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Abstract: Driven by the urgent demand for flood monitoring, water resource management and
environmental protection, water-body detection in remote sensing imagery has attracted increasing
research attention. Deep semantic segmentation networks (DSSNs) have gradually become the
mainstream technology used for remote sensing image water-body detection, but two vital problems
remain. One problem is that the traditional structure of DSSNs does not consider multiscale and
multishape characteristics of water bodies. Another problem is that a large amount of unlabeled data
is not fully utilized during the training process, but the unlabeled data often contain meaningful
supervision information. In this paper, we propose a novel multiscale residual network (MSResNet)
that uses self-supervised learning (SSL) for water-body detection. More specifically, our well-designed
MSResNet distinguishes water bodies with different scales and shapes and helps retain the detailed
boundaries of water bodies. In addition, the optimization of MSResNet with our SSL strategy can
improve the stability and universality of the method, and the presented SSL approach can be flexibly
extended to practical applications. Extensive experiments on two publicly open datasets, including
the 2020 Gaofen Challenge water-body segmentation dataset and the GID dataset, demonstrate that
our MSResNet can obviously outperform state-of-the-art deep learning backbones and that our SSL
strategy can further improve the water-body detection performance.

Keywords: water-body detection; multiscale residual network (MSResNet); self-supervised learning
(SSL); high-resolution remote sensing imagery

1. Introduction

Along with the rapid development of remote sensing (RS) technology, the availability
of RS images has been growing rapidly [1], and human beings have already entered
the era of big data RS [2,3], making large-scale water-body monitoring possible [4]. To
pursue timely large-scale water-body monitoring, automatic water-body detection from RS
imagery has become incredibly urgent. As is well known, the water-body regions in optical
RS imagery generally present multiscale characteristics, as water-body regions comprise
water bodies of different types, such as thin and wide regions, and large differences exist
within these water-body categories. Therefore, accurately detecting water bodies from RS
images remains a challenging problem. Although existing studies have demonstrated that
synthetic aperture radar (SAR) images have the potential to monitor water bodies [5–7],
effectively monitoring water bodies using optical RS images is still very important because
optical RS images are easier to collect than SAR images. Hence, this paper mainly focuses
on exploiting water-body detections using optical RS imagery.

In the literature, the existing methods of monitoring water bodies mainly include two
perspectives. The traditional methods are mainly based on handcrafted features, such as
the normalized difference water index (NDWI) [8], the band analysis-based method [9],
the gray-level cooccurrence matrix (GLCM) and the supported vector machine (SVM)-
based method [10]. As mentioned above, most traditional water-body detection methods
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strongly depend on the spectral information of RS images, pay little attention to contextual
spatial information, and have poor universal applicability. Currently, the more main-
stream methods are deep learning-based water-body detection methods, which attract
increasing attention. Many general deep networks [11–14] in the field of computer vision
are convenient to use for water-body detection, but they do not adequately consider the
characteristics of the water bodies. Feng et al. [15] proposed a method combined with deep
U-Net and a superpixel-based conditional random field model, but the drawback of this
method is that it ignores multiscale information and is thus insufficient in complex cases.
Guo et al. [16] presented a multiscale feature extractor added to the FCN-based backbone.
Duan et al. [17] proposed a multiscale refinement network (MSR-Net) to take advantage
of multiscale information and designed an erasing-attention module to embed features
during a multiscale refinement strategy. However, none of the studies mentioned above
made full use of unsupervised labels. Unsupervised labels are worth more exploration as
they do not increase the additional annotation cost.

To address the aforementioned problems, this paper proposes a novel deep semantic
segmentation network (DSSN) called the multiscale residual network (MSResNet) by
considering the various characteristics of water bodies in optical RS imagery. Different
from the most related LinkNet [12], MSResNet uses some parallel branches to obtain
multiscale semantic features, thus increasing the sensitivity of different sizes and shapes
of water bodies and retaining detailed information about water boundaries. The residual
connection prevents the gradient from vanishing. In addition, the center part of MSResNet
includes a multiscale dilated convolution (MSDC) module and a multikernel max pooling
(MKMP) module. The MSDC module can effectively encode high-level semantic feature
maps and gather different levels of context information by controlling the receptive field
without changing the size of the feature map. To enhance scale invariance, the MKMP
module we propose contains four-level outputs and upsamples the feature maps to obtain
the same size features as those in the original feature map via interpolation.

