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Abstract: Semantic segmentation is a fundamental task in remote sensing image interpretation, which
aims to assign a semantic label for every pixel in the given image. Accurate semantic segmentation is
still challenging due to the complex distributions of various ground objects. With the development
of deep learning, a series of segmentation networks represented by fully convolutional network
(FCN) has made remarkable progress on this problem, but the segmentation accuracy is still far
from expectations. This paper focuses on the importance of class-specific features of different land
cover objects, and presents a novel end-to-end class-wise processing framework for segmentation.
The proposed class-wise FCN (C-FCN) is shaped in the form of an encoder-decoder structure with
skip-connections, in which the encoder is shared to produce general features for all categories and
the decoder is class-wise to process class-specific features. To be detailed, class-wise transition (CT),
class-wise up-sampling (CU), class-wise supervision (CS), and class-wise classification (CC) modules
are designed to achieve the class-wise transfer, recover the resolution of class-wise feature maps,
bridge the encoder and modified decoder, and implement class-wise classifications, respectively.
Class-wise and group convolutions are adopted in the architecture with regard to the control of
parameter numbers. The method is tested on the public ISPRS 2D semantic labeling benchmark
datasets. Experimental results show that the proposed C-FCN significantly improves the segmenta-
tion performances compared with many state-of-the-art FCN-based networks, revealing its potentials
on accurate segmentation of complex remote sensing images.

Keywords: semantic segmentation; fully convolutional network (FCN); remote sensing; class-
wise features

1. Introduction

Semantic segmentation, a pixel-level classification problem, is one of the high-level
computer vision tasks. Numerous researchers have investigated the extensions of convo-
lutional neural network (CNN) [1] for semantic segmentation tasks [2,3], because CNN
has outperformed traditional methods in many tasks such as image classification [4–6],
object detection [7–9] and image generation [10,11] in the computer vision community.
A semantic segmentation network generally retains the feature extraction part of CNN
and uses the deconvolution to recover the feature map resolution similar to the size of
the input image. A final convolution layer with the size of 1× 1 is applied for pixel-wise
labeling to classify every pixel of the last feature map into the corresponding class. Instead
of using every patch around each pixel for prediction, semantic segmentation networks
based on fully convolutional network (FCN) can efficiently produce pixel-wise predictions.
Moreover, global and local relationships of pixels are considered to produce more accurate
prediction results with an end-to-end framework.
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Segmentation of remote sensing images is a key step for land-use and land-cover clas-
sifications, which are crucial in image interpretation and urban mapping [12]. Considering
the high resolution and large amounts of remote sensing images, accurate and efficient
tools for semantic segmentation are urgently needed. As a result, the deep semantic seg-
mentation networks developed in natural image processing have been noticed and applied
in remote sensing image segmentation tasks. FCNs have received increasing attentions in
the applications of remote sensing fields because these networks skillfully deal with pixel-
wise classification for images of arbitrary sizes and complex textures. Some FCN-based
networks have made good progresses on remote sensing image segmentation [13–15].

Similar to many deep learning networks, the performance of semantic segmentation
networks is highly related to the quality and quantity of training samples. A common
phenomenon in practical work is the imbalance of training samples. If samples of one or
some classes rarely appear in the training data set, then a deep network could learn limited
knowledge of that class. This phenomenon will result in over-fitting problems in the
training process and lead to poor generalization capabilities of models. Thus, applications
on natural images usually attempt to collect additional samples or augment data by
re-sampling or synthesis. These approaches are relatively feasible for natural images.
However, using the above schemes on data sets for remote sensing image segmentation
is considerably difficult. Substantially imbalanced data problems easily occur in remote
sensing segmentation due to the variation of scales of different land-cover categories and
man-made objects. Moreover, collecting remote sensing samples of rare classes is often
difficult, which indicates that the collection of additional data is not practical for improving
the experimental results.

Moreover, existing segmentation networks classify all categories commonly based on
the same features extracted by CNN. However, features of categories can be different from
each other, especially for remote sensing images. For example, objects in remote sensing
images, such as buildings and trees, are quite distinguishable by colors, shapes, and edges.
Thus, their features should be distinct for the classifier. By contrast, current segmentation
networks only produce general features with a uniform CNN structure and leave all the
identification tasks to the last single classification layer. Intuitively, a fine-designed network
ought to extract category-specific features in addition to general features. Thus, the model
can refine the segmentation results and provide accurate predictions.

Considering the aforementioned issues, a novel network named class-wise FCN
(C-FCN) is proposed for remote sensing image segmentation. Inspired by the different
characteristics of remote sensing semantic categories and the intuition of category-specific
network architecture, various paths for different classes are designed in the proposed
network. In this concept, features of each class have their specific flow path, wherein
even some difficult or small categories are capable of fitting their model path properly.
Consequently, the classifiers will become category-specific ones, which should merely
distinguish whether a test sample belongs to one category or not. These binary classifiers
will be more concise and dedicated, making them easier to train and fulfill.

As a typical structure of the current semantic segmentation network, the encoder–
decoder structure (Figure 1a) proposed by SegNet [16] has improved the original FCN on
the feature map up-sampling method and achieved good performance with dense feature
maps. Based on this benchmark network, a straightforward implementation of the above
class-wise concept is to run the entire encoder–decoder path for each category in parallel.
However, this scheme will suffer from heavy computational costs with the increase of
category numbers. Moreover, the repetitive computations of some general features within
different classes are unnecessary. Therefore, the proposed network is presented in Figure 1b.
In the proposed C-FCN, different classes share the backbone encoder part as much as
possible, which extracts general features and reduces the computational burden. Each class
possesses an individual decoder and a binary classifier to realize the class-wise feature
extraction and specific high-level semantic understanding. In order to achieve the class-
wise operation, a class-wise convolution is employed to build our pipeline. Eventually, an
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end-to-end class-wise network for remote sensing semantic segmentation is obtained by
combining all the aforementioned approaches.

Encoder Decoder

Encoder

Decoder

Decoder

⋯ ⋯⋯

Feature 1

Feature M

(a)

(b)

Figure 1. Comparison between the traditional and the proposed segmentation networks. (a) The
traditional segmentation network is comprised of an encoder that extracts features from input images
and a decoder that restores the resolution of feature maps. (b) C-FCN shares the encoder to obtain
general features while saving parameters and provides separate paths for every category to decode
and classify every pixel based on their own specific features.

It’s widely acknowledged that CNN is a hierarchical network structure, and layers
at different levels represent features of different hierarchies. Typically, shallow layers,
namely, the layers near inputs, often capture some low-level and simple characteristics of
the given image like lines or edges. By contrast, the subsequent layers seize more abstract
and high-level features. Hence, skip-connection developed in U-Net [17] is regarded
as an essential structure in the building of a segmentation network. Skip-connection
reuses the features from former layers to help decoders obtain more accurate segmentation
results. In our pipeline, the particularity of the decoder cannot adapt to the original
skip-connection structure. Therefore, this part is modified by a newly designed module
(class-wise supervision module) such that features and information from the encoder can
still skip and flow into the decoders. Meanwhile, the addition of this CS module can help to
learn more specific features for each class and boost the realization of class-wise processing.

The main contributions of this paper are concluded as follows.

1. An end-to-end network for semantic segmentation of remote sensing images
is built to extract and understand class-wise features and improve semantic seg-
mentation performances;

2. Based on the above concept, class-wise transition (CT), class-wise up-sampling (CU),
class-wise supervision (CS), and class-wise classification (CC) modules are designed
in the proposed model to achieve class-wise semantic feature understanding and
pixel labeling;

3. The network shares the encoder to reduce parameters and computational costs, and
the depth-wise convolution and group convolution are employed to realize class-wise
operations for each module;

4. The proposed model is tested on two standard benchmark datasets offered by ISPRS.
Experimental results show that the proposed method has exploited features of most
categories and obviously improved segmentation performances compared with state-
of-the-art benchmark FCNs.

The rest of this paper is organized as follows. Section 2 presents the related work.
Section 3 introduces the details of our proposed network and demonstrates its key com-
ponents. Section 4 validates our approach on two datasets, and the conclusion is drawn
in Section 5.
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2. Related Work
2.1. Segmentation Networks

Early in 2015, Long et al. [18] first built an end-to-end network for semantic segmenta-
tion by introducing deconvolution into the traditional CNN [4,19,20] pipeline to recover
the resolution of feature maps for pixel-wise classification. Since then, a series of work has
been conducted to further improve segmentation results by upgrading network structures.
U-Net [17] applies skip-connections to all the matching layers in encoders and decoders
and adds two convolution layers between skip-connection layers. These modifications
enable the decoder to learn gradual up-sampling of feature maps instead of simple interpo-
lation without learnable parameters. SegNet [16] presents a new up-sampling method, in
which pooling indexes that store the positions of pooling layers are employed to generate
fine segmentation results. DeepLab series [21] proposes several novel concepts such as the
átrous convolution, which is implemented by inserting zeros into the convolutional kernels
to enlarge the receptive field while preserving parameters constant. PSPNet [22] combines
a pyramid module with the existing network for object recognition on different scales. All
these fully convolutional networks have made progress on semantic segmentation and
provided baseline network structures and useful techniques for the subsequent studies.

After the success of these fully convolutional networks on natural image semantic
segmentation, many attempts have been made to transplant them to remote sensing fields.
Unlike traditional segmentation methods of remote sensing images that rely on hand-craft
features according to specific properties such as spectrums and textures, FCNs combine
feature extraction and pixel labeling in a uniform pipeline. Some FCN-based networks
have made good progresses on remote sensing image segmentation [13–15]. And they
have also shown considerable potentials on applications such as building detection [23,24],
road extraction [25,26] and instance segmentation [27]. Nevertheless, there is still room for
improvements on network architecture due to the complexity and characteristics of remote
sensing images.

2.2. Depth-Wise Separable Convolution

Depth-wise separable convolution has been used in neural network designs since
2014 [28] and has become an essential component in the well-known Xception model [29].
Depth-wise separable convolution can be conducted with the following two parts: a
depth-wise convolution, which is a spatial convolution performed independently over
each channel of the input; and a point-wise convolution, which is a 1× 1 convolution
projecting the output channels by the depth-wise convolution into a new channel space.
As shown in Figure 2, depth-wise separable convolution is actually an extreme version of
the Inception [30] module.

⋮𝑊

𝐻 𝐾

𝐾

𝐶1

1

1
1

𝐶1
𝐶1

𝐶2

𝐶2

𝐻′

𝑊′

Depth-wise

convolution

Point-wise

convolution

Figure 2. Diagram of the depth-wise separable convolution. A depth-wise convolution and a point-
wise convolution are employed successively, which not only bring about similar effects to traditional
convolution, but also reduce the number of parameters.

Depth-wise separable convolution is mainly used in some lightweight networks
due to its contribution to parameter reduction. Considering the limited computation
resources of mobile devices, networks designed for these platforms can use the depth-wise
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separable convolution to reduce massive parameters in traditional convolution layers
while maintaining reasonable performances. Outstanding representatives that employ
depth-wise separable convolution include MobileNet [31] and Xception model [29]. With
the development of new lightweight networks such as ShuffleNet [32], a generalized
convolution, i.e., the group convolution, has been presented and attracted much attention.

2.3. Group Convolution

Krizhevsky et al. [4] are the first to use “filter groups” to subdivide the large network
AlexNet across two GPUs due to the limited resources. And this trick results in approx-
imately 57% fewer connection weights in network without negative effects on accuracy.
Actually, the depth-wise separable convolution can be seen as a special case of the group
convolution as shown in Figure 3. The group convolution divides convolution kernels
and input channels into several groups, and then convolutes grouped inputs with corre-
sponding kernels. Compared with depth-wise separable convolution in which one feature
map is convoluted with one kernel, group convolution uses a group of kernels for the
convolution of a group of feature maps. Specifically, suppose that input feature maps have
the size of W × H × C1, and the traditional convolution layer has C2 kernels with the size
of K× K× C1. In group convolution, feature maps and kernels are divided into G groups
on channels. In this case, every grouped kernel only convolutes with C1

G feature maps,
which means the learnable parameters become K × K × C2 × C1

G , namely, only 1
G of the

original traditional convolution layer. Therefore, the group convolution can significantly
reduce the computational complexity and the number of network parameters.

⋮

⋮
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Figure 3. Standard convolution and group convolution. (a) The standard convolution has C2 kernels,
and every channel of kernels is the same as input features. (b) Group convolution divides channels
of input features into G groups, and every group corresponds to C2 kernels with size K × K × C1

G .
Group convolution significantly reduces computational complexity and the number of parameters.

2.4. Feature Fusion

Skip-connection has become a commonly used structure in segmentation
networks [17,18,33], and its superiority has been validated in many researches [34,35].
Conventionally, a skip-connection is built by adding connections between the encoder
and decoder, namely, concatenating the features from lower layers to higher ones. The
combination of up-sampled features with corresponding features in the encoder will help
the decoder to assemble missing information caused by the pooling layers in the encoder,
which is hard to recover without skip-connection. The subsequent convolutional layer can
then learn to predict the outputs more precisely through the additional information.

Although the naive skip-connection has been employed in many benchmark networks,
an increasing number of studies suggest that various designs on skip-connection rather than
simple concatenation may be more appropriate for specific applications. In literature [36],
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researchers add extra convolution block named “boundary refinement” to further refine
the object boundaries. Wang et al. [37] use the entropy maps to select adaptive features
automatically when merging feature maps in different layers. In literature [38], a network
for aerial image segmentation is built by adding extra convolutional layers to merge
feature maps back in the up-sampling. All these studies have provided more references for
improving the skip-connection architecture in practical applications.

3. Methods

In this paper, we design a novel end-to-end architecture named class-wise fully
convolutional network (C-FCN) based on a straightforward idea. Most layers of traditional
convolutional neural networks, either for classification or segmentation tasks, concentrate
on extracting rich contextual features. Consequently, the classification procedure is left to a
few simple convolutional layers or fully connected layers. For example, a segmentation
network takes an image with the size of W × H × 3 as the input, and obtains the final
feature maps f with the size of W × H× C, then the classification from features to different
categories can be formulated as a mapping:

λ : f → m (1)

where fi,j ∈ RC is the feature vector at position (i, j), and M is the number of classes and
m = {0, 1, . . . , M − 1}. It is noticed that all categories are identified by the features in
the same space. However, features in a general form may be difficult to classify because
categories can be very distinct from each other. Contrarily, if we transform the general
features into specific features for different categories, the classification mapping can be
decomposed to M mappings of f → {0, 1}, which will extract more specific features and
reduce the classification difficulty.

Based on the above analysis, a straightforward way is to train a convolutional neural
network with M paths concurrently, and then merge the outputs to obtain the final segmen-
tation result. However, this scheme will result in a huge number of parameters which lead
to expensive training. Therefore, we decide to take the parameter-sharing principle, which
means all the M network branches will share one encoding structure. As for the decoder
part, we separately decode every class on their own features to share the responsibility
of semantic understanding for classifiers. Different from usual convolutional layers, we
propose a class-wise convolution to implement all paths within one network.

The overall structure of the proposed network is shown in Figure 4. In terms of usual
fully convolutional networks, the proposed network can also be parted into two sections:
encoder and decoder.

The parameter-sharing encoder can be realized with an arbitrary benchmark network.
Considering the performance and affordability, we use the pre-trained ResNet-50, which
consists of a Stem Block and four Res-Blocks, as the backbone to extract general features
for all categories. Assuming that the input image has the size of W × H × 3, the Stem
Block will decrease the feature map size to W

4 ×
H
4 , and the latter three blocks further

downsize the feature maps by a scale of 8. In other words, the stride of the encoder
will be 32. Considering the decoder, we customize features for every category by a class-
wise transition block (CT), which applies M convolutional layers with k kernels for every
category, where M denotes the number of classes and k is a hyper-parameter. By means
of this approach, every category is separated to learn how to decode its specific features.
Logically, there should be individual decoding paths for M different categories. To keep
the network integrated, we design a class-wise up-sampling (CU) block, which is able to
decode class-wise features of all classes within one structure by the group convolution.
In this case, all categories are actually decoded separately but in a decent form. After
five CU blocks, the size of features will be restored to W × H as the original input image.
Finally, we use a class-wise classification (CC) block to segment every class based on their
specific features.



Remote Sens. 2021, 13, 3211 7 of 20

⋯

Conv 1

Conv 2

Conv M

Class-wise Transition
Class-wise Transition

Stem Block Res-Block CU Block CS Block

⋯
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Figure 4. Overview of the proposed model C-FCN. The encoder part is constructed with ResNet-50
and the decoder is implemented by the class-wise up-sampling (CU) block. A class-wise transition
(CT) block is designed to communicate the shared encoder structure with the class-wise decoder part.
The class-wise supervision (CS) block improves skip-connections to deal with the fusion of general
features and specific features. And the class-wise classification (CC) module produces segmentation
results by making predictions on class-wise features with the group convolution.

Since skip-connection is one of the most fundamental structures of segmentation
networks, we prefer to retain this structure to fuse features from encoder to decoder.
However, in our network, features from the encoder are general ones while those from
the decoder are class-specific ones, which cannot be simply concatenated. Therefore, we
design the class-wise supervision (CS) block to adapt features outflowing from the encoder
to facilitate fusion with features in the decoder. Specifically, since CS block bridges the
encoder and decoder, it involves the aforementioned Res-Block and CT block.

The four essential components of the proposed C-FCN will be presented in the suc-
ceeding sections. Class-wise transition (CT), class-wise up-sampling (CU), class-wise su-
pervision (CS) and class-wise classification (CC) modules are presented in Sections 3.1–3.4,
respectively, to illustrate their formations and functions.

3.1. CT (Class-Wise Transition) Module

In the proposed network, we take ResNet-50 as the encoder, which extracts features of
the input image by stacking Res-Blocks. Generally, feature maps from deeper layers are
smaller and more abstract than those in shallow layers. All these features, whether deep or
shallow, are called “general features” by us, and participate in the classification of all given
categories. For the decoder part, the feature extraction and up-sampling path will be split
and class-wise processing will be emphasized. In order to transform the general features to
class-wise features and link the shared encoder with the class-wise decoder, we design the
class-wise transition (CT) block. In brief, the CT block is employed to connect the general
structure and the class-wise pipeline. Therefore, the CT block is also applied within the CS
blocks besides the junction part between the encoder and decoder.

Figure 5 illustrates the details of a CT block. This module takes general features as
the input and uses a 1× 1 convolution layer to facilitate transformation into M class-wise
features, where M denotes the number of classes. Moreover, the dimension of every class-
wise features is reduced to k during the class-wise convolution to decrease computational
cost. After the above convolution, we concatenate the class-wise outputs together on their
depth instead of parallel processing of all M features. This specific feature map will then
be further processed in CS and CU blocks.
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⋯

1 × 1 𝑐𝑜𝑛𝑣

1 × 1 𝑐𝑜𝑛𝑣
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𝑀

Figure 5. Construction of the class-wise transition (CT) block by class-wise convolution.

If we keep the same channels for each individual path as the original input, parameters
of our network will overload because the class-wise convolution will multiply the channels
of the input feature map. Notably, general features are still important in the pipeline,
whereas class-wise features only serve individual categories that require relatively less
information representation. In the proposed model, channels for each class are reduced
by choosing a relatively smaller k than the number of input channel C′. Experiments will
be conducted to evaluate network performance by setting different values of k and verify
the scheme.

3.2. CU (Class-Wise Up-Sampling) Module

In the traditional FCN [18], after the input image is transformed into highly abstract
multi-channel feature maps in the encoder, the decoder will simply recover them to the
original size of the input using bilinear interpolation. This implementation is straightfor-
ward, but quite rough and not learnable. Instead, we choose UNet [17] as the decoder
backbone, which adds a Res-Block after the interpolation layer such that the decoder can
learn how to up-sample features. However, in our network, features from the encoder are
class-wise, thus we design a class-wise up-sampling (CU) block to build the decoder.

As shown in Figure 4, the decoder includes five CU blocks, and each block will
enlarge the feature map twice. Therefore, the final segmentation result can obtain the same
resolution as the input image. As explained in the above-mentioned sections, a CT block,
which transforms the general features to specific features for each category, emerges before
the first CU block. After this transition, all the succeeding convolutions in CU layers should
be replaced by group convolution to keep features of every category separated. Moreover,
a corresponding CS module will bring in skip features from the encoder for each CU block.
The detailed structure of each CU block is shown in Figure 6.

  𝑈𝑝 − 𝑠𝑎𝑚𝑝𝑙𝑒 

𝑊′ × 𝐻′ × 𝑘 × 𝑀 

2𝑊′ × 2𝐻′ × 𝑘 × 𝑀 

𝐶𝑆 𝑚𝑜𝑑𝑢𝑙𝑒 

𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 
(with group conv) 

Figure 6. Details of the class-wise up-sampling (CU) block. Up-sampled features added by skip
features from corresponding CS modules are sent into a Res-Block to learn feature up-sampling, in
which group convolution is applied to obtain class-wise up-sampling results.

Formally, for one CU block, suppose the input feature map: fin has the size of
W ′ × H′ × (k×M), where k is a hyper-parameter, denoting the number of channels for
the feature map of each category, and M denotes the number of classes. We first use bilinear
interpolation to up-sample the feature map to the size of 2W ′ × 2H′ × (k×M). Then the
up-sampled feature map is added by the output of the corresponding CS module, which



Remote Sens. 2021, 13, 3211 9 of 20

will be detailed in Section 3.3. Finally, the feature map is sent into a Res-Block without
changing its size, whose output will be the input of the next CU block. After the decoding
of five CU blocks, the output feature map will become 25 times larger than the input of the
first CU block, which is equal to the original resolution of the input image to be segmented.

3.3. CS (Class-Wise Supervision) Module

Some useful information may be lost as the network goes deep because different
levels of CNN capture features of various abstraction levels. Therefore, reusing low level
features from the encoder can be very helpful for the decoder to restore more contextual
information and obtain improved segmentation result. Formally, the connection between
the encoder and decoder is:

f l+1 = F ( f l , wl) + f l′ (2)

where the f l is the input feature of the lst layer in the decoder, f l′ is its corresponding
feature at the encoder, F denotes convolution options in the decoder, and wl represents the
set of learnable parameters of the lst layer.

Though skip-connection fuses features from encoder and decoder to refine segmen-
tation results, features from the two different parts may vary in some respects. Simple
and crude fusion with disregard to their differences is inappropriate. Therefore, we add a
Res-Block to the path such that features from the encoder can learn how to compensate for
the difference and fuse with features in the decoder more appropriately:

f l+1 = F ( f l , wl) +F ( f l′ , wl′) (3)

Moreover, the skip connection is adapted by adding a CT block on the CS path to fit
the proposed model. As shown in Figure 7, taking the general features from the encoder as
the input, the CT block will facilitate transformation into class-wise features. A Res-Block
is employed to implement class-wise supervision by group convolution, which can be
depicted as follows:

f l+1 = F ( f l , wl) +F [T ( f l′ , wl′)] (4)

where T denotes the CT block. As shown in Figure 4, we use three CS blocks, which
indicate the presences of three connection paths between the encoder and decoder. Because
the first Stem Block in ResNet has a different implementation from the Res-Block, we do
not adopt feature fusion on this level.

𝐶𝑇 𝐵𝑙𝑜𝑐𝑘
𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘

(with group conv)

𝑊!×𝐻!×𝑘×𝑀𝑊!×𝐻!×𝐶! 𝑊!×𝐻!×𝑘×𝑀

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐷𝑒𝑐𝑜𝑑𝑒𝑟

Figure 7. Details of the class-wise supervision (CS) block. A CT block is applied to transform
features from general to specific, and features are then passed through a Res-Block implemented
by group convolution to eliminate the difference between the encoder and decoder and achieve
skip connections.

3.4. CC (Class-Wise Classification) Module

In traditional fully convolutional neural networks, the last layer is a convolution layer
with the kernel size 1× 1. A So f tmax function is then applied to convert the feature vector
of each pixel into the probability which presents the likelihood it belongs to a class. In this
case, the operation can be defined as:

fSR = Argmax(So f tmax(F ( f , w))) (5)
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where fSR is the segmentation result. Since the features output by our model are specific
for each class, the classification layer should be class-wise as well. Otherwise, the calcu-
lation method of original convolution will hamper the independence between categories.
Different from traditional FCNs, the last layer in our C-FCN will be implemented by the
group convolution. Details of a CC module are shown in Figure 8. By means of group
convolution, the classification module can be regarded as M binary classification layers
rather than one M-class classification layer. Let fi denote the (i ∗ k + 1) ∼ ((i + 1) ∗ k)
channels of the feature map f , which is a particular feature of class i, and the operation of
CC layer in the proposed C-FCN is defined as follows:

fpr = So f tmax
(
CM−1

i=0 F ( fi, wi)
)

(6)

where i ∈ {0, 1, . . . , M− 1}, M denotes the number of classes, C denotes the concatenation,
and fpr is the probability volume of class belongings. During the training process, fpr is
sent to the cross-entropy function for loss calculation. As for segmentation, an Argmax
function is then employed to identify the class labels.

1 × 1 𝑐𝑜𝑛𝑣 

1 × 1 𝑐𝑜𝑛𝑣 

1 × 1 𝑐𝑜𝑛𝑣 

𝑊 × 𝐻 × 𝑘 × 𝑀 

𝑊 × 𝐻 × 𝑘 

⋯
 𝑀 

𝑊 × 𝐻 × 1 

𝑊 × 𝐻 × 𝑀 

Group Conv 

Figure 8. The details of the class-wise classification (CC) block. In a macroscopic view, a group
convolution layer with kernel size 1× 1 is applied to categorize the input feature map. Implicitly, it
can be regarded that M binary classifiers are working separately.

4. Experiments & Results
4.1. Data Sets

All of our experiments are carried out on two benchmark data sets provided by
ISPRS [39,40].

4.1.1. Vaihingen

The Vaihingen data set contains 33 tiles (of different sizes), each of which is comprised
of a True Ortho Photo (TOP) extracted from a larger TOP mosaic (shown in Figure 9). The
ground sampling distance of TOP is 9 cm. All the TOPs are 8-bit TIFF files with three bands,
and the RGB channels of the TIFF files correspond to the near-infrared, red and green
bands delivered by the camera. The ground truth contains six classes: impervious surface,
building, low vegetation, tree, car, and clutter/background, as indicated in Figure 11. As
shown in Table 1, all the 33 patches are divided into three sets.



Remote Sens. 2021, 13, 3211 11 of 20

Figure 9. Outlines of all patches overlaid with TOP mosaic of Vaihingen dataset. RGB visual channels
correspond to near-infrared, red and green bands delivered by camera.

Table 1. Partitions of datasets.

Dataset Numbers

Training 1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37
Vaihingen Validation 11, 15, 28, 30, 34

Test 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38

Training 2-10, 2-11, 3-10, 3-11, 4-10, 4-11, 5-10, 5-11, 6-10, 6-11, 6-7, 6-8, 6-9, 7-7, 7-8, 7-9, 7-10, 7-11
Potsdam Validation 2-12, 3-12, 4-12, 5-12, 6-12, 7-12

Test 2-13, 2-14, 3-13, 3-14, 4-13, 4-14, 4-15, 5-13, 5-14, 5-15, 6-13, 6-14, 6-15, 7-13

4.1.2. Potsdam

As shown in Figure 10, the Potsdam dataset contains 38 tiles whose ground sampling
distance is 5 cm. Unlike Vaihingen dataset, the TOPs of Potsdam come as TIFF files in more
channel compositions, which include near-infrared, red, green, blue, DSMs and nDSMs.
And each spectral channel has the resolution of 8 bit and DSMs are encoded as 32-bit float
values. In consideration of the experiments without changing network structure, we still
choose three channels among Potsdam dataset to test our method. Moreover, because
both Vaihingen and Potsdam datasets cover urban areas and their land-cover types are
similar, we choose RGB channels of Potsdam data to bring in more differences. Similar to
Vaihingen dataset, Potsdam dataset has six classes as shown in Figure 11. All patches are
divided into three sets as well, which are detailed in Table 1.

Figure 10. Outlines of all patches overlaid with TOP mosaic of Potsdam dataset.
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Impervious surfaces

Building

Low vegetation

Tree

Car

Clutter

(a) (b)

(c) (d)

Figure 11. Examples of datasets. From left to right: (a,b) An original image and ground truth of
Vaihingen dataset; (c,d) An original image and ground truth of Potsdam dataset.

4.2. Evaluation Metrics

Two metrics, Intersection over Union (IoU, also named Jaccard Index) and F1-score,
are used to evaluate the performances of the proposed model and other baseline models,
and their expressions are as follows:

IoU =
tp

tp + f p + f n
(7)

F1-score = 2× precision× recall
precision + recall

(8)

in which,

precision =
tp

tp + f p
, recall =

tp
tp + f n

(9)

where, tp, f p, tn and f n are the true positive, false positive, true negative and false
negative, respectively.

4.3. Training Details

All the models, including contrast methods, are implemented on the PyTorch [41]
framework. The standard stochastic gradient descent with momentum is chosen as the
optimizer to train all the networks and parameters are fixed as recommended: the momen-
tum is 0.9 and the weight decay is 0.0005. The default number of epochs is set to 60, and
the training is started with a learning rate of 0.01 which will be multiplied by 0.1 at epoch
5, 10, and 15. Moreover, we monitor the summation of valuation accuracy and F1-score,
then early-stop the training when the numeric ceases decreasing. Due to the limit of GPU
memory, the batch-size is set to 2∼4 depending on the complexity of models. For models
which use ResNet as the backbone, we load weights of encoders pre-trained on ImageNet,
while those of the others are initialized with samples from a uniform distribution. In
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addition, since batch-normalization will not hamper the independence between categories,
all the batch-normalization and ReLU functions remain unchanged.

For both data sets, 256× 256 patches are randomly cropped from the training images
and then rotated at 90◦, 180◦ and 270◦ during the training phase. Together with image flips,
training sets are finally augmented six times. The validation and test sets do not apply data
augmentation. Concretely, 5000 and 7500 patches are respectively cropped on Vaihingen
and Potsdam sets. During the test phase, we also crop patches of 256× 256 from each test
image with a stride of 128, and stitch them back together after prediction.

4.4. Results & Discussion

This section exhibits the experimental results and analyzes the performances of the
proposed network. First, the overall performances of the class-specific design are evaluated
to validate the class-wise idea. And then, the usage of the CS module is verified by
ablation experiments of two frameworks: one network employs the CS module and the
other does not. Moreover, the hyper-parameter k is adjusted in different scales and its
different applicable conditions are discussed. Finally, the model is evaluated on the
ISPRS 2D semantic segmentation datasets and compared with other state-of-the-art fully
convolutional neural networks for segmentation tasks.

4.4.1. Class-Wise Design

Since we take the pre-trained ResNet-50 as the feature extraction backbone and the
UNet as the decoder backbone, a backbone network (we mark it as Res-Unet [42]) is
formed. Our class-wise network design idea is implemented on this backbone network, so
it’s necessary to evaluate the overall performance of the proposed class-wise idea.

As shown in Table 2, results on both datasets of the backbone network Res-Unet
and the proposed C-FCN are given. It can be observed that the class-wise design has
achieved better results on all Potsdam categories and most Vaihingen categories, which
indicate that the inter-class features are better discriminated. Improvements on “clutter”
are most evident, which indicate that the class-wise design is beneficial to process hard
categories with complex and inapparent within-class features. Results on “tree” and “car”
of C-FCN show different tendencies on two datasets. Obvious improvements on Potsdam
and slight decreases on Vaihingen can be observed, which may be related to the various
band selections of two datasets. Generally, the enhanced average performances of C-FCN
can be observed compared to the backbone network. The overall results have validated the
effectiveness of the proposed class-wise designing structure.

4.4.2. CS Module

Feature fusion is a very common and useful strategy in semantic segmentation tasks.
In our proposed work, due to the modification of the decoder network, we introduce a
novel CS module into the traditional skip-connection structure. In order to validate the
necessity for class-wise circumstance, an ablation experiment is conducted concerning the
CS module.

We test our C-FCN with and without the CS module on Vaihingen dataset, and the
results are shown in Table 3. Generally, C-FCN with the CS module outperforms that
without the CS module on both F1-score and IoU. More concretely, C-FCN with CS module
shows slight advantages on most categories, similar performances on “tree”, disadvantage
to some extent on “clutter and background” (as the result is already poor without CS), and
tremendous superiority on “car”.

The observations on each category indicate that the employment of the CS module
can facilitate the use of features on different levels from the encoder. Accordingly, the
detailed information in shallow layers will not be lost by pooling layers and can still be
utilized by the decoder. Consequently, the C-FCN is able to recognize small objects and
achieve better segmentation results on categories with small samples, as proven by “car”.
Results on clutter and background are also interesting and thought-provoking. The use
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of the CS module is believed to encourage class-specific features and promote class-wise
processing. Since this category is relatively special compared with the other classes, which
includes all the cluttered land-cover conditions except those five, it may have no “particular
features” of its kind for some scenes. Consequently, the addition of CS module in this test
under these scenes is not beneficial for the background class, and the emphasis on class
particularity even makes the indexes decreased.

Table 2. Performances of the class-wise network design measured by mean F1-score (%) and mean
IoU (%) of all test samples.

Category Metric Vaihingen Potsdam
Backbone C-FCN Backbone C-FCN

imp. surf. IoU 76.42 78.02 77.71 78.78
F1 86.53 87.55 87.35 88.01

building IoU 83.18 84.22 84.99 85.84
F1 90.73 91.36 91.86 92.35

low veg. IoU 61.97 63.52 67.11 68.63
F1 76.19 77.32 80.12 81.20

tree IoU 74.02 73.42 68.16 71.37
F1 84.88 84.52 81.00 83.24

car IoU 63.45 62.59 74.47 79.79
F1 77.53 76.83 85.32 88.73

clutter IoU 0.000 6.927 18.11 26.05
F1 0.000 9.901 29.31 40.50

Avg. IoU 71.81 72.35 74.49 76.88
F1 83.17 83.52 85.13 86.71

Table 3. Comparison experiments on CS module, measured by mean F1-score (%) and mean IoU (%)
of all test samples.

Category Metric C-FCN (without CS) C-FCN (with CS)

imp. surf. IoU 76.31 78.02
F1 86.46 87.55

building IoU 83.22 84.22
F1 90.79 91.36

low veg. IoU 62.18 63.52
F1 76.31 77.32

tree IoU 73.74 73.42
F1 84.73 84.52

car IoU 55.76 62.59
F1 71.30 76.83

clutter IoU 11.21 6.927
F1 13.97 9.901

Avg. IoU 70.24 72.35
F1 81.92 83.52

4.4.3. Influence of the Hyper-Parameter k

The C-FCN model contains a manually selected hyper-parameter k, which is the
number of channels of every class in the feature map. Intuitively, a larger k may be more
effective in the model to understand the input image because k is directly related to the
number of features of every class. However, recent work [36,43] indicates that an increased
number of feature channels may result in limited improvement of final segmentation results.
Meanwhile, rapid increase of network parameters will slow down the network training.
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The proper selection of feature channel numbers is usually based on experiences. Therefore,
the model is trained on Vaihingen dataset with different values of hyper-parameter k in
ascending orders while other conditions are maintained the same to select an optimal k.
Considering representativeness and experiment quantity, k is set to 1, 8, 16, 32, 40 and 64 to
observe the performances.

The results are shown in Figure 12. The experiments only cover the range of k from 1
to 64 due to the limitation of GPUs, but this range is thought to be sufficient to reveal a
tendency. The figure shows that the F1-score and IoU are fluctuating as k increases. The
first peak appears with k = 8, and the optimal k equals 32. For better performances within
our computational power, we adopt k = 32 in the method evaluations.

Figure 12. Comparison experiments of different values of the hyper-parameter k of the proposed
C-FCN, measured by mean F1-score (%) and mean IoU (%) of all test samples.

4.4.4. Vaihingen

The proposed C-FCN network is tested on the ISPRS Vaihingen dataset and com-
pared with several baseline and state-of-the-art fully connected networks: (1) FCN [18],
the pioneer fully convolutional neural network designed for semantic segmentation;
(2) SegNet [16], which has designed an explicit encoder-decoder structure; (3) PSPNet [22],
which utilizes the pyramid pooling module to distinguish objects of different scales;
(4) Unet [17], which uses concatenations to fuse skip-connection features; (5) Res-Unet, a
baseline model we specially build for comparison because it shares a similar backbone
structure with our proposed model except for the class-wise designs. All these models are
trained on the same partition of datasets and optimized with the same learning rates and
decay politics. Limited by the memory of GPU, the batch sizes of models vary from 2 to 4
with regard to the network complexity.

The experimental results are shown in Table 4 and the visualized images are drawn in
Figure 13. The numerical results show that our proposed network has a superior overall
segmentation performance on this dataset. Since the withered low vegetation is very similar
to the rooftop of buildings as shown in the first row of Figure 13, they are easily confused
by most networks, even the very deep Res-Unet, while our proposed network performs
well on these difficult regions. Though Res-Unet shows very close precision compared
with our model because they share a similar network backbone, our proposed network is
able to identify the clutter/background class (marked in red) much better than Res-Unet,
as shown in the third row of Figure 13. Unlike other classes, the category “clutter” does
not have clear entity meaning, which represents those objects excluded from the former
five classes. It is seen that most involved networks are insufficient to distinguish these
clutters or backgrounds, because these unknown land covers vary a lot on appearances
and appear relatively less than other classes. However, a good segmentation framework is
required to accurately recognize some uncertain classes as well as the specific land-cover
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types. The experimental results have shown the potentials of C-FCN on mining features of
nonspecific category besides the improvements on specific classes.

(a) Test image (b) GT (c) FCN (d) SegNet (e) PSPNet (f) Unet (g) ResUnet (h) C-FCN

Figure 13. Visualization of some segmentation results on ISPRS Vaihingen test set.

Table 4. Quantitative comparison (%) with baseline models on ISPRS Vaihingen challenge test set.

Model Imp. Surf. Building Low Veg. Tree Car Clutter Avg.
IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

FCN 68.92 81.47 71.85 83.40 53.84 69.32 68.88 81.18 25.52 40.27 0.279 0.539 57.80 71.13
SegNet 75.52 85.95 81.09 89.49 60.88 75.29 72.44 83.84 47.73 64.19 0.993 1.829 67.53 79.75
PSPNet 72.82 84.19 77.73 87.26 57.98 72.85 71.24 83.03 43.22 59.97 9.064 11.24 64.60 77.46

Unet 74.85 85.50 80.67 89.21 59.05 73.74 72.34 83.76 51.76 67.89 5.994 7.200 67.74 80.02
Res-Unet 76.42 86.53 83.18 90.73 61.97 76.19 74.02 84.88 63.45 77.53 0.000 0.000 71.81 83.17

C-FCN 78.02 87.55 84.22 91.36 63.52 77.32 73.42 84.52 62.59 76.83 6.927 9.901 72.35 83.52

4.4.5. Potsdam

The proposed model and the above-mentioned comparison models are also tested
on the ISPRS Potsdam dataset, and the training configuration is the same as described in
Section 4.4.4. The experimental results are shown in Table 5, from which more obvious
advantages of C-FCN can be observed.

Table 5. Quantitative comparison (%) with baseline models on ISPRS Potsdam challenge test set.

Model Imp. Surf. Building Low Veg. Tree Car Clutter Avg.
IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

FCN 58.65 73.45 48.53 64.77 49.22 65.67 40.99 57.94 34.52 51.18 17.49 34.98 46.38 62.60
SegNet 65.11 78.70 64.94 78.42 53.60 69.49 47.15 63.82 57.99 73.28 3.789 7.258 57.76 72.74
PSPNet 71.74 83.40 75.72 86.06 61.95 76.15 60.28 75.15 68.18 81.03 19.38 30.16 67.58 80.40

Unet 71.67 83.39 73.92 84.68 60.08 74.83 58.27 67.91 73.55 80.80 8.320 14.97 66.37 79.45
Res-Unet 77.71 87.35 84.99 91.86 67.11 80.12 68.16 81.00 74.47 85.32 18.11 29.31 74.49 85.13

C-FCN 78.78 88.01 85.84 92.35 68.63 81.20 71.37 83.24 79.79 88.73 26.05 40.50 76.88 86.71
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As described in Section 4.1, the Potsdam dataset has a relatively higher resolution
compared with that of the Vaihingen dataset, which means we can crop more patches
from each training image and obtain more vivid training samples. Particularly, the “clut-
ter/background” category marked in red, appears more frequently in Potsdam dataset.
In this case, all the models can better learn information of that category more or less,
nevertheless the segmentation results on the test set are still unsatisfying. The results
in Table 5 exhibit that the proposed C-FCN still shows better performance on the “clut-
ter/background” category compared with other models. PSPNet outperforms the C-FCN
on this category in Vaihingen dataset, but tends to categorize other objects into this class
in Potsdam dataset to hamper the IoU when the ground truth areas are actually small
(Figure 14, row three). Obvious improvement on “car” category which is marked with
yellow is also observed. The car objects are the smallest among all the classes, as a result,
this class has small training samples. Accurate segmentation on this kind requires excellent
feature extraction on an appropriate scale. And our model outperforms representatives
such as PSPNet and Res-Unet, which validates its effectiveness on small scales.

(a) Test image (b) GT (c) FCN (d) SegNet (e) PSPNet (f) Unet (g) ResUnet (h) C-FCN

Figure 14. Visualization of some segmentation results on ISPRS Potsdam test set.

More details can be observed in Figure 14 which reveal that our C-FCN is superior
to all the other models on all categories. The segmentation results of SegNet and U-net
exhibit numerous miscellaneous points, thus leading to rough edges of buildings. Res-Unet
can eliminate most of these tangled points, but as discussed in the Vaihingen dataset,
its applicability is limited by the clutter and background categories. On the contrary, C-
FCN with specially designed path for every category is capable of distinguishing pixels
belonging to background categories more accurately while inheriting the advantages
of Res-Unet.

4.4.6. Parameter Size and Inference Time

We have also compared the parameter sizes and inference time of the involved models
on the Vaihingen test set including 17 images, as shown in Table 6. GPU time only counts
the model inference time while CPU time counts the whole test process. Parameter sizes
are measured with MB, and F/B pass indicates the forward/backward pass parameter size.
GPU time is shown in seconds and jiffies of CPU time refer to the frequencies of the system.
It is seen from the table that the proposed C-FCN has a reasonable amount of parameters
compared with other baseline methods. However, its forward/backward pass parameters
are much more than the others because of the CT module and group convolutions. As a re-
sult, the inference time is slower due to the amount of forward/backward pass parameters.
Since the above consumptions are measured under the optimal performance of the network,
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to balance performance and efficiency, a smaller hyper-parameter k can be concerned to
greatly affect the parameter sizes and running time as mentioned in Section 4.4.3.

Table 6. Comparison results of parameter sizes and inference time on Vaihingen test set.

Model Parameters F/B Pass GPU Time User CPU
Time

System CPU
Time

(MB) (MB) (s) (jiffies) (jiffies)

FCN 512.55 916.23 13.94 60,561 5132
SegNet 112.33 451.00 28.34 28,965 1993
PSPNet 177.71 907.41 52.48 56,239 3796
UNet 32.95 517.50 25.18 19,594 1212

Res-UNet 169.94 561.27 64.09 58,122 3798
C-FCN 95.03 2457.38 103.61 75,118 4381

5. Conclusions

In this paper, we propose a novel end-to-end fully connected neural network for
semantic segmentation of remote sensing images. Distinct from traditional FCNs, the class-
specific features is believed to play vital roles in semantic segmentation tasks. Therefore, a
class-wise FCN architecture is designed to mine class-specific features for remote sensing
segmentation. In our pipeline, general features are still captured by a baseline encoder to
economize computation, while each class possesses a class-wise skip-connection, a decoder
and a classification path through the implementation of class-wise and group convolution.
Consequently, a uniform framework is established without the explosion of parameters.
We test our framework on ISPRS Vaihingen and Potsdam 2D semantic segmentation
datasets. The experimental results have shown remarkable segmentation improvements of
the proposed model on most classes, especially on the background class with miscellaneous
objects and complex features. In the future work, the class-wise idea on numerous classes
with better and faster implementations will be further investigated. If successful, the
class-wise segmentation model may possibly be used in more practical remote sensing
interpretation tasks and further applied to semantic segmentation of natural images.
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The following abbreviations are used in this manuscript:

FCN Fully Convolutional Network
C-FCN Class-wise Fully Convolutional Network
CT Class-wise Transition
CU Class-wise Up-sampling
CS Class-wise Supervision
CT Class-wise Transition
ISPRS International Society for Photogrammetry and Remote Sensing
CNN Convolutional Neural Network
PSPNet Pyramid Scene Parsing Network
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TOP True Ortho Photo
RGB Red Green Blue
TIFF Tag Image File Format
DSM Digital Surface Model
IoU Intersection over Union
GPU Graphics Processing Unit

References
1. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
2. Li, Y.; Shi, T.; Zhang, Y.; Chen, W.; Wang, Z.; Li, H. Learning deep semantic segmentation network under multiple weakly-

supervised constraints for cross-domain remote sensing image semantic segmentation. ISPRS J. Photogramm. Remote Sens. 2021,
175, 20–33. [CrossRef]

3. Ouyang, S.; Li, Y. Combining Deep Semantic Segmentation Network and Graph Convolutional Neural Network for Semantic
Segmentation of Remote Sensing Imagery. Remote Sens. 2021, 13, 119. [CrossRef]

4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.

5. Yan, J.; Wang, L.; Song, W.; Chen, Y.; Chen, X.; Deng, Z. A time-series classification approach based on change detection for rapid
land cover mapping. ISPRS J. Photogramm. Remote Sens. 2019, 158, 249–262. [CrossRef]

6. Li, X.; Tang, Z.; Chen, W.; Wang, L. Multimodal and Multi-Model Deep Fusion for Fine Classification of Regional Complex
Landscape Areas Using ZiYuan-3 Imagery. Remote Sens. 2019, 11, 2716. [CrossRef]

7. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv 2013, arXiv:1312.6229.

8. Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient object localization using convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 648–656.

9. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

10. Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf.
Fusion 2019, 48, 11–26. [CrossRef]

11. Han, W.; Feng, R.; Wang, L.; Cheng, Y. A semi-supervised generative framework with deep learning features for high-resolution
remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 23–43. [CrossRef]

12. Kang, J.; Fernandez-Beltran, R.; Ye, Z.; Tong, X.; Ghamisi, P.; Plaza, A. Deep metric learning based on scalable neighborhood
components for remote sensing scene characterization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8905–8918. [CrossRef]

13. Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely
sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [CrossRef]

14. Liu, Q.; Kampffmeyer, M.; Jenssen, R.; Salberg, A.B. Dense dilated convolutions’ merging network for land cover classification.
IEEE Trans. Geosci. Remote Sens. 2020, 58, 6309–6320. [CrossRef]

15. Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic segmentation of urban buildings from VHR remote sensing
imagery using a deep convolutional neural network. Remote Sens. 2019, 11, 1774. [CrossRef]

16. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

17. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings
of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9
October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

18. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

20. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

21. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]

22. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

23. Shahzad, M.; Maurer, M.; Fraundorfer, F.; Wang, Y.; Zhu, X.X. Buildings Detection in VHR SAR Images Using Fully Convolution
Neural Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1100–1116. [CrossRef]

24. Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite
Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [CrossRef]

http://doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.isprsjprs.2021.02.009
http://dx.doi.org/10.3390/rs13010119
http://dx.doi.org/10.1016/j.isprsjprs.2019.10.003
http://dx.doi.org/10.3390/rs11222716
http://dx.doi.org/10.1016/j.inffus.2018.09.004
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.004
http://dx.doi.org/10.1109/TGRS.2020.2991657
http://dx.doi.org/10.1016/j.isprsjprs.2020.01.013
http://dx.doi.org/10.1109/TGRS.2020.2976658
http://dx.doi.org/10.3390/rs11151774
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/TGRS.2018.2864716
http://dx.doi.org/10.1109/TGRS.2018.2858817


Remote Sens. 2021, 13, 3211 20 of 20

25. Yang, X.; Li, X.; Ye, Y.; Lau, R.Y.K.; Zhang, X.; Huang, X. Road Detection and Centerline Extraction Via Deep Recurrent
Convolutional Neural Network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7209–7220. [CrossRef]

26. Lu, X.; Zhong, Y.; Zheng, Z.; Liu, Y.; Zhao, J.; Ma, A.; Yang, J. Multi-Scale and Multi-Task Deep Learning Framework for
Automatic Road Extraction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9362–9377. [CrossRef]

27. Mou, L.; Zhu, X.X. Vehicle Instance Segmentation from Aerial Image and Video Using a Multitask Learning Residual Fully
Convolutional Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6699–6711. [CrossRef]

28. Sifre, L.; Mallat, S. Rigid-Motion Scattering for Image Classification. Ph.D. Thesis, École Polytechnique, Palaiseau, France, 2014.
29. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
30. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.
31. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
32. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv

2017, arXiv:1707.01083.
33. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International

Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528.
34. Wang, L.; Zhang, J.; Liu, P.; Choo, K.K.R.; Huang, F. Spectral–spatial multi-feature-based deep learning for hyperspectral remote

sensing image classification. Soft Comput. 2017, 21, 213–221. [CrossRef]
35. Ma, L.; Crawford, M.M.; Zhu, L.; Liu, Y. Centroid and covariance alignment-based domain adaptation for unsupervised

classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2305–2323. [CrossRef]
36. Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large Kernel Matters—Improve Semantic Segmentation by Global Convolu-

tional Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4353–4361.

37. Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated convolutional neural network for semantic segmentation in high-
resolution images. Remote Sens. 2017, 9, 446. [CrossRef]

38. Kaiser, P.; Wegner, J.D.; Lucchi, A.; Jaggi, M.; Hofmann, T.; Schindler, K. Learning aerial image segmentation from online maps.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 6054–6068. [CrossRef]

39. Audebert, N.; Le Saux, B.; Lefèvre, S. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks.
ISPRS J. Photogramm. Remote Sens. 2018, 140, 20–32. [CrossRef]

40. Pan, X.; Gao, L.; Marinoni, A.; Zhang, B.; Yang, F.; Gamba, P. Semantic labeling of high resolution aerial imagery and LiDAR data
with fine segmentation network. Remote Sens. 2018, 10, 743. [CrossRef]

41. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

42. Chu, Z.; Tian, T.; Feng, R.; Wang, L. Sea-Land Segmentation with Res-UNet And Fully Connected CRF. In Proceedings of the
2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3840–3843.

43. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic segmentation. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germnay, 8–14 September 2018; pp. 269–284.

http://dx.doi.org/10.1109/TGRS.2019.2912301
http://dx.doi.org/10.1109/TGRS.2019.2926397
http://dx.doi.org/10.1109/TGRS.2018.2841808
http://dx.doi.org/10.1007/s00500-016-2246-3
http://dx.doi.org/10.1109/TGRS.2018.2872850
http://dx.doi.org/10.3390/rs9050446
http://dx.doi.org/10.1109/TGRS.2017.2719738
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.011
http://dx.doi.org/10.3390/rs10050743

	Introduction
	Related Work
	Segmentation Networks
	Depth-Wise Separable Convolution
	Group Convolution
	Feature Fusion

	Methods
	CT (Class-Wise Transition) Module
	CU (Class-Wise Up-Sampling) Module
	CS (Class-Wise Supervision) Module
	CC (Class-Wise Classification) Module

	Experiments & Results
	Data Sets
	Vaihingen
	Potsdam

	Evaluation Metrics
	Training Details
	Results & Discussion
	Class-Wise Design
	CS Module
	Influence of the Hyper-Parameter k
	Vaihingen
	Potsdam
	Parameter Size and Inference Time


	Conclusions
	References

