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Abstract: Rice leaf blast, which is seriously affecting the yield and quality of rice around the world, is
a fungal disease that easily develops under high temperature and humidity conditions. Therefore, the
use of accurate and non-destructive diagnostic methods is important for rice production management.
Hyperspectral imaging technology is a type of crop disease identification method with great potential.
However, a large amount of redundant information mixed in hyperspectral data makes it more
difficult to establish an efficient disease classification model. At the same time, the difficulty and
small scale of agricultural hyperspectral imaging data acquisition has resulted in unrepresentative
features being acquired. Therefore, the focus of this study was to determine the best classification
features and classification models for the five disease classes of leaf blast in order to improve
the accuracy of grading the disease. First, the hyperspectral imaging data were pre-processed in
order to extract rice leaf samples of five disease classes, and the number of samples was increased
by data augmentation methods. Secondly, spectral feature wavelengths, vegetation indices and
texture features were obtained based on the amplified sample data. Thirdly, seven one-dimensional
deep convolutional neural networks (DCNN) models were constructed based on spectral feature
wavelengths, vegetation indices, texture features and their fusion features. Finally, the model in
this paper was compared and analyzed with the Inception V3, ZF-Net, TextCNN and bidirectional
gated recurrent unit (BiGRU); support vector machine (SVM); and extreme learning machine (ELM)
models in order to determine the best classification features and classification models for different
disease classes of leaf blast. The results showed that the classification model constructed using fused
features was significantly better than the model constructed with a single feature in terms of accuracy
in grading the degree of leaf blast disease. The best performance was achieved with the combination
of the successive projections algorithm (SPA) selected feature wavelengths and texture features (TFs).
The modeling results also show that the DCNN model provides better classification capability for
disease classification than the Inception V3, ZF-Net, TextCNN, BiGRU, SVM and ELM classification
models. The SPA + TFs-DCNN achieved the best classification accuracy with an overall accuracy
(OA) and Kappa of 98.58% and 98.22%, respectively. In terms of the classification of the specific
different disease classes, the F1-scores for diseases of classes 0, 1 and 2 were all 100%, while the
F1-scores for diseases of classes 4 and 5 were 96.48% and 96.68%, respectively. This study provides a
new method for the identification and classification of rice leaf blast and a research basis for assessing
the extent of the disease in the field.

Keywords: rice leaf blast; hyperspectral imaging data; deep convolutional neural networks; fused
features

1. Introduction

Crop pests and diseases cause huge losses of agricultural production [1]. According
to the Food and Agriculture Organization of the United Nations, the annual reduction in
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food production caused by pests and diseases accounts for about 25% of the total food
production worldwide, with 14% of the reduction caused by diseases and 10% by pests [2].
In China, the amount of grain lost due to pest and disease outbreaks and hazards is
about 30% of the total production each year, which has a huge impact on the domestic
economy [3]. We still mainly rely on plant protection personnel to conduct field surveys
and field sampling in order to monitor crop disease. Although these traditional detection
methods have high accuracy and reliability, they are time-consuming, laborious and lack
representativeness. These traditional diagnostic methods mainly rely on the subjective
judgment of investigators, which is prone to human misjudgment, subjective errors and
variability [4–7]. Therefore, there is an urgent need to improve pest and disease monitoring
and control methods.

Rice blast is one of the most serious rice diseases in the north and south rice-growing
areas of China and it is known as one of the three major rice diseases together with bacterial
blight and sheath blight [8]. In September 2020, rice blast was listed as a Class I crop
pest by the Ministry of Agriculture and Rural Affairs of China. Rice blast is caused by
magnaporthe grisea and phytophthora grisea, which infest the leaves, neck and ears of
rice by producing conidia and causing devastating effects on the physiological aspects of
rice growth [9]. According to the period and location of damage, rice blast can be divided
into the seedling blast, leaf blast and spike blast, etc., among which leaf disease is the most
harmful. Leaf blast usually occurs after the three-leaf stage of rice plants and is increasingly
serious from the tillering stage to the jointing stage. The spots first appear as white dots
and gradually become 1~3 cm long diamond-shaped spots. The disease spot is gray in the
middle and is surrounded by a dark brown color. In severe infestation, the entire leaf dries
out [10,11] and reduces the green leaf area and photosynthesis in the lesioned area [12],
thus causing a substantial rice yield reduction. It generally causes a 10~30% yield reduction
in rice. Under favourable conditions, it can destroy an entire rice field in 15 to 20 days and
cause up to 100% yield loss [13]. In China, the average annual occurrence of rice blasts is as
high as 3.8 million hectares, with annual losses of hundreds of millions of kilograms of rice.
In order to control the spread of leaf blast fungus over a large area and reduce yield losses.
It is urgent to develop methods of rapid and accurate monitoring and discrimination of
leaf blast disease.

Spectroscopy is a commonly used technique for plant disease detection, and its non-
destructive, rapid and accurate characteristics have attracted the attention of a wide range
of scholars [14]. Multispectral techniques [15,16] and near-infrared spectroscopy [17,18]
have been studied in crop disease stress classification. However, multispectral and near-
infrared techniques obtain less spectral data information, making it more difficult to detect
the disease at its early stage of development and resulting in the inability to accurately
discriminate against it. Compared with the above-mentioned spectroscopic techniques,
hyperspectral imaging technology, which has characteristics of multiple spectral bands,
high resolution and can provide spatial-domain and spectral-domain information, has
thus gradually become a research hotspot for scholars. This technique has been widely
used for disease detection in vegetables [19,20], fruits [21,22] and grains [23–25]. In recent
years, with the development and application of hyperspectral imaging technology, the
technology has made great progress in crop disease detection and greatly improved the
science of accurate prevention and controls and management decisions in the field. Luo
et al. [26], after comparing the accuracy of rice blast identification with different spectral
processing methods and modeling approaches, concluded that the probabilistic neural
network classification based on logarithmic spectra was the best, with an accuracy of 75.5%
in the test set. Liu et al. [27] used support vector machine and extreme learning machine
methods to model and classify white scab and anthracnose of tea, respectively, with a
classification accuracy of 95.77%. Yuan et al. [28] extracted hyperspectral data from healthy
and diseased leaves without disease spots, leaves with less than 10% disease spot area
and less than 25% disease spot area, respectively, and used CARS-PCA for dimensionality
reduction in order to construct SVM rice blast classification models. The accuracy of
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all categories was greater than 94.6%. Knauer et al. [29] used hyperspectral imaging
for the accurate classification of powdery mildew of wine grapes. Nagasubramanian
et al. [30] used hyperspectral techniques and built soybean charcoal rot early identification
models based on genetic algorithms and support vector machines. Nettleton et al. [31]
used operational process-based models and machine learning models for the predictive
analysis of rice blast. It was concluded that machine learning methods showed better
adaptation to the prediction of rice blast in the presence of a training data set. All the
above-mentioned studies achieved good results, but all of them focused on the detection
of diseases in crops using spectral information from hyperspectral images, and they did
not address texture features in hyperspectral images which are directly related to disease
characterization. Texture features as inherent properties possessed by the crop, which are
not easily disturbed by the external environment, can reflect the image properties and the
spatial distribution of adjacent pixels, compensating to some extent for the saturation of
crop disease detection relying only on spectral information [32]. Zhang et al. [33] used
spectral features and texture features to construct a support vector machine classification
model. The results demonstrated that the classification model was able to effectively
classify healthy, moderate and severe diseases in wheat. Al-Saddik et al. [34] concluded
that combining texture features of grape leaves and spectral information to construct a
classification model resulted in the effective classification of yellowness and esca with
an overall accuracy of 99%. Zhang and Zhu et al. [35,36] concluded after analysis that
the classification model constructed by fusing spectral and texture features had superior
classification accuracy compared to the classification model using only spectral or texture
features. The above literature shows that it is feasible to construct plant disease classification
models by fusing spectral and texture information from hyperspectral images. However,
the study of using fusion features of spectral and textural information to discriminate
different disease levels of rice leaf blast needs to be explored deeply.

In the above-mentioned studies, researchers mostly used machine learning meth-
ods such as support vector machines and back propagation neural networks to model
hyperspectral data. However, there are still relatively few studies using deep learning
methods for crop disease identification and recognition based on hyperspectral imaging
data. The reason for this may be the small quantity of sample data obtained, which makes
it impossible to build a deep learning model. In existing studies, researchers have mostly
used deep learning methods to build models for hyperspectral data due to the powerful
feature extraction capabilities of these models. Nagasubramanian et al. [37] constructed
a 3D convolutional neural network recognition model for soybean charcoal rot by using
hyperspectral image data with a classification accuracy of 95.73%. Huang et al. [38] ob-
tained hyperspectral images of rice spike blast and constructed a detection model based
on the GoogLeNet method with a maximum accuracy of 92%. Zhang et al. [39] used
a three-dimensional deep convolutional neural network model to model yellow rust of
winter wheat with an overall accuracy of 85%. Although this modeling approach can
achieve high accuracy rates, it still requires the use of expensive hyperspectral instruments
in practical agricultural applications in order to obtain data and cannot be applied on a
large scale.

In view of this, this study draws on existing research methods to expand the sam-
ple data size. Data dimensionality reduction uses augmented sample data to extract
spectral feature wavelengths, vegetation indices and texture features. A total of seven one-
dimensional deep convolutional neural network classification models were constructed
for leaf blast disease classification based on the above features and their fusion features.
Finally, Inception V3, ZF-Net, BiGRU, TextCNN, SVM and ELM models were used for
comparative analysis with the model of this study to determine the best classification
features and classification model for leaf blast. It is expected to provide some scientific
theory and technical support for the identification of rice leaf blast disease grades.
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2. Materials and Methods
2.1. Study Site

Rice leaf blast trials were conducted from July to August 2020 at Liujiaohe Village,
Shenyang New District, Shenyang, Liaoning Province (42◦01′17.16′′N, 123◦38′14.57′′E).
The region has a temperate semi-humid continental climate, with an average annual
temperature of 9.7 ◦C and an average annual precipitation of 700 mm, making it a typical
cold-land rice-growing area. Mongolian rice with a high susceptibility to leaf blast was
used as the test variety, and it was planted on an area of about 100 m2 with a row spacing of
30 cm and a plant spacing of 17 cm. Nitrogen, potassium and phosphorus fertilizers were
applied according to local standards at 45, 15 and 51.75 kg/hm2, respectively. Prior to basal
fertilizer application, soil samples were collected using the five-point sampling method
from the disease trial plots, and soil nutrients were measured and analyzed. The measured
results showed that the rapid potassium content ranged from 86.83 to 120.62 mg/kg;
the effective phosphorus content ranged from 3.14 to 21.18 mg/kg; the total nitrogen
content ranged from 104.032 to 127.368 mg/kg; and the organic matter content ranged
from 15.8 to 20.0 g/kg. Leaf blast inoculation was carried out at 5:00 p.m. on the same
day (3 July 2020) by using a spore suspension at a concentration of 9 mg/100 mL (in order
to inoculate, the spore suspension was shaken well and sprayed evenly over the surface
of the plant leaves until the leaves were completely covered with water droplets), which
was wrapped in a moistened black plastic bag after inoculation and removed at 6:30 a.m.
the following morning. The test plots were not treated with any disease control, and field
management was normal. Five days after inoculation, the plants began to show symptoms,
and healthy and diseased rice leaves were obtained from the field under the guidance of a
plant protection specialist and taken back to the hyperspectral laboratory in order to obtain
hyperspectral image data.

2.2. Data Acquisition and Processing
2.2.1. Sample Collection

Five trials were conducted to collect healthy and diseased plants at three critical
fertility stages: the rice jointing stage (8 July; 15 July), the booting stage (25 July; 2 August)
and the heading stage (10 August). Under the supervision of plant protection experts, 57,
61 and 27 leaf samples with five different levels of disease were collected at the jointing,
booting and heading stages, respectively, and a total of 145 rice leaf samples were obtained.
In the experiment, in order to maintain the moisture content of the rice leaves, the leaves
were placed in a portable refrigerator to maintain their freshness. Hyperspectral image
data were then acquired indoors by using a hyperspectral imaging system. Figure 1 shows
pictures of healthy and different disease grades of rice leaves. We used ENVI 5.3 (ITT
Visual Information Solutions, Boulder, CO, USA) software for manual segmentation of rice
leaves, leaf background and disease areas. The number of pixel points for the whole leaf
and the diseased area was calculated, along with the number of diseased pixel points as
a percentage of the number of pixel points on the leaf. According to the GBT 15790-2009
Rules of Investigation and Forecast of the Rice Blast, classification was carried out according
to the size of the disease spot, as shown in Table 1. Level 5 leaf blast samples were not
found in this study; therefore, the criteria for determining level 5 disease are not listed in
Table 1.
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Figure 1. Healthy and different disease levels of rice leaves.

Table 1. Criteria for determining different disease levels of leaf blades and sample size.

Disease Level Disease Level Determination Criteria Sample Size

Level 0 No disease spots. 29
Level 1 Few and small spots, disease spot area less than 1% of leaf area. 27
Level 2 Small and many spots or large and few disease spot area of 1~5% of leaf area. 32
Level 3 Large and more spots, disease spot area of 5~10% of leaf area. 27
Level 4 Large and more spots, disease spot area of 10~50% of leaf area. 30

2.2.2. Hyperspectral Image Acquisition

In this study, a hyperspectral imaging system was used to acquire hyperspectral
images of rice leaves, as shown in Figure 2. The main components of the system include
a hyperspectral imaging spectrometer (ImSpector V10E, Spectral Imaging Ltd., Oulu,
Finland), a high-definition camera (IGV-B1410, Antrim, Northern Ireland), a precision
displacement control stage, a light-free dark box, two 150 W fiber optic halogen lamps
(Ocean Optics, Dunedin, FL, USA) and a computer. The effective spectral range obtained
by this hyperspectral imaging system is 400–1000 nm with a spectral resolution of 0.64 nm.
The distance of the camera lens from the surface of the rice leaves was set to 32 cm before
acquiring the images. The lens focus was adjusted by using a white paper focusing plate
with black stripes until the black stripes were imaged and the transition area between the
black stripes and the white paper was clear. In order to obtain the best image quality, the
light source intensity and exposure rate were adjusted and the scanning speed was set to
1.1 mm/s.

Figure 2. Hyperspectral imaging system: (1) EMCCD HD camera; (2) hyperspectral imaging spec-
trometer; (3) lens; (4) light source controller; (5) light source; (6) computer; (7) displacement stage; (8)
displacement stage controller.
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Due to the problem of inconsistent intensity values of different spatial hyperspectral
data caused by the variation of light intensity on the leaf surface and the camera’s dark
current, the original hyperspectral images needed to be processed by black-and-white plate
correction by using Equation (1) to obtain the final image spectral reflectance:

I =
RS − RD
RW − RD

(1)

where I is the corrected hyperspectral reflectance of rice leaves, RS is the spectral re-
flectance of the original hyperspectral images of rice leaves, and RW and RD are the
spectral reflectance of the corrected white plate and corrected black plate, respectively. The
acquisitions and transmissions of spectral images were completed by using the system’s
hyperspectral acquisition software (Isuzu Optics, Hsinchu, China).

2.2.3. Spectra Extraction and Processing

In this study, the whole rice leaf was treated as a separate region of interest (ROI),
and ENVI5.3 was used to manually delineate the region of interest and extract its average
spectral reflectance. This culminated in 29 health data and 116 disease data (27, 32, 27
and 30 disease data for levels 1, 2, 3 and 4 respectively), for a total of 145 hyperspectral
imaging data.

In order to determine the best classification features and classification model for leaf
blast, there were two main considerations in this study. Firstly, the leaf blast classification
features extracted from the existing data scale are contingent and not universal. Secondly,
the constructed leaf blast classification model is not generalizable and is not sufficient
for constructing a deep learning model based on big data and calibrated supervision
mechanisms. In view of these two considerations, in this study, the data set was divided
into a training set and a testing set, and then the data augmentation method proposed
by Chen et al. [40] for data augmentation was used. This method augments the data by
adding light intensity perturbations and Gaussian noise to the raw spectral data to simulate
interference factors such as uneven illumination and instrument noise. The formula is
shown in Equation (2):

yi = nyGaussian + alpxi (2)

where n is the weight of the control Gaussian noise yGaussian, alp is the light intensity
perturbation factor and xi is the raw spectral data. Figure 3 shows the effect of data
augmentation.

Figure 3. The effect of data augmentation.
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In the end, a total of 986 healthy sample data, 918 level 1 disease data, 1088 level 2
disease data, 918 level 3 disease data and 1020 level 4 disease data were obtained, resulting
in a total of 4930 sample data. Figure 3 shows the effect of data augmentation.

2.3. Optimal Spectral Feature Selection

Hyperspectral data are characterized by rich information content, high resolution and
band continuity, which can fully reflect the differences in physical structure and chemical
composition within the leaf. However, there is still a large amount of redundant information
in the spectral information, which affects modeling accuracy. Therefore, hyperspectral data
need to be subjected to dimension-reduced processing to extract valid and representative
spectral features as model input to improve modeling accuracy. In this study, no new
descending dimension methods were proposed or used, but both the successive projections
algorithm (SPA) and random frog (RF) methods were used to extract spectral feature
wavelengths. This is due to the fact that a wide range of researchers have confirmed that
the characteristic wavelengths of SPA and RF screening are representative. At the same
time, the SPA and RF methods screen for a smaller number of characteristic wavelengths,
making it easy to generalize and use the model. In this study, the SPA and RF methods
were used to extract the feature wavelengths of the spectra.

SPA is a forward feature variable dimension reduction method [41]. SPA is able to
obtain the combination of variables that contains the least redundant information and
the minimum characteristic co-linearity. The algorithm uses projection analysis of vectors
to map spectral wavelengths onto other spectral wavelengths in order to compare the
magnitude of the mapping vectors and to. obtain the wavelength with the largest projection
vector, which is the spectral wavelength to be selected. A multiple linear regression analysis
model was then developed to obtain the RMSECV of the modeling set. The number and
wavelength corresponding to the smallest RMSECV value in the different subsets of features
to be selected consists of the optimal spectral feature wavelength combinations.

RF is a relatively new method of signature variable screening, initially used for gene
expression data analysis of diseases [42]. The method uses the Reversible Jump Markov
Chain Monte Carlo (RJMCMC) method to transform and sample the dimensions of the
spectrum. From there, a Markov chain is modeled in space that conforms to the steady-
state distribution to calculate the frequency of selection for each wavelength variable. The
selection of frequencies was used as a basis for eliminating redundant variables, resulting
in the best spectral characteristic wavelength.

2.4. Texture Features Extraction

Textural features contain important information about the structural tissue arrange-
ment of the leaf spot surface and the association of the spot with its surroundings. Therefore,
TFs can reflect the physical characteristics of the crop leaves and information on the growth
status of the crop [26]. When leaf blast infects leaves, cell inclusions and cell walls are dam-
aged, the chlorophyll content is reduced and the volume is reduced. This results in a change
in color in some areas of the leaf surface and causes changes in textural characteristics.

A gray-level co-occurrence matrix (GLCM) is a common method for extracting texture
features on the leaf surface. It reflects the comprehensive information of the image in terms
of direction, interval and magnitude of change by calculating the correlation between the
gray levels of two points at a certain distance and in a certain direction in the image [43]. At
the same time, the energy, entropy, correlation and contrast can better reflect the difference
between the diseased and normal parts of the leaf, thus improving the modeling accuracy
(energy reflects the degree of gray distribution and texture thickness; entropy is a measure
of the amount of information in the image; correlation measures the similarity of images
at the gray level in the row or column direction; and contrast reflects the sharpness of
the image and the depth of the texture grooves). Hence, in this study, energy, entropy,
correlation and contrast were calculated from four directions, namely 0◦, 45◦, 90◦ and
135◦, at a relative pixel distance d of 1. The formulae for energy, entropy, correlation
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and contrast are shown in Table 2. The average and standard deviation were calculated
for energy, entropy, correlation and contrast in each of the four directions. A total of
eight texture features were obtained, specifically the mean value of energy (MEne), the
standard deviation of capacity (SdEne), the mean value of entropy (MEnt), the standard
deviation of entropy (SdEnt), the mean value of correlation (MCor), the standard deviation
of correlation (SDCor), the mean value of contrast (MCon) and the standard deviation of
contrast (SDCon).

Table 2. Four texture features extracted from the GLCM.

Texture Features Equation

Entropy −∑
i

∑
j

P(i, j)lgP(i, j)

Energy ∑
i

∑
j

P(i, j)2

Correlation ∑
i

∑
j

(i−µ)(j−µ)
σ2 P(i, j)

Contrast ∑
i

∑
j
(i− j)2P(i, j)

Note: i and j represent the row number and column number of the grayscale co-occurrence matrix, respectively;
P(i, j) denotes the relative frequency of two neighboring pixels.

2.5. Vegetation Index Extraction

VIs are indicators constructed by combining different spectral bands in linear and
nonlinear combinations, and they are often used to monitor and discriminate the degree
of vegetation disease. In this study, the VIs with the highest correlation of leaf blast
disease levels were screened by establishing a contour of the decision coefficient. The
method arbitrarily selects two spectral bands in the spectral range to construct a certain
spectral index, and then the Pearson correlation coefficient method is used to calculate the
correlation between the disease class and the vegetation index to find the vegetation index
with a higher classification ability.

Based on previous research results, the ratio spectral index (RSI), the difference spectral
index (DSI) and the normalized difference spectral index (NDSI) were used to construct
the contour of the decision coefficient. The formula is as follows:

RSI = Ri/Rj (3)

RSI = Ri/Rj (4)

NDSI = Ri − Rj/Ri + Rj (5)

where Ri and Rj denote the spectral reflectance values in the spectral band range.

2.6. Disease Classification Model
Deep Convolutional Neural Network

The human visual system has a powerful ability to classify, monitor and recognize.
Therefore, in recent years, a wide range of researchers have been inspired by bio-vision
systems to develop advanced data processing methods. Convolutional Neural Networks
(CNNs) are deep neural networks developed to emulate biological perceptual mechanisms.
The networks are capable of automatically extracting sensitive features at both shallow and
deep levels in the data. The Residual Network (ResNet) [44] is a typical representative of
CNN, as shown in Figure 4. The residual module (both the direct mapping and residual
components) is designed with the idea of the better extraction of data features and to
prevent degradation of the network. ResNet is well recognized for its feature extraction
and classification in the ILSVRC 2015 competition.
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Figure 4. ResNet structure.

As ResNet has a deeper network hierarchy, it is prone to over-fitting during train-
ing. ResNet was initially used mainly in image classification and was not applicable
to spectral data. Therefore, this study adapts ResNet to render it suitable for modeling
one-dimensional data. Firstly, the data in this study were all one-dimensional, and thus
the number of input features was used as the network input, and there was no need to
experimentally derive the optimum input layer size. The number of channels in the FC
layer of ResNet was also adjusted to 5 for the 5 classification problems of normal, level
1, level 2, level 3 and level 4 diseases of rice leaf blast. ResNet is a DCNN designed for
application to large-scale data, and its training process is computationally intensive. The
classification problems for different disease classes are smaller in terms of data size and
computational effort of training. Therefore, in order to improve the modeling effect of the
model, different types of classification networks were designed by adjusting the network
depth and structure of ResNet by adding the BatchNorm layer and Dropout layer while
maintaining the design concept of ResNet (Figure 5) in order to be applicable to the data
obtained from this study. The model in this paper was compared and analyzed with
SVM [45], ELM [46], Inception V3 [47], ZF-Net [48], BiGRU [49] and TextCNN [50] models
to determine the best leaf blast disease class classification model.
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Figure 5. DCNN models with different dimensionality reduction methods.
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The above DCNN model was built using the deep learning computational framework
Keras 2.3 for model building. The hardware environment for the experiments was 32G
RAM, Bronze 3204 CPU and Quadro P5000 GPU.

3. Results
3.1. Spectral Response Characteristics of Rice Leaves

As shown in Figure 6, the mean spectral reflectance of healthy rice leaves and disease-
susceptible leaves showed a consistent trend. The reflectance at 500~600 and 770~1000 nm
changed significantly after rice blast spores infested the leaves. There is a slight increase
in the reflectance of diseased leaves in the 500 to 600 nm range. At 700~1000 nm, the
reflectance decreases significantly. In the range of 680 to 770 nm, the spectral curves of
the different disease degrees were shifted to the short-wave direction compared to the
healthy leaf spectral curves, i.e., the phenomenon of “blue shift′′. This is due to damage
to chloroplasts or other organelles within the leaf caused by the disease and changes in
pigment content, resulting in changes in spectral reflectance [51]. The band range between
400 and 450 nm shows severe reflectance overlap, and thus the band range of 450 to 1000 nm
was chosen as the main band for spectral feature extraction.

Figure 6. Comparison of average spectral curves. (a) Average spectral curves of diseases at 400 to 1000 nm. (b) Average
spectral curves of diseases at 680 to 770 nm.

3.2. Optimal Features
3.2.1. Vegetation Indices

Figure 7 shows the contour of the decision coefficient of DSI, RSI and NDSI consti-
tuted by any two-band combinations with the leaf disease class. In Figure 7a, the NDSI
constructed by the combination of spectral bands from 623 to 700 and 700 to 1000, 556
to 702 and 450 to 623 nm correlated well with the disease levels, and the coefficient of
determination R2 was greater than 0.8. Among them, the NDSI vegetation index con-
structed by the combination of 600 and 609 nm had the best correlation with R2 of 0.8947.
Compared with NDSI, RSI correlated better with the disease class in fewer band ranges,
mostly concentrated in the visible band range (Figure 7b). The best RSI vegetation index
was constructed for the combination of 725 and 675 nm with an R2 of 0.9103. Relatively,
the DSI constructed at 548 nm and 698 nm had the highest correlation, with an R2 of 0.800
(Figure 7c).
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Figure 7. Contour of decision coefficient between disease levels and DSI, RSI and NDSI. (a) NDSI. (b) RSI. (c) DSI.

3.2.2. Extraction of Hyperspectral Features

The spectral data were processed by using the SPA to obtain the characteristic wave-
lengths of the spectra with high correlation. In this study, a minimum screening number of
eight and a maximum screening number of ten were set, and the RMSE was used as the
evaluation criterion for selecting the best spectral feature wavelength. Figure 8a shows
the eight optimal spectral characteristic wavelengths, and the spectral wavelengths are
given in Table 3. The RMSE curve drops sharply as the wavelength changes from 0 to 5
and stabilizes at the eighth wavelength. The final SPA selects eight spectral features at
wavelengths evenly distributed in the visible, red-edge and near-infrared regions.

Figure 8. Selected optimal variables using (a) SPA and (b) RF.
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Table 3. The variables selected by SPA and RF.

Method Variable Number Wavelength/Nm

SPA 8 450 543 679 693 714 757 972 985
RF 13 482 548 713 715 762 777 778 780 826 943 945 951 953

The RF algorithm was used to screen the spectral feature wavelengths, setting the
maximum number of potential variables to 6, the initial number of sampled variables to
1000 and the screening threshold to 0.1. Given that the RF algorithm uses RJMCMC as
the screening principle, the characteristic bands are slightly different each time they are
screened. The RF algorithm was, therefore, run a total of 10 times, and the final average
of the results was taken as the basis for the judgment of the characteristic wavelengths.
The screening probability results for each spectral characteristic wavelength are shown
in Figure 8b. The larger the screening probability, the more important the corresponding
spectral feature wavelengths are; thus, the wavelengths with a screening probability
greater than 0.1 were selected as the best spectral feature wavelengths (Table 3), with a
total of 13 spectral feature wavelengths, accounting for approximately 2.36% of the full
wavelength band.

3.2.3. Extraction of Texture Features by GLCM

Since hyperspectral images contain a large amount of redundant information, PCA
is used to reduce the dimensionality of hyperspectral images and to generate principal
component images containing a large amount of effective information. The cumulative
contribution of the first three principal component images (PC1–PC3) was greater than
95% and, therefore, was used to extract texture features. Figure 9 shows the principal
component images of healthy and diseased leaves after dimensionality reduction by PCA.

Figure 9. Principal component images of healthy and diseased leaves.

The GLCM was used to calculate the PC1-PC3 images separately to obtain eight
features such as the means and standard deviations of the energy, entropy, contrast and
correlation. In order to further improve the modeling accuracy, redundant texture features
were removed. Eight texture features were subjected to Pearson correlation analysis with
different disease classes to screen the significantly correlated and highly significantly
correlated texture features, and the correlation coefficients and significance are shown in
Table 4. The correlation and significance variation between the eight characteristics and the
different disease classes can be observed in Table 4. Among them, MEne, SDEne, MEnt,
SDEnt, MCon, SDCon and Mcor displayed highly significant correlations, while SDCor
displayed a lower correlation. Therefore, in this study, seven highly significant features
such as MEne were chosen as the final texture features to be modeled.
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Table 4. Correlation of texture features with different disease classes.

Texture Features Correlation Coefficient p Value Significance

MEne 0.5618 <0.001 ***
SDEne −0.2632 <0.001 ***
MEnt −0.4914 <0.001 ***
SDEnt −0.4263 <0.001 ***
MCon −0.2308 <0.001 ***
SDCon −0.2265 <0.001 ***
MCor 0.1165 <0.001 ***
SDCor −0.0365 0.0105 **

Note: ** indicates significant correlation at 0.01 (0.01 < p < 0.05). *** indicates highly significant correlation at 0.001
(p < 0.001).

3.3. Sensitivity Analysis of the Number of Convolutional Layers and Convolutional Kernel Size for
the DCNN

Figure 10 shows a comparison of the accuracy of the convolutional layers for different
input features in the proposed model. From the figure, it can be observed that the DCNN
constructed based on the features obtained from SPA, RF, TFs, SPA + TFs and RF + TFs
achieved the best classification accuracy when the number of convolutional layers in the
residual block was two. For Vis, Vis + TFs, the DCNN achieved the best classification
results when the number of convolution layers was three.

Figure 10. Effect of the number of DCNNs in the proposed DCNN model on classification accuracy.

Based on the optimal number of convolutional layers, we investigated the effect of
different sizes of convolutional kernels on the classification accuracy through a set of
experiments. Figure 11 shows a comparison of the accuracy of the models built with
different sizes of convolutional kernels. When the convolutional kernel size was (3,3), the
DCNN models constructed from features screened by SPA, RF, TFs, SPA + TFs and RF +
TFs were better for classification. Meanwhile, the DCNN models constructed with VIs
and Vis + TFs had the best classification accuracy when the convolutional kernel size was
(1,3,3).
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Figure 11. Comparison of the accuracy of models built with different sizes of convolutional kernels. Note: (3,3), etc., denotes
two convolutional layers with convolutional kernel sizes of 3 and 3; (1,3,3), etc., denotes three convolutional layers with
convolutional kernel sizes of 1, 2 and 3.

3.4. DCNN-Based Disease Classification of Rice Leaf Blast
3.4.1. DCNN Model Training and Analysis

The modeling was carried out using 4930 rice leaf blast data obtained for different
disease classes as samples (including data obtained by data augmentation methods),
where the training set, validation set and test set were divided according to 7:1:2. The
relevant training experiments were carried out for the seven DCNN models with different
dimensionality reduction methods in Figure 4. The overall accuracy (OA), Kappa coefficient
and F1-score were selected as the model evaluation criteria for the experiment. In order
to train the DCNN model, the Nadam algorithm [52] was used. The same learning rate
was used for all layers in the network, with an initial learning rate of 0.002 and exponential
decay rates of 0.9 and 0.999 for the first and second orders, respectively. The initialization
of the weights has a large impact on the convergence speed of the model training. In this
study, a normal distribution with a mean of 0 and a standard deviation of 0.01 was used to
initialize the weights of all layers of the network, and the bias of the convolutional layer and
the full connection was initialized to 0. In order to determine the best disease classification
features and classification models, each DCNN model was fully trained. The epochs for
SPA-DCNN, RF-DCNN, VIs-DCNN, TFs-DCNN, SPA + TFs-DCNN, RF + TFs-DCNN and
Vis + TFs-DCNN were 200, 180, 300, 150, 150, 150 and 250. The training results of different
DCNN models are shown in Figure 12.

Figure 12. Cont.
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Figure 12. Change of loss function value and accuracy with iteration curves.

As can be observed from Figure 12, the training error of all DCNN models gradually
decreases as the number of iterations increases and finally reaches a state of convergence.
At the beginning of the training period, the training loss decreases rapidly by updating the
gradient of the loss function with small batches of samples. This shows that batch_size and
the optimization algorithm play a better role. In addition, as the training loss decreases,
the prediction accuracy of the model for the training set shows an overall upward trend.
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3.4.2. DCNN Model Testing and Analysis

In order to obtain the best leaf blast classification features, spectral features, vegetation
indices, texture features (TFs) and their fusion features were used to construct the DCNN
leaf blast classification model. The modeling results are shown in Table 5.

Table 5. Results of the DCNN disease classification model based on different features.

Descending
Dimension Method

F1-Score (%)
OA (%) Kappa (%)

Level 0 Level 1 Level 2 Level 3 Level 4

SPA 100 97.44 95.74 96.15 98.54 97.67 97.08
RF 100 96.05 94.51 95.01 97.73 96.75 95.93
VIs 98.36 84.18 87.04 88.64 95.48 90.97 88.70
TFs 92.67 92.23 92.93 86.88 93.96 91.89 89.84

SPA + TFs 100.00 100.00 100.00 96.48 96.68 98.58 98.22
RF + TFs 100.00 100.00 97.93 91.36 93.66 96.45 95.55
Vis + TFs 97.17 83.66 85.79 80.72 92.13 88.03 85.04

The data in Table 5 show that all seven DCNN models designed based on different
characteristics have high classification accuracy with OA greater than 88% and Kappa
coefficients greater than 85% for different disease degree classification. In the DCNN
model constructed with a single feature, better classification results were obtained for the
feature wavelengths selected by the SPA and RF methods, with OA and Kappa reaching
97.67% and 96.75% and 97.08% and 95.93%, respectively. In the DCNN model constructed
based on TFs, although the model constructed was not as accurate as the spectral feature
wavelength model, it still achieved better classification results, indicating that the image
data also had the ability to identify rice leaf blast. Among the DCNN models constructed
by fusing features, SPA + TFs-DCNN obtained the highest classification accuracy, with
OA and Kappa of 98.58% and 98.22%, respectively. The F1-scores of SPA + TFs-DCNN are
greater than those of the other fusion features for the identification of specific different
disease classes. The F1-scores for Level 0, Level 1, Level 2, Level 3 and Level 4 were 100%,
100%, 100%, 96.48% and 96.68%, respectively. This result shows that the fusion of spectral
wavelengths and textural features screened by SPA can more accurately represent valid
information about the different disease levels in rice.

3.4.3. Comparison with Other Classification Models

The model in this paper was analyzed and compared with six classification models,
namely Inception V3, ZF-Net, BiGRU, TextCNN, SVM and ELM. The classification results
of the six models are shown in Table 6.

Table 6. Overall classification results.

Methods

SVM ELM Inception V3 ZF-Net BiGRU TextCNN

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

SPA 93.41 91.74 90.19 87.82 95.44 94.28 94.42 93.01 96.65 95.81 95.74 94.66
RF 91.28 89.09 90.96 89.07 91.89 89.85 96.55 95.68 94.32 92.88 88.95 86.12
VIs 86.09 82.60 83.40 79.22 86.92 83.62 89.76 87.17 88.64 85.80 84.08 80.09
TFs 88.34 85.40 89.13 87.27 88.95 86.14 92.09 90.08 89.96 87.41 90.97 88.68

SPA + TFs 95.54 94.41 91.67 89.59 97.06 96.32 97.77 97.20 97.36 96.70 97.77 97.20
RF + TFs 94.42 93.01 91.02 88.82 95.33 94.16 96.04 95.05 96.35 95.43 95.54 94.41
Vis + TFs 80.61 75.69 74.94 68.79 83.47 79.30 86.00 82.49 81.14 76.40 83.77 79.73

As can be observed from Table 6, all six models achieved good accuracy in disease
classification. The model constructed by fusing spectral wavelengths and texture features
screened by SPA as input quantities has the best classification accuracy, with OA and Kappa
of greater than 90% and 88%, respectively. In addition, for the identification of the different
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disease classes, F1-score were greater than 84% for levels 0, 2 and 4 and greater than 82%
for levels 1 and 3 (shown in Appendix A Tables A1–A3). In addition, the experimental
results of the models simultaneously show that the fusion of spectral feature wavelengths
with texture features can enhance the classification of the models. Compared to machine
learning models (SVM and ELM), the OA, Kappa and F1-scores of the models in this paper
are significantly improved. In particular, OA and Kappa improved by 3.04% and 3.81%,
respectively, compared to the SPA + TFs-SVM model. Compared to the SPA + TFs-ELM
model, OA and Kappa improved by 6.91% and 8.63%, respectively. In comparison with
the other four deep learning models, it can be observed that the classification accuracy of
ZF-Net, Inception V3, TextCNN and BiGRU is lower than that of the present model. The
classification results of ZF-Net, Inception V3, TextCNN and BiGRU for one-dimensional
disease data were not very different, all with the best models constructed with features
obtained from SPA + TFs (OA > 97%, Kappa > 96%). In view of this, it is evident from the
comparative analysis of different input features and different modeling methods that the
fusion of spectral features wavelength and texture features extracted by SPA is the best
feature for leaf blast classification. At the same time, the DCNN model proposed in this
paper has the best accuracy in classifying disease classes.

We performed a comparative analysis of the performance of the models constructed
based on the best classification features (SPA + TFs) using the OA and test time, as shown
in Table 7. As can be observed from Table 7, the deep learning model took significantly
more time than the machine learning model on the 986 test datasets. However, the machine
learning model is insufficient in OA. In the performance comparison of the deep learning
models, it was found that the convolutional neural network took significantly less time
than the recurrent neural network (BiGRU), which may be due to the fact that BiGRU
is trained in a fully connected manner and requires more parameters. In comparison
with DCNN models such as Inception V3, ZF-Net and TextCNN, our proposed model
has the highest classification accuracy and the shortest testing time. On 986 test data,
disease classification took only 0.22 s. Therefore, our proposed DCNN model has the best
classification performance.

Table 7. Results of model detection efficiency comparison.

Method OA (%) Test Time (s)

SPA + TFs-SVM 95.54 0.1058
SPA + TFs-ELM 91.67 0.0279

SPA + TFs-Inception V3 97.06 0.5222
SPA + TFs-ZF-Net 97.77 0.4152
SPA + TFs-BiGRU 97.36 1.2086

SPA + TFs-TextCNN 97.77 0.3388
SPA + TFs-DCNN (the model of this study) 98.58 0.2200

4. Discussion

At present, the identification and disease degree classification of rice blast is mainly
carried out through the subjective judgment of plant protection personnel, with high
professional ability but low efficiency of detection. Hyperspectral imaging technology is a
highly promising disease detection technology that has attracted the interest of scholars
because of its non-destructive, fast and accurate characteristics [53,54].

This study first pre-processed the hyperspectral imaging data to extract rice leaf sam-
ples of different disease classes and increased the number of samples by data augmentation
methods. Secondly, in order to reduce the dimensionality of hyperspectral data, methods
such as SPA, RF, the contour of decision coefficient and GLCM were used to screen spectral
features, vegetation indices and texture features. Finally, deep learning and machine learn-
ing methods were used to construct rice leaf blast classification models and to determine
the best classification features and classification models for leaf blast.
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When a crop is infested with a disease, it results in changes in a range of physiological
parameters of rice, such as chlorophyll content, water content and cell structure [55]. The
changes in these physiological parameters are reflected both in the spectral reflectance
curves and in the crop image features, as shown in Figures 2 and 3. When rice leaves were
infested with leaf blast, the leaf blast level showed a correlation with the change in the mean
spectral curve. In the visible wavelength range, the spectral reflectance appeared slightly
increased, which was due to the rhombus-shaped lesions on the leaf cells infested with
magnaporthe grisea, which reduced the cytochrome content and activity and weakened the
absorption of light. At the same time, as the chlorophyll content decreased, the absorption
band narrowed and the red edge (680~770 nm) shifted to the short-wave direction, resulting
in a “blue shift′′ phenomenon. There was a greater correlation between 770~1000 nm and
the internal structure of the leaves. Compared to healthy leaves, the cell layer inside
the diseased leaves was reduced and the spectral reflectance decreased [51]. The above
phenomenon, therefore, provides some basis for research to obtain graded characteristics
of leaf blast.

In this work, the focus was on the use of hyperspectral imaging data to determine
the best classification features and classification models for leaf blast. In terms of data
dimensionality reduction, this study used the SPA and RF methods to screen the spectral
feature wavelengths, and 8 and 13 feature wavelengths were obtained, respectively, as
shown in Table 4. The contour of the decision coefficient method was used to extract
the three best vegetation indices with R2 all greater than 0.8. The seven best texture
features were also selected by combining GLCM and rank correlation analysis, as shown in
Table 5. In DCNN modeling, the network depth, number and size of convolutions of the
DCNN model can seriously affect its performance [56]. Therefore, we borrowed the design
concept of ResNet and adjusted the network depth and convolutional layer parameters
of ResNet through multiple tests to determine the best model structure. BatchNorm and
Dropout layers were also added to avoid overfitting and to ensure accuracy. We constructed
seven DCNN-based rice blast classification models based on different input features. The
results show that all seven DCNN models designed based on different features have high
classification accuracy, with OA greater than 88% and Kappa coefficient greater than 85%.
The reason for this may be due to the fact that DCNN uses the ResNet model design concept
as a reference and adopts a “shortcut′′ structure. This structure enables the inclusion of the
full information of the previous layer of data in each residual module, preserving more of
the original information to some extent. At the same time, the data augmentation method
was used to increase the quantity of sample data and improve the diversity of the samples,
further enhancing the generalization capability of the model. In comparing the DCNN
models constructed with different features, the DCNN models constructed based on fused
features all achieved high classification accuracy. The highest classification accuracy was
obtained for SPA + TFs-DCNN, with OA and Kappa of 98.58% and 98.22%, respectively.
All had high classification accuracy in the identification of detailed disease classes, with
F1-scores of 100%, 100%, 100%, 96.48% and 96.68% for levels 0, 1, 2, 3 and 4, respectively.
This suggests that the fusion of spectral and texture features to construct a classification
model has the ability to improve the accuracy of model classification. This is consistent
with previous studies [57].