Generally, to obtain a better performance in image segmentation, a large amount of
labeled data is required to train the DSSN. With the rapid development of satellites with
different types of sensors, many RS images can be easily obtained. However, the annotation
and collection of semantic labels are time-consuming and costly and can consume a great
deal of manpower and financial resources. As a branch of unsupervised learning methods,
self-supervised learning (SSL) methods are proposed to enhance performance when train-
ing a deep neural network without sufficient human-annotated labels. In previous studies,
many scholars, in applying SSL techniques, defined some pretext tasks (image painting [18],
grayscale image colorization [19], predicting image rotation [20] and exemplar-based im-
age prediction [21], relative depth prediction [22] and edge detection [23]) that can only
be finished via unsupervised data so that deep neural networks can learn useful image
representations. As a result, many SSL methods have recently demonstrated promising
results [20,24,25]. For example, Chen et al. [25] presented a simple framework for the con-
trastive self-supervised learning of visual representations that shows that the composition
of data augmentations plays a critical role in defining effective predictive tasks and that the
learnable nonlinear transformation between representative and contrastive losses enhances
the quality of learned representations. This method considerably outperformed previous
methods for self-supervised and semi-supervised learning on ImageNet [26]. Nevertheless,
SSL is not widely used in the field of RS, and we are the first to explore and apply SSL to
water-body detection.

Massive experiments on the 2020 Gaofen Challenge dataset [27] and the Gaofen image
dataset [28] demonstrate that our proposed MSResNet can outperform the state-of-the-art
competitive baselines (e.g., FCN [11], LinkNet [12] and HR-Net [13]) and that our SSL
can use prior knowledge (i.e., unsupervised invariant facts) to make full use of unlabeled
data via geometric transformation learning, noise disturbance learning, image resolution
learning and image context fusion learning. Our contributions are three-fold:
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1. According to the special characteristics of water bodies, this paper proposes the novel
MSResNet which includes two well-designed modules: MSDC and MKMP. More
specifically, MSDC benefits the encoding of high-level semantic feature maps and the
gathering of different levels of context information, and MKMP helps capture the
scale-invariant characteristics of water bodies;

2. In the water-body detection background, this paper, for the first time, explores an
SSL strategy to train the DSSN model by fully leveraging unlabeled data. More
specifically, four kinds of SSL strategies (e.g., geometric transformation learning,
noise disturbance learning, image resolution learning and image context fusion learn-
ing) are comprehensively explored and evaluated, providing references for further
applications;

3. Our proposed water-body detection method in which MSResNet is combined with the
SSL strategy demonstrates improved results compared with state-of-the-art methods
operating on two publicly open datasets.

The rest of this paper is organized as follows. Related work is discussed in Section 2.
Section 3 describes our proposed method, including the detailed introduction of MSResNet
and the details of the SSL strategy (geometric transformation learning, noise disturbance
learning, image resolution learning and image context fusion learning). In Section 4, we
show the evaluation datasets and metrics and the experimental results. Some discussions
are provided in Section 5. Finally, Section 6 concludes this paper.

2. Related Work

In the following, we review the existing water-body detection methods from two
perspectives: handcrafted feature-based methods and deep learning-based methods.

2.1. Handcrafted Feature-Based Water-Body Detection Methods

In the early years, traditional water-body detection methods developed many indexes
for extraction; however, these indexes usually strongly rely on spectral information and
pay less attention to contextual and spatial information. For instance, NDWI [8] and the
modified normalized difference water index (MNDWI) [29] were developed. Depend-
ing on the information of multiband such as short-wave infrared band (SWIR) and so
on, Feyisa et al. [30] presented Automated Water Extraction Index (AWEI) and enhanced
the performance by distinguishing water-bodies from shadows and other dark surfaces.
Fisher et al. [31] designed an accurate water index called WI2015 for Landsat data, and
comprehensively assessed seven water index approaches to certificate methods’ validity.
Zhao et al. [32] proposed a spectral information-based approach by forming a decision tree
of rules that represented characteristic knowledge for water-body information extraction.
Unmanned Aerial Systems (UAS) have become a popular tool in water research [33], and
the multispectral images and the Light Detection and Ranging (LiDAR) data that UAS
acquired are extensively used in water bodies detection. Jakovljević et al. [34] established
an object-based water body delineation method via LiDAR data and automatic water body
detection with Sentinel 2 multispectral images. Morsy et al. [35] applied a seeded region
growing algorithm to discriminate the land and water automatically for multispectral
LiDAR data. However, there are several satellite optical RS images for which more spec-
trum channels, such as infrared bands, are not available. Especially for high-resolution
images, these methods lack robustness. The main reason for this is that high-resolution
images contain more spatial details with the enhancement of the image resolution but
no infrared band. Due to the complicated distribution of water body appearances and
the similarities among water bodies, buildings and shadows, it is difficult to determine
an appropriate threshold value when using this method. In addition, methods using the
GLCM and SVM [10], and other machine learning methods [36] have been proposed, but
the accurate extraction of water bodies from a variety of RS images remains challenging.
In conclusion, traditional water-body detection methods based on handcrafted features
have limited extraction accuracy and are greatly influenced by the selection of thresholds
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and external conditions. The majority of the manual detection features are only suitable for
specific situations, which shows that the universality and stability of the methods are poor.

2.2. Deep Learning-Based Water Body Detection Methods

In recent years, due to the large amount of labeled or unlabeled data available, deep
learning has become increasingly popular in the computer vision field and has been
successfully used for image interpretation. Long et al. [11] proposed the first end-to-end
deep learning network for image segmentation, which is called the fully connected network
(FCN). Ronneberger O. et al. [14] introduced the encoder-decoder architecture called U-
Net, which uses skip connections to extract multiscale information. As a representative
encoder-decoder architecture, DeepLab V3+ [37] applied depthwise separable convolution
to atrous spatial pyramid pooling and achieved great results. Recently, HR-Net [13]
achieved superior results when used on many official datasets. The reason why HR-Net
shows the top performance in many fields is that it builds a multilevel representation
from a high-resolution representation and applies it to other frameworks. As a popular
branch of semantic segmentation, instant semantic segmentation is developing rapidly,
DDRNet [38] which includes a novel contextual information extractor achieved state-of-the-
art performance on road scenes recently. In the field of RS, image scene classification [39],
retrieval [40], segmentation [41] and detection [42,43] have gained great breakthroughs.
However, among a variety of classes, water bodies have their own complicated features
including detailed information and imagery that is always mixed shadows. As reported
in [44], generative adversarial networks (GANs) and U-Net have been proposed to perform
efficient segmentations of auto-annotated water-body and land data. In the case of limited
training samples, Li et al. [45] used FCN model in water-body detection from very high
spatial resolution (VHR) optical images. As shown in [46], a modified structure of the Mask
R-CNN that integrates bottom-up and top-down processes for water-body recognition was
proposed. Yu et al. [47] presented a DSSN framework for water-body segmentation by
considering both its spectral and spatial information. To decrease the error and omissive
classification of water boundary pixels, Miao et al. [48] proposed the restricted receptive
field deconvolution network (RRF DeconvNet) and a loss function called edge weighting
loss (EWLoss) to train the segmentation network to be more sensitive to boundaries. Duan
et al. [17] proposed MSR-Net to take advantage of multiscale information and designed
an erasing-attention module to effectively embed features during a multiscale refinement
strategy. Chen et al. [49] successfully utilized the global spatial-spectral convolution
(GSSC) module and the surface water-body boundary refinement (SWBBR) module to
enhance the surface features and boundaries of water bodies, respectively. To deal with the
characteristics of VHR RS imagery, a method combined with deep U-Net and a superpixel-
based conditional random field model was proposed by Feng et al. [15] It was proven
that this method could enhance the consistency of connected areas. Li et al. [50] applied
the classical DeepLab V3+ and the fully connected conditional random field (CRF) as a
postprocessing optimization approach. Zhang et al. [51] proposed MECNet that includes a
multi-feature extraction and combination module, and designed the loss function according
to different layers in the decoding stage. To enhance the efficiency of water-body variation
detection, Wu et al. [52] applied a bag of visual words to capture neighboring feature
information to classify pixel-labels and then locate irregular changes, additionally, they
utilized distributed processing to accelerate. Although there are many scholars researching
the extraction of water bodies from RS imagery, obtaining the different appearances, sizes,
shapes and scales of water-body objects such as seas, lakes, small ponds, and narrow
streams at the same time remains a challenge. Moreover, although some weakly supervised
learning methods have been proposed [53], the existing networks used for water-body
detection do not make full use of homologous or heterologous unlabeled images in addition
to supervised learning.
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3. Methodology

In this section, we first describe the structure of MSResNet and explain its characteris-
tics. Then, we provide a detailed introduction of the proposed SSL strategy.

3.1. Multiscale Residual Network (MSResNet) for Water-Body Detection

Due to the different sizes and shapes of water bodies in optical RS images, the key
to improving the performance of water-body detections is to utilize multiscale structural
information and merge it effectively. Based on this idea, we propose MSResNet to solve
this problem, as shown in Figure 1. This network is inspired by LinkNet [12] and similarly
designs the structure of the encoder-decoder. However, during the process of multiple
downsampling operations in the encoder, some spatial information that is significant for
images can be lost. Traditionally, U-Net [14] designs skip connections to strengthen the
feature maps and combines low-level detail information from the encoder and high-level
semantic information from the decoder. The proposed MSResNet utilizes the residual
blocks to replace the normal skip connection, which not only retains more high-resolution
detailed information in high-level feature maps by combining low-level features with high-
level features but also solves the problems of the exploding gradient and vanishing gradient
during the process of training the relatively deep network. The proposed MSResNet uses
a pretrained ResNet [54] that retains the feature extraction blocks without the average
pooling layer and the fully connected layer as the feature extraction network and obtains a
satisfactory performance (in our experiments, we just use ResNet-34 as the feature extractor
in consideration of the complexity of the network).

In the central part of MSResNet, there is an MSDC module and an MKMP module.

3.1.1. The Multiscale Dilated Convolution (MSDC) Module

In past semantic segmentation tasks, a deep convolutional layer is confirmed to be
able to extract the feature representations from optical RS images. However, due to the
limitation of the receptive field, massive context information is ignored along with the
significant prior global scenery. To make better use of the multiscale context features and
overcome the limitation, we propose the MSDC module as shown in Figure 1b.

We use the different levels of global average pooling (GAP) [55] to obtain the multi-
scale global context information and reduce the dimension of features by using a 1 × 1
convolution layer, which is helpful in distinguishing water from nonwater. To fuse and
maintain the multiscale information, we upsample the low-dimension feature maps, obtain
the same size features as those in the output feature map, and finally concatenate them
as a new feature map. This is different than the D-linkNet [56], which performs well in
road extraction tasks, and to maintain the high spatial resolution and expand the receptive
field of the information, we modify the filters’ fields of view by changing the dilation rate r
and making r = 1,2,4,8,16, then adopting six parallel branches to obtain the different recep-
tive fields. In the final steps of each branch, we use one 1 × 1 convolution to reduce the
dimension of the channels, reduce the number of parameters in MSResNet and accelerate
the network convergence. Thus, each layer in the module can learn the characteristics of
“sparse” and “not sparse”, which represent multiscale traits.

3.1.2. The Multikernel Max Pooling (MKMP) Module

Inspired by spatial pyramid pooling (SPP) [57], which was first applied to natural
image classifications and object detections, we proposed the MKMP module for semantic
segmentