
increased the processing time, the optimization effect was significantly improved. Moreover, in terms
of the quantitative evaluation indexes with the residual and the sum of the phase difference, the
mean value of the improvement percentage of the AWPOA was increased by more than 12%, and the
standard deviation was reduced by more than 1% over the traditional POAs, indicating its superior
optimization performance and noise robustness.

Keywords: distributed scatterer; phase optimization; adaptive weighting; sigmoid model

1. Introduction

In recent decades, the interferometric synthetic aperture radar (InSAR) technique has
played an important role in geophysics and geodesy with the benefits of wide coverage and
high precision under all weather conditions. The differential InSAR (DInSAR) technique
developed on this basis has also yielded broad application prospects in the field of surface
deformation monitoring [1–3] and geological disaster monitoring [4,5]. However, the
DInSAR technique is limited by temporal and geometric decorrelation, atmospheric delay,
and other factors [6]. To overcome these limits, the time series InSAR (TSInSAR) technique
based on time series SAR image analysis was subsequently developed [7–9], which mainly
focuses on time series analysis of coherent radar targets instead of ensembles of image
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pixels. According to the different scattering mechanisms of coherent radar targets adopted
in the TSInSAR technique, they can be divided into two categories: persistent scatterers
(PSs) and distributed scatterers (DSs).

Among them, PSs are scatterers whose scattering characteristics remain stable even
over long time intervals and under large baseline separation, such as houses, bridges, and
other manmade buildings and exposed surface rocks. Because PS pixels always maintain
a high coherence in long time series SAR images, the TSInSAR technique based on PSs
usually adopts the combination mode of a single-master interferometric pair, such as
the persistent scatterer InSAR (PSInSAR) technique [8], the spatiotemporal unwrapping
network (STUN) [10], the PS pair (PSP) interferometry technique [11], and the Geodesy and
Earth Observing Systems persistent scatterer interferometry (GEOS-PSI) technique [12].
However, there are various limitations attributed to the insufficient density of PSs in
nonurban areas, which restricts the accuracy and reliability of deformation field information
recognition and interpretation.

DSs compensate for this shortcoming and are widely distributed in bare soil areas,
sparsely vegetated or desert areas, and rural areas. However, in contrast to PSs with the
dominant scatterer in the resolution cell, DSs include many random scatterers with similar
scattering characteristics in the resolution cell, which makes it vulnerable to temporal and
geometric decorrelation effects. Therefore, improvement of the signal-to-noise ratio (SNR)
of the observed phase is an indispensable step in the TSInSAR technique based on DSs.
The classic small baseline subset (SBAS) technique [7] enhances the phase SNR via the
construction of an interferometric pair network with small temporal and spatial baselines
and multilook interferogram processing. Subsequently, the SqueeSAR technique [13]
achieves this objective through spatial averaging of the statistically homogeneous pixel
(SHP) neighborhood and estimates the optimal phase series based on the corresponding
sample covariance matrix (SCM). Notably, the SqueeSAR technique considers all possible
interferometric pair information, and researchers have further verified that even weak
coherent phase information may facilitate phase history retrieval [14]. Hence, numerous
extended techniques have been proposed on the basis of the SqueeSAR technique, whose
fundamental difference involves the phase optimization algorithm (POA) [15,16].

In regard to the POA, research has focused on three aspects: SCM estimation, the
weighting strategy, and the solution strategy. The SCM or complex coherence matrix, i.e.,
the normalized SCM, is crucial to balance the quality of time series phase observations [17].
Accurate SCM estimation better guarantees the optimization performance of the algorithm.
However, due to limited samples and inevitable heterogeneous pixels, the SCM estimated
via maximum-likelihood estimation is suboptimal. Although the advanced coherence
estimation method based on the convolutional neural network joint model shows the better
results, its estimation accuracy is still limited by the number of samples [18]. Advanced
research has demonstrated that there are two ways to reduce the impact of this problem.
On the one hand, a more accurate SHP recognition algorithm [19,20] could be adopted to
avoid heterogeneous pixels. On the other hand, a robust SCM estimation method [21] or
a coherence bias correction approach [17,22] could be adopted to improve the estimation
accuracy. In terms of the weighting strategy, Cao et al. [23] and Samiei [24] unified partial
optimization algorithms into a generic mathematical model under the condition of the
same SCM estimator, and the only difference was the weight factor assigned to the residual
phase. Weighting strategies based on the Hadamard product of the inverse of coherence
and coherence [13,25], equal weight [23], coherence [15,26], coherence power [27], and
Fisher information [28,29] have been proposed and verified to achieve good performance.
Advanced research has revealed that even low-coherence pixels provide useful informa-
tion. However, if the low-coherence pixels are assigned unreasonable weights, it will
increase the difficulty of phase optimization, introduce unpredictable negative effects, and
ultimately reduce the optimization effect. Therefore, it is essential to allocate reasonable
weights for different quality pixels. Currently, the solution strategies for POAs mainly
include the quasi-Newton method and the eigenvalue decomposition (EVD) method. The
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former method is aimed at the nonlinear optimization problem of maximum-likelihood
estimation. Research has indicated that the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm realizes a better effect [30], but the method is time-consuming, and the number
of iterations is affected by initialization [25]. The latter method is suitable for specific
phase optimization models, such as the component extraction and selection SAR (CAESAR)
algorithm [31] relying on SCM decomposition and the phase-decomposition-based PS
InSAR (PD-PSInSAR) technique [32] based on complex coherence matrix decomposition.
However, these two optimization algorithms based on EVD are more inclined to the tomo-
graphic separation of multiple scattering mechanisms, and the optimization performance
is inferior to that of optimization algorithms based on maximum-likelihood estimation.
The subsequently developed eigen-decomposition-based maximum-likelihood-estimator
of the interferometric phase (EMI) algorithm considers both the optimization performance
of the maximum-likelihood estimator and the solution performance of EVD.

In view of the current research hotspots and the existing problems in POAs, this study
proposed an adaptive weighted POA based on the sigmoid model (AWPOA). Note that
the proposed AWPOA comprehensively considers the three key research points mentioned
above. First, coherence bias correction based on the second-kind statistics is introduced and
carried out in regard to the SCM derived via maximum-likelihood estimation of the SHP
neighborhood. Then, an adaptive weighting strategy based on the sigmoid model is first
proposed and applied for the generic optimization function model, which can adaptively
allocate reasonable weights for different quality pixels. Finally, an efficient solution strategy
based on the EMI framework is derived and used to estimate the optimal phase series,
which can effectively improve the processing efficiency. Simulated data and two sets of
TerraSAR-X real data jointly verify the effectiveness of the proposed AWPOA.

The article is organized as follows. In Section 2, the proposed AWPOA is described
in detail, including coherence bias correction, an adaptive weighting strategy based on
the sigmoid model and an efficient solution strategy based on the EMI framework. In
Section 3, the optimization performance of the AWPOA is evaluated with simulated data.
In Section 4, the effectiveness of the proposed AWPOA is further evaluated with two sets
of TerraSAR-X real data. Finally, conclusions are outlined in Section 5.

2. Proposed Method
2.1. Coherence Bias Correction

The sample covariance matrix is the basis of all phase optimization methods for
distributed scatterers, which is mainly derived through maximum-likelihood estimation
for the SHP neighborhood. On the basis of advanced research, this study adopted the fast
SHP selection (FaSHPS) algorithm [33] to identify the SHP neighborhood set. For given
N images, the L-look amplitude vector of pixel p is A =

[
A1 A2 · · · AN

]
, and the

estimator of the mean value µ(p) of pixel p can be expressed as A(p) = ∑ Ai/N. In view
of the statistical characteristics of scatterers, amplitude A satisfies a Rayleigh distribution.
Therefore, the coefficient of variation (CV) of the corresponding pixel is only related to the
number of looks, i.e., CV(A(p)) =

√
Var(A(p))/E(A(p)) = 0.52/

√
L. On this basis, the

confidence interval of A(p) at a confidence level of 1− α is expressed as:

P
{

µ(p)− z1−α/2 · 0.52 · µ(p)/
√

N · L < A(p) < µ(p) + z1−α/2 · 0.52 · µ(p)/
√

N · L
}
= 1− α, (1)

where z1−α/2 is the 1− α/2 percentile of the standard normal probability density function.
Based on the determined SHP neighborhood sets, the sample covariance matrix is

derived through maximum-likelihood estimation. However, to avoid the influence of the
unbalanced backscattered power among the SAR images, the complex coherence matrix is
considered instead of the sample covariance matrix.

^
T =

1
M ∑

y∈Ω

yyH = |
^
T| ◦Φ, (2)



Remote Sens. 2021, 13, 3253 4 of 19

where
^
T is the complex coherence matrix; M is the number of pixels in SHP neighborhood

set Ω; y is an N×1 normalized complex observation vector; (·)H indicates the conjugate

transpose operation; |
^
T| is the coherence matrix, i.e., the absolute value of the complex

coherence matrix; ◦ indicates the Hadamard product; and Φ = exp(jϕi,j) is the phase
observation. Limited samples and the inevitable heterogeneous pixels in the SHP neigh-
borhood bias the coherence estimation, especially over low-coherence pixels. Therefore,
the second-kind statistics defined with the Mellin transform (log-moment) [34] are applied
in coherence bias correction, and the refined complex coherence matrix can be obtained as:

~
T = |

~
T| ◦Φ with |T̃| = exp

(
1
M ∑

i∈Ω

ln
(
|T̂|i
))

, (3)

where
~
T is the refined complex coherence matrix and |T̂| and |T̃| are the coherence values

before and after bias correction, respectively.

2.2. The Adaptive Weight Based on the Sigmoid Model

Initially, the optimized phase series can be estimated via maximization of the joint
probability density function of the SHP neighborhood or the absolute value of the logarithm
of this probability density function:

φ̂ = arg max
T

{
ln
(

pd f (
~
T|T)

) }
= arg max

T

{
−tr

(
T−1 ~

T
)
− ln(Det(T))

}
, (4)

where φ̂ is the estimator of the optimized phase, tr(·) is the trace of the matrix, Det(·) is
the matrix determinant, and T is the real covariance matrix of the N-dimensional complex
circular Gaussian distribution vector, which can be expressed with the real coherence and
the real phase.

T = ψγψH = γ ◦ θθH with ψ = diag(θ) = diag
(

exp(jφ1) exp(jφ2) · · · exp(jφN)
)
, (5)

where γ is the real coherence matrix and φ is the real phase vector. Through detailed
derivation, Equation (4) can be further expressed as a generic mathematical function model:

φ̂ = arg max
φ

{
θH(w ◦Φ) θ

}
= arg max

φ

{
N

∑
i=1

N

∑
j>i

wij cos
(

ϕi,j − (φi − φj)
) }

, (6)

where w is the weight factor corresponding to the residual phase, which is also the main
difference from many POAs. In principle, the optimal phase reconstruction process actu-
ally determines the maximum summation of cos

(
ϕi,j − (φi − φj)

)
with the corresponding

weight term w, which minimizes the difference between the estimators and observations.
The POA considers all possible interferometric pair information, and advanced re-

search has revealed that even low-coherence pixels provide useful information. However,
when a high weight is assigned to low-quality pixels, this reduces or even mitigates the role
of high-quality pixels in the phase optimization process, resulting in a nonideal optimized
phase in the SNR improvement. Therefore, it is essential to allocate reasonable weights to
pixels of different qualities. This is consistent with the conclusion that the optimization
effect of the equal-weight strategy is inferior to that of the coherence weighted strategy, as
reported in [23].

Therefore, an adaptive weighting strategy based on the sigmoid model was proposed
to allocate reasonable weights for different quality pixels and to further improve the quality
of the optimized phase. Considering that the coherence coefficient effectively characterizes
the degree of signal decorrelation and the phase quality, it was adopted as the medium of
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the proposed adaptive weighting strategy. In addition, the proposed adaptive weight can
be described as

wsig =
1

1 + exp
(

k(−|T̃|+ b)
) . (7)

There are two main parameters involved in the above equation: b indicates the
inflection point, and k indicates the intensity of the data changes before and after the
inflection point. This can be understood more intuitively through Figure 1a. Here, the

full coherence matrix |
~
T| is regarded as a band matrix, and the bandwidth of the matrix is

defined by parameter Bw, as shown in Figure 1b. Moreover, b is set to the mean value of
the diagonal element in the Bw column, i.e., the mean value of the red diagonal elements,
as shown in Figure 1b.

When the coherence value is low, this algorithm allocates a lower weight to reduce the
proportion of the low-quality phase in the process of phase optimization, which weakens
the negative impact of the low-quality phase on phase optimization. When the coherence
of pixels is high, this algorithm allocates a higher weight to enhance the role of the high-
quality phase in phase optimization. Therefore, the adaptive weighting strategy based
on the sigmoid model proposed in this study not only ensures the consideration of all
possible interferometric phase information but also reduces the negative impact of the
phase corresponding to a low coherence on phase optimization.

Figure 1. Adaptive weighting model. (a) Adaptive weighting based on the sigmoid model; (b) diagram of inflection point
b setting.

2.3. An Efficient Solution Strategy Based on the EMI Framework

To solve the nonlinear optimization problem described in Equation (4), the quasi-
Newton method based on the BFGS algorithm is usually applied. However, this process is
highly time consuming. Therefore, this study adopted an efficient EVD solution strategy
similar to the EMI algorithm.

Substituting Equation (5) into Equation (4), the following is obtained:

φ̂ = arg max
φ

{
−tr

(
ψγ−1ψH ~

T
) }

= arg max
φ

{
θH
(
−γ−1 ◦

~
T
)
θ
}

. (8)

Compared to the generic mathematical function model described in Equation (6), we
can obtain:

w = −γ−1 ◦ |
~
T|. (9)

Considering that the coherence matrix is fixed, the fundamental difference between
the various weighting strategies lies in the setting of the real coherence matrix γ. When
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γ is replaced by the sample coherence matrix, the optimal solution can be obtained the-
oretically. However, due to the inevitable coherence bias, the optimized result is always
suboptimal. Therefore, a series of different weighting strategies was proposed to improve
the optimization performance, and the ultimate goal of the adaptive weighting strategy
based on the sigmoid model was the same. The adaptive weighting strategy described in

Equation (7) is substituted into Equation (9), γ = γsig =

(
−Wsig

|
~
T|

)−1
, where the division

operation is an elementwise operation. Notably, γ is replaced by γsig.
In contrast to Equation (5), two calibration factors were introduced in the EMI solution

framework, which act on the real phase ψ.

ψ′ = αdiag(η ◦ θ) = αdiag
(

η1 exp(jφ1) η2 exp(jφ2) · · · ηN exp(jφN)
)
, (10)

where α is a real number and η is an N×1 real vector. Substituting Equation (10) into
Equation (5), the following was obtained:

T′ = ψ′γψ′H = α2γ ◦ ηηT ◦ θθH . (11)

Under the condition of Equation (11), the maximum joint probability density function
was derived again:

φ̂ = arg max
φ,α,η

{
−tr

(
T′−1

~
T
)
− ln(Det(T′))

}
= arg max

φ,α,η

{
−tr

(
α−2(γ−1 ◦

~
T)ζζH

)
− 2 ln(∏ αηi)− ln(Det(γ))

}
= arg max

φ,α,η

{
−α−2ζH(γ−1 ◦

~
T)ζ−∑ ln(αηi)

2
} , with ζ = η◦−1 ◦ θ, (12)

To solve Equation (12), Taylor expansion was carried out under (αηi)
2 ≈ 1, and the

first-order equation was adopted to accelerate the convergence of the objective function:

φ̂ = arg max
φ,α,η

{
−α−2ζH(γ−1 ◦

~
T)ζ−

N
∑

i=1
(αηi)

2
}

= arg min
φ,α,η

{
α−2ζH(γ−1 ◦

~
T)ζ−

N
∑

i=1
(αηi)

−2
}

. (13)

Furthermore, Lagrange multiplication was applied to realize the equality constraint

of the η◦−1 vector norm, i.e.,
∥∥η◦−1

∥∥
2

2 =
N
∑

i=1
(ηi)

−2 = ζHζ = N. Substituting it into

Equation (13), the following was obtained:

φ̂ = arg min
φ,α,η

{
α−2ζH(γ−1 ◦

~
T)ζ− α−2ζHζ

}
= arg min

φ,α,η,µ

{
α−2ζH(γ−1 ◦

~
T)ζ− α−2ζHζ− µ(ζHζ− N)

}
= arg min

φ,α,η,µ

{
α−2ζH(γ−1 ◦

~
T)ζ− α−2ζHζ− µζHζ

} (14)

This minimum objective function can be further expressed as:

α−2ζH(γ−1 ◦
~
T)ζ = α−2ζH(ζ+ α2µζ) ,

(γ−1 ◦
~
T)ζ = λ ζwith λ = 1 + α2µ.

(15)

Therefore, the eigenvector corresponding to the minimum eigenvalue of γ−1 ◦
~
T is the

solution of Equation (14), i.e., the optimized phase series. Through the above derivation,
it was found that the two-step solution strategy described in Equations (13) and (14) is
aimed at the second term of the objective function, which is independent of the setting of γ.
That is, the above solution strategy is not affected by the weight. Therefore, within the EMI
solution framework, the optimized phase solution of the different weighting strategies is
the eigenvector corresponding to the minimum eigenvalue of −w ◦Φ.
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Therefore, on the basis of the above coherence bias correction, the adaptive weighting
strategy and the effective solution strategy, the optimized phase series of the proposed
algorithm is the eigenvector corresponding to the minimum eigenvalue of −wsig ◦Φ. Note
that the optimized phase is relative to a specific image, which is similar to traditional POAs.

3. Experimental Results with the Simulated Data
3.1. Influence of Coherence Bias Correction on Phase Optimization

In this study, simulation analysis was first implemented to verify the performance
of the proposed AWPOA, and state-of-the-art POAs were compared. In this section, the
influence of coherence bias correction on the performance of the considered POAs is
analyzed in detail. Here, the generic decorrelation model [35] was employed for real
coherence matrix simulation:

γi,j = (γ0 − γ∞) exp
(−∆ti,j

τ

)
+ γ∞, (16)

where γ0 and γ∞ indicate the short- and long-term coherence, respectively; ∆ti,j corre-
sponds to the temporal baseline between the i-th and j-th acquisitions; and τ is the signal
correlation length. When γ∞ = 0, it is referred to as the exponential decay, and when
γ∞ 6= 0, it is referred to as the long-term coherence. This study adopted the exponential
decay model with γ0 = 0.6 and γ∞ = 0 and the long-term coherence model with γ0 = 0.6
and γ∞ = 0.1 for experimental analysis and sets τ = 50. Moreover, an equal time interval
of six days, similar to that of Sentinel-1, was adopted. Furthermore, 30 images with 100
SHPs were simulated [36], the topographic and atmospheric phase components were set to
zero, and the displacement rate was 2 mm/yr.

Figure 2 shows a comparison of the coherence matrix estimators before and after
bias correction. Comparing Figure 2a,b, obvious deviation was found, especially in the
low-coherence region. However, after bias correction based on the second-kind statistics,
the coherence estimation effect was effectively improved, and the resulting matrix was
closer to the real coherence matrix. Furthermore, the subsequent optimization effect will
be improved using the refined coherence matrix. Figure 2d shows a histogram of the
different coherence estimation errors, which reflects the performance of bias correction
more intuitively. Undeniably, there were still some residual estimation errors after using
coherence bias correction, which needs to be further studied.

Figure 2. Coherence matrix simulated with the exponential decay model. (a) Simulated real coherence matrix. (b) Coherence
matrix estimated with Equation (2). (c) Coherence matrix after bias correction with Equation (3). (d) Histogram of the
coherence estimation error. Notably, (a–c) share the same color bar.
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To quantitatively analyze the influence of bias correction on phase optimization, the
root mean squared error (RMSE) of the optimized phase is defined as follows:

RMSE =

√√√√√ M
∑

i=1

N
∑

j=1

(
φ̂i,j − φi,j

)2

MN
, (17)

where φ̂ and φ are the optimized phase and simulated real phase, respectively, and M and N
refer to the row and column lengths of the simulated data. Figure 3 shows the RMSE of the
optimized phase before and after coherence bias correction considering different coherence
models and three different POAs with 2000 simulations. In terms of no-bias correction
with the exponential decay model, the RMSE of the phase obtained by the traditional EMI
algorithm was slightly smaller than that of the traditional phase triangulation algorithm
(PTA). It indicates that the optimization effect of the traditional EMI algorithm was slightly
better than that of the traditional PTA, which is consistent with previous studies. This is
because two calibration factors were introduced in the EMI algorithm, which provides
the possibility of calibration in the presence of coherence error. However, the calibration
effectiveness was slight. Notably, the AWPOA proposed in this study obtains obvious
advantages in its optimization performance over the PTA and EMI algorithms. Specifically,
compared with the other two algorithms, the maximum increment of RMSE obtained by
AWPOA was about 0.2. After coherence bias correction, the RMSE of the optimized phase
of all algorithms was significantly improved and gradually approached the Cramér–Rao
lower bound (CRLB) [37]. Among them, the PTA and EMI algorithms attained the most
prominent improvement effect, the maximum improvement value of RMSE was about 0.23,
and the optimized results were basically the same. However, the RMSE obtained by these
two algorithms was still 0.03 higher than that of AWPOA, indicating that the performance
of these two algorithms was still worse than AWPOA. Because the coherence simulated by
the long-term coherence model was generally higher than that of the exponential decay
model, especially in the case of the long temporal baseline, the RMSE of the optimized
phase obtained by the long-term coherence model was smaller than that of the exponential
decay model. Under the case of no-bias correction, it can be found that the optimization
effects of the PTA and EMI algorithms were similar, but they were also inferior to AWPOA.
After adopting the coherence bias correction, these three optimization algorithms showed
a similar optimization effect, and they all showed significant improvement over the case of
no-bias correction.

Figure 3. RMSE of the optimized phase before and after coherence bias correction. (a) The exponential
decay model. (b) The long-term coherence model.

Generally, the experimental results with the different coherence simulation mod-
els all verified the necessity and reliability of coherence bias correction for the POA
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and further confirmed the superiority of the proposed AWPOA over the considered
traditional algorithms.

3.2. Influence of the Weight on Phase Optimization

To further verify the effectiveness of the adaptive weighting strategy based on the
sigmoid model in the proposed AWPOA, the influence of the weight on phase optimization
was independently analyzed. To avoid any mixed influence of the bias correction factor,
coherence bias correction was not performed in the experiment. In addition, combined
with the efficient solution strategy described in Section 2.3, this study integrated certain
traditional weighting strategies into this efficient solution framework, such as equal-weight,
coherence, coherence power [38], and Fisher information strategies, to compare and analyze
the optimization performance under the different weights. Given a pixel, the corresponding
weights can be expressed as follows:

wequal = 1, wcoherence = |T̂|, wcoherence−power = |T̂|2, wFisher =
2L|T̂|2

1− |T̂|2
, (18)

where L is the number of looks.
Note that the weight of the PTA and EMI algorithm is the Hadamard product of

the inverse of coherence and coherence, i.e., w = −|T̂|−1 ◦ |T̂|. As shown in Figure 4a,
in the case of the exponential decay model, the optimization effect of the EMI algorithm
was similar to that of the PTA or even slightly better. However, the efficiency of the EMI
algorithm was much higher than that of the PTA because it does not require complicated
iterative processing. Comparing the different weighting strategies, the performance of
the equal-weight strategy was the worst because it assigns the same weight to all pixels.
The other weighting strategies all consider the coherence of pixels, so the performance
levels are higher than that of the equal-weight strategy. Among them, the performance
of the weighting strategy based on coherence was basically consistent with that of the
EMI algorithm. Additionally, the optimization effect of the weighting strategy based on
coherence power was similar to that of the weighting strategy based on Fisher information,
and they were superior to the previous weighting strategies. However, the RMSE of the
optimized phase estimated with the adaptive weighting strategy based on the sigmoid
model was obviously the best. Under the case of the maximum temporal baseline, the
RMSE obtained by the adaptive weighting strategy was improved by at least 0.12 compared
to the other weighting strategy. That is because this method assigns a more reasonable
weight to pixels of different quality. Specifically, the adaptive weighting strategy assigns
a lower weight to low-coherence pixels, which reduces their negative impact on phase
optimization processing. Meanwhile, it assigns a higher weight to high-coherence pixels,
which expands their positive role in phase optimization processing.

The RMSE values of different POAs under the long-term coherence model were gener-
ally lower than those of the exponential decay model by more than 0.15. However, we can
obtain the same conclusion with the exponential decay model. In detail, the optimization
performance with the equal weighting strategy was still the worst, and the performances
with the coherence weighting strategy, EMI, and PTA were similar. Moreover, the optimiza-
tion performance with the coherence power and the Fisher information weighting strategy
was basically the same and better than the former weighting strategies. The adaptive
weighting strategy always had the best optimization effect.

Generally, the experimental results with the different coherence simulation models
all demonstrate the superiority of the adaptive weighting strategy based on the sigmoid
model over the traditional weighting strategies in optimization performance.
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Figure 4. RMSE of the optimized phase corresponding to the different weights. (a) The exponential
decay model. (b) The long-term coherence model.

3.3. Efficiency

On the basis of the above simulation data, the computational time of different POAs
was statistically analyzed, as summarized Table 1. Notably, all algorithms were conducted
using MATLAB R2021a software with an i7-9750H 2.60-GHz CPU and 16 GB of RAM.

Table 1. Computational time (in seconds) for the different POAs.

Methods Without Bias Correction With Bias Correction

PTA 61.385 231.367
EMI 3.247 182.028

AWPOA 3.013 170.300

The processing efficiency of the proposed AWPOA was basically the same as that of
the EMI algorithm, and they were nearly 20 times faster than that of the PTA under the
case without bias correction. In fact, the efficient solution strategy described in Section 2.3
was similar to that of EMI, which are all based on the EVD. However, PTA uses the BFGS
algorithm, which needs a large number of iterative operations and is very time consuming.
Notably, compared with the EMI algorithm, the AWPOA adopts the adaptive weighing
strategy based on the sigmoid, which avoids the inversion operation. Therefore, in theory,
the AWPOA is slightly more efficient than the EMI algorithm. Unfortunately, coherence
bias correction processing is relatively time consuming. However, it will significantly
improve the optimization performance of the algorithm, as shown in Figure 3.

4. Experimental Results with the Real Data
4.1. Real Data 1

To evaluate the effectiveness of the proposed AWPOA for DS phase history retrieval,
12 TerraSAR-X images with ascending orbits, an incidence of 35.28 degrees, a resolution of
0.91 m (range) × 1.89 m (azimuth), a size of 3000 (range) × 4000 (azimuth), covering the
Capital International Airport were employed for experimental analysis in this study. These
SAR images were acquired from 30 January 2018 to 28 January 2019, and the temporal
interval was 33 days. Notably, all possible interference pairs were adopted for experimental
analysis. Meanwhile, according to the experimental results obtained with the simulated
data, the more representative algorithms were selected among the above comparison
algorithms to realize experimental comparison and analysis of the real data.

An interferogram with a temporal baseline of 66 days was used as an example for
visual analysis. Notably, the smoother the optimized phase and the less residual noise, the
better the optimization performance of the algorithm. Considering the influence of the
temporal and geometric decorrelation factors, the quality of the interferogram was poor,
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and a large amount of phase noise masked the effective phase information, as shown in
Figure 5a,f. Figure 5b–e shows the optimized interferometric phase obtained by EMI, POA
with coherence-power weight, POA with Fisher weight, and AWPOA. Notably, POAs with
coherence power and Fisher weight combine these weighting strategies with the efficient
solution strategy derived in this study. Compared with the original interferogram, these
POAs all showed an obvious noise suppression effect, and the optimized phases were all
smoother. Among them, the optimized phase processed by the Fisher weight still retained
many obvious noise points. That is, the optimization performance of POA with the Fisher
weight was the worst, followed by the EMI algorithm. Compared with the former two
POAs, the POA with the coherence-power weight showed a better effect, and the phase
noise was effectively suppressed. However, the optimized phase obtained by the AWPOA
was smoothest, especially in the middle runway area, which indicates that the overall
optimization performance of the AWPOA was better than that of the other algorithms.
Moreover, the coherence maps corresponding to the optimized interferogram obtained
by different POAs were calculated respectively, which can more intuitively evaluate the
quality of the optimized phase. The larger the coherence value, the better the quality of the
interferometric phase, and the better the optimization performance of the algorithm. It can
be found that the coherence map calculated by the AWPOA, shown in Figure 5j, shows the
large value in a wide range, which was significantly better than that of other algorithms. It
further indicates the best optimized phase quality and the best optimization performance
of the AWPOA.

Figure 5. The optimized results of real data 1 by different POAs. (a) Original interferogram. (b) The optimized interferogram
processed by EMI. (c) The optimized interferogram processed by coherence-power weight. (d) The optimized interferogram
processed by Fisher weight. (e) The optimized interferogram processed by AWPOA. (f–j) is the coherence map corresponding
to (a–e). Notably, (a–e) share the same color bar and (f–j) share the same color bar.

Furthermore, the black rectangular area marked in Figure 5 was enlarged for detailed
analysis, as shown in Figure 6. Obviously, the phase fringes optimized by the proposed
AWPOA are clearer than those optimized by other algorithms, and the corresponding
coherence map was also the best. Additionally, combined with the coherence map, the
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optimized phase obtained by the POA with the coherence-power weight was slightly
inferior to that of the AWPOA; however, it was obviously superior to the EMI and the POA
with the Fisher weight. Generally, this local magnification analysis further verified the
effectiveness of the proposed AWPOA in improving the phase quality.

Figure 6. The enlarged region marked by the black rectangle is shown in Figure 5. (a) EMI. (b) Coherence-power weight.
(c) Fisher weight. (d) AWPOA. (e–f) is the coherence map corresponding to (a–d). Notably, (a–d) share the same color bar
and (e–h) share the same color bar.

Additionally, all possible interferograms obtained based on the optimized phase
were further quantitatively evaluated and analyzed. Here, two common indexes were
considered to evaluate the quality of the phase, i.e., the number of residues and the sum of
the phase difference (SPD).

SPD =
M

∑
i=1

N

∑
j=1

(
1
8

1

∑
l=−1

1

∑
k=−1

∣∣∣φ̂i,j − φ̂i+l,j+k

∣∣∣) (19)

Moreover, the influences of coherence bias correction and the weighting strategy on
phase optimization are considered in the same way as simulated data verification.
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To show the improvement of the phase quality of the optimized phase more intuitively,
the improvement percentage of the number of residues and the SPD were calculated. Taking
the SPD index as an example, the improvement percentage of SPD was defined as follows:

improvement =
(

1− SPDPOA
SPDori

)
× 100% (20)

where SPDPOA and SPDori are the SPD of the optimized interferogram by different POAs
and the original interferogram, respectively. Figure 7 shows the improvement percentage
of these two indexes obtained by different POAs. In terms of the number of residues
index, it can be found that the improvement percentage processed by the coherence-power
weighting strategy was slightly better than that of the EMI algorithms, which is consistent
with the conclusion derived by the above simulated data. Interestingly, the improvement of
the phase quality obtained by the Fisher weighting strategy was the worst, which may have
resulted from the poor coherence. However, the AWPOA proposed in this study maintained
the highest improvement percentage regardless of the low-coherence interferogram or
high-coherence interferogram. In addition, compared with no bias correction, coherence
bias correction processing can further improve the quality of the optimized interferogram,
i.e., the performance of phase optimization. Nevertheless, the AWPOA always shows
better optimization performance than other POAs. In terms of the SPD index, although the
specific values of this index are different from those of the former index, the distribution
trend of the improvement percentage of all interferograms is extremely similar to that of
the former index. Therefore, the same conclusion can be derived.

Figure 7. Quality evaluation of the interferometric phase estimated with the different POAs. (a) The improvement
percentage of residues without bias correction. (b) The improvement percentage of residues with bias correction. (c) The
improvement percentage of SPD without bias correction. (d) The improvement percentage of residues with bias correction.

Furthermore, the mean value and standard deviation (STD) of the improvement
percentage of the phase quality in terms of the number of residues and SPD was calculated
and analyzed, as shown in Table 2. Choosing the evaluation results of the number of
residues as an example, regardless of the POA used, the mean value of the improvement
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percentage after coherence bias correction was significantly improved by more than 5%
over that achieved without bias correction. Moreover, the standard deviation was slightly
reduced, which further verifies that coherence bias correction effectively enhances the
performance of the POA. In terms of the different weighting strategies, the adaptive
weighting strategy based on the sigmoid model attained the optimal performance, and its
noise reduction rate was significantly higher than that of the other weighting strategies.
In particular, in the case without bias correction, the mean value of the improvement
percentage of the AWPOA was at least 8% higher than that of the other algorithms. In
addition, the performance of the coherence-power weighting strategy was suboptimal but
slightly better than that of the EMI algorithm. Considering the different weighting strategies
and processing methods, the AWPOA proposed in this study provided the minimum
standard deviation, at least 1% lower than other algorithms, which demonstrates that this
algorithm achieved a higher noise robustness than that achieved with the other algorithms.

Table 2. Mean value and standard deviation of the improvement percentage of the phase quality corresponding to real
data 1.

Methods

Residues SPD

Without Bias
Correction

With Bias
Correction

Without Bias
Correction

With Bias
Correction

Mean STD Mean STD Mean STD Mean STD

EMI 59.75% 5.52% 69.26% 4.83% 32.23% 5.86% 41.10% 5.89%
Coherence-power weight 62.02% 4.91% 72.03% 4.12% 35.82% 5.71% 44.06% 5.54%

Fisher weight 48.13% 6.61% 62.70% 5.49% 27.00% 5.90% 36.80% 5.95%
AWPOA 70.30% 3.31% 75.62% 3.07% 41.88% 4.91% 47.56% 4.70%

By analyzing the evaluation results of the SPD, the same conclusion is drawn, i.e.,
coherence bias correction processing effectively increases the optimization performance,
and the adaptive weighting strategy based on the sigmoid model was obviously better than
the traditional weighting strategies. In fact, the traditional POAs do not include the bias
correction. Therefore, in terms of the above indexes, the mean value of the improvement
percentage obtained by the AWPOA was increased by at least 12%, and the standard
deviation was reduced by at least 1% over the traditional POAs. Comprehensive analysis
revealed that the proposed AWPOA, which combines bias correction and the adaptive
weighting strategy, attained a better optimization performance and noise robustness.

Additionally, the quality of the optimized phase estimator obtained by different POAs
can also be evaluated with the goodness-of-fit, which directly determines the number of
selected DS candidates.

γPTA =
2

N(N − 1)
Re

(
N

∑
i=1

N

∑
j>i

exp
(

j
(

ϕi,j − (φ̂i − φ̂j)
)))

(21)

Figure 8a,b show histograms of the goodness-of-fit corresponding to the different
weighting strategies with and without bias correction processing, respectively. In terms of
no bias correction processing, the normalized frequency of the goodness-of-fit estimated
with the coherence-power weighting strategy was similar to that of the Fisher weighting
strategy when the goodness-of-fit was higher than 0.5, which was slightly better than that
of the EMI algorithm. After bias correction processing, the optimization performance of
the EMI algorithm was significantly improved, and the gap between the coherence-power
weighting and the Fisher weighting strategy was narrowed. However, at a goodness-of-fit
higher than 0.5, the normalized frequency of the AWPOA was significantly higher than
that of the other three algorithms, which further verifies the effectiveness of the AWPOA.
Moreover, considering that the pixels with goodness-of-fit values higher than the threshold
were selected as DS candidates, the number of DS candidates obtained with the AWPOA
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was notably larger than that obtained with the other algorithms. Furthermore, the higher
density of the DS candidates promotes the subsequent three-dimensional phase unwrap-
ping and improves the reliability of deformation parameter interpretation. Figure 8c more
intuitively shows the improvement effect of the optimized phase before and after bias
correction and the notable advantages of the proposed AWPOA.

Figure 8. Histogram of the goodness-of-fit of real data 1. (a) Without bias correction; (b) with bias correction; (c) comparative
analysis with and without bias correction.

4.2. Real Data 2

In addition, real data 2 with TerraSAR-X images covering the Beijing Daxing Inter-
national Airport were employed for further experimental analysis. Specifically, 12 SAR
scenes acquired from 12 March 2018 to 23 December 2018 (the temporal interval was
22 days) along an ascending orbit, with an incidence of 31.04 degrees, a resolution of 0.91 m
(range) × 2.05 m (azimuth), and a size of 5100 (range) × 3400 (azimuth) were processed.
Similarly, all possible interference pairs were adopted for experimental analysis.

Considering that the airport was under construction during this period and that there
was much forest vegetation around it, the decorrelation phenomenon was more of a series.
A large amount of phase noise existed in the original interferogram shown in Figure 9a.
The coherence was generally less than 0.4, which is not conducive to the subsequent time
series analysis. Therefore, the phase optimization process was necessary to improve the
quality of the interferogram. The optimized interferograms processed by different POAs
are shown in Figure 9b–e. We found that there remained some noise in the results obtained
by the EMI and the POA with the Fisher weight. The optimized phase obtained by the
AWPOA was the smoothest, which was slightly better than that of the POA with the
coherence-power weight. Moreover, the coherence obtained by the AWPOA, shown in
Figure 9j, was generally greater than 0.7, which was significantly higher than that of other
algorithms. That is, the AWPOA proposed in this study showed the best optimization
performance compared to the other traditional POAs. The above conclusion can also be
drawn more intuitively by analyzing the black rectangular area.

To comprehensively evaluate the optimization performance of the POA under the
influence of different decorrelations, quantitative evaluation analysis was further per-
formed. Similar to real data 1, the improvement percentage of the phase quality obtained
by different POAs was calculated, and the number of residues and SPD indexes were also
adopted for evaluating the phase quality. The mean value and standard deviation of the
improvement percentage of all impossible interferograms are shown in Table 3. In terms of
no bias correction, the results of these two indexes show a similar distribution trend, and
both of them come to the same conclusion. Specifically, the mean value obtained by the
POA with the Fisher weight was the lowest, indicating that its optimization performance
was the worst. The optimization performance of the POA with the coherence-power weight
was similar to that of the EMI and even slightly better than that of the latter. Obviously, the
mean value of the improvement percentage obtained by the AWPOA was the highest, and
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it improved by more than 9% for the residues index and 6% for the SPD index over other
algorithms. This indicates that the optimization performance of the AWPOA was better
than that of other POAs in the case without bias correction; that is, the adaptive weighting
strategy based on the sigmoid model adopted in the AWPOA was better than other tra-
ditional weighting strategies. Moreover, the STD value obtained by the AWPOA was the
lowest, and it was reduced by at least 1% over other POAs, indicating that the AWPOA
has the highest noise robustness. Notably, the mean values of the improvement percentage
obtained by POAs are all further improved when the bias correction process is carried out,
which verifies the effectiveness of the bias correction in improving the optimization per-
formance. However, the AWPOA proposed in this study, which combines bias correction
and the adaptive weighting strategy, always shows the best optimization performance and
noise robustness compared to other POAs. Specifically, in terms of the above two indexes,
the mean value of the improvement percentage obtained by the AWPOA was increased by
at least 12% over the traditional POAs, which have no bias correction.

Figure 9. The optimized results of real data 2 by different POAs. (a) Original interferogram. (b) The optimized interferogram
processed by EMI. (c) The optimized interferogram processed by coherence-power weight. (d) The optimized interferogram
processed by Fisher weight. (e) The optimized interferogram processed by AWPOA. (f–j) is the coherence map corresponding
to (a–e). Notably, (a–e) share the same color bar and (f–j) share the same color bar.

Table 3. Mean value and standard deviation of the improvement percentage of the phase quality corresponding to real
data 2.

Methods

Residues SPD

Without Bias
Correction

With Bias
Correction

Without Bias
Correction

With Bias
Correction

Mean STD Mean STD Mean STD Mean STD

EMI 52.73% 3.60% 64.95% 3.45% 26.44% 3.65% 35.75% 4.18%
Coherence-power weight 52.11% 3.62% 66.69% 3.36% 27.33% 3.90% 37.37% 4.36%

Fisher weight 45.98% 4.17% 61.80% 3.84% 23.93% 3.89% 33.91% 4.43%
AWPOA 61.87% 2.55% 69.21% 2.59% 33.38% 3.37% 39.25% 3.64%

Furthermore, the goodness-of-fit index was calculated to evaluate the quality of the
optimized phase. Similar to the results of real data 1, the adaptive weighting strategy
adopted in the AWPOA always shows the best performance with or without bias correction.
Moreover, Figure 10c shows more intuitively that the bias correction process can further
improve the value of goodness-of-fit and the quality of the optimized phase. Generally,
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the above experimental results all verify that the proposed AWPOA combined with bias
correction and the adaptive weighting strategy based on the sigmoid model has the best
optimization performance, which is consistent with the conclusion drawn by the previous
experimental results of real data 1.

Figure 10. Histogram of the goodness-of-fit of real data 2. (a) Without bias correction; (b) with bias correction; (c) compara-
tive analysis with and without bias correction.

5. Conclusions

In this study, an advanced adaptive weighted phase optimization algorithm was pro-
posed to improve the SNR of the phase corresponding to DS pixels, which were conducive
to the interpretation of the deformation signal. Specifically, the proposed AWPOA adopted
the adaptive weighting strategy based on the sigmoid model, which can assign a more
reasonable weight to pixels of different quality. Moreover, coherence bias correction based
on the second-kind statistics was introduced to reduce the coherence estimation error, and
an efficient solution strategy based on EVD was derived to further improve the processing
efficiency of the algorithm.

The experimental results obtained with simulated data and two sets of TerraSAR-X
real data suggest that the AWPOA proposed in this study attained a better optimization
performance and a higher noise robustness than those of the traditional algorithm. Com-
pared with the traditional POAs, the mean value of the improvement percentage obtained
by the AWPOA was improved by at least 12% for the residual and SPD indexes, indicating
the better optimization performance of the AWPOA. Additionally, the standard deviation
of the improvement percentage obtained by the AWPOA was reduced by at least 1% over
other POAs, indicating the higher noise robustness of the AWPOA. Moreover, this study
analyzed the influence of the adaptive weighting strategy based on the sigmoid model
and coherence bias correction on the optimization performance in detail. They all provide
a better effect than that provided by the traditional weighting strategies and processing
involving no bias correction. Furthermore, this superior phase optimization effect will
promote the improvement of the quantity and quality of DS and will be more conducive to
the subsequent deformation parameter calculation.
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