In order to further determine the best classification features and classification model,
the model in this paper was compared and analyzed with Inception V3, ZF-Net, BiGRU,
TextCNN, SVM and ELM models. In the SVM and ELM modeling results, it was shown that
the SPA screened feature wavelengths combined with TFs constructed the model with the
best classification accuracy. Compared with the DCNN classification model, the OA, Kappa
and F1-score of both the SVM and ELM classification models were significantly lower than
those of the DCNN model. The reason for this may be that the convolutional layer of
DCNN is able to further extract disease features and obtain significant differences between
different diseases, thus improving model accuracy. The classification accuracy results of
ZF-Net, Inception V3, TextCNN and BiGRU are all lower than the results of the model in
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this paper, as can be observed in the modeling results of the deep learning methods. This
may be due to the fact that the model in this paper uses the shortcut structure of ResNet to
retain more of the fine-grained features between diseases. Models such as Inception V3, on
the other hand, gradually ignores fine-grained features and retain coarse-grained features
as the number of iterations increases. In the case of intra-class classification problems,
fine-grained features are the key to achieving higher accuracy.

Therefore, in this study, it is concluded from the comparative analysis of different
input features and different modeling methods that the DCNN model constructed based
on the fused features of feature wavelength and texture features acquired by SPA has the
highest classification accuracy. It can realize the accurate classification of the severity of
rice leaf blight and provides some technical support for the next step of UAV hyperspectral
remote sensing monitoring of rice leaf blasts. It is worth noting that only rice leaf blast
was modeled and analyzed in this study, and no other leaf diseases of rice were studied.
Therefore, future research work will further explore the best classification features for
different rice diseases and establish a more representative, generalized and comprehensive
disease classification model.

5. Conclusions

Leaf blast, a typical disease of rice, has major impacts on the yield and quality of grain.
In this study, an indoor hyperspectral imaging system was used to acquire hyperspectral
images of leaves. With limited hyperspectral data, data augmentation was performed by
drawing on data augmentation methods from existing studies to augment the sample data
from 145 to 4930. Then, spectral features, vegetation indices and texture features were
extracted based on the augmented hyperspectral images. The above features and their
fusion features were used to construct leaf blast classification models. The results showed
that the model constructed based on fused features was significantly better than the model
constructed based on single feature variables in terms of accuracy in the classification of
the degree of leaf blast disease. The best performance was achieved by combining the
SPA screened spectral features (450, 543, 679, 693, 714, 757, 972 and 985 nm) with textural
features (MEne, SDEne, MEnt, SDEnt, MCon, SDCon and MCor). The modeling results
also showed that the proposed DCNN model provided better classification performance in
disease classification compared to traditional machine learning models (SVM and ELM),
with an improvement of 3.04% and 6.91% in OA and 3.81% and 8.63% in Kappa, respec-
tively. Compared to deep learning models such as Inception V3, ZF-Net, BiGRU and
TextCNN, this model also has the best classification accuracy. In comparison to ZF-Net and
TextCNN, both OA and Kappa improved by 0.81% and 1.02%. OA and Kappa improved by
1.52% and 1.22% and 1.9% and 1.52%, respectively, compared to Inception V3 and BiGRU.
Therefore, this study confirms the great potential of the proposed one-dimensional deep
convolutional neural network model for applications in disease classification. The best
fusion features identified in this study can further improve the modeling accuracy of the
disease classification model. In addition, in the next study, we will further explore the
classification features of rice diseases such as sheath blight and bacterial blight to establish
a more stable, accurate and comprehensive disease classification model.
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Appendix A

Table A1. F1-score for the SVM and ELM models.

Methods
SVM - F1-Score /% ELM - F1-Score /%

Level 0 Level 1 Level 2 Level 3 Level 4 Level 0 Level 1 Level 2 Level 3 Level 4

SPA 100.00 92.93 90.41 87.89 95.81 97.53 88.64 87.31 83.96 92.46
RF 100.00 89.80 88.84 86.39 91.26 100 88.45 83.25 89.26 95.90
VIs 93.30 81.91 86.61 80.10 87.39 98.64 82.64 74.47 72.04 90.39
TFs 86.93 84.48 89.85 87.75 91.77 76.55 70.25 88.79 80.00 93.75

SPA+TFs 98.77 94.49 95.88 93.97 95.10 97.41 88.76 86.44 87.19 97.94
RF+TFs 97.03 90.03 93.56 93.64 96.90 97.94 88.69 86.55 86.17 95.77
VIs+TFs 95.93 79.58 78.99 64.09 83.25 95.81 66.09 67.29 65.35 80.98

Table A2. F1-score for the Inception V3 and ZF-Net models.

Methods
Inception V3 - F1-Score /% ZF-Net - F1-Score /%

Level 0 Level 1 Level 2 Level 3 Level 4 Level 0 Level 1 Level 2 Level 3 Level 4

SPA 100 94.43 94.54 93.01 94.39 100 96.61 89.74 87.61 97.04
RF 99.10 98.21 84.04 83.46 94.12 99.55 97.41 95.80 93.51 96.16
VIs 97.40 82.39 81.35 79.78 92.42 96.91 85.71 94.99 79.64 88.79
TFs 95.24 84.52 88.79 85.99 89.72 98.46 93.11 89.72 87.34 92.38

SPA+TFs 98.20 97.28 97.40 94.85 97.51 99.00 98.76 98.40 95.36 97.41
RF+TFs 97.16 94.64 96.88 91.91 95.77 98.06 96.59 96.28 92.71 96.07
VIs+TFs 96.06 73.19 76.14 73.94 90.75 96.52 83.12 80.57 77.68 91.13

Table A3. F1-score for the BiGRU and TextCNN models.

Methods
BiGRU - F1-Score /% TextCNN - F1-Score /%

Level 0 Level 1 Level 2 Level 3 Level 4 Level 0 Level 1 Level 2 Level 3 Level 4

SPA 100 94.94 93.43 95.82 98.50 100 94.22 92.02 93.82 97.99
RF 100 93.77 92.60 89.33 94.69 99.10 87.58 88.21 75.47 90.28
VIs 96.91 85.94 83.73 82.97 92.86 96.91 80.57 77.43 77.64 87.40
TFs 89.69 91.45 94.25 85.79 88.41 93.11 80.79 87.29 92.31 98.37

SPA+TFs 100 99.07 96.68 94.21 97.24 100 98.79 97.88 95.31 97.03
RF+TFs 96.06 95.58 98.13 94.95 96.73 97.22 94.74 96.31 93.26 95.85
VIs+TFs 95.51 73.90 74.44 73.04 89.45 96.61 8032 81.34 73.23 87.62
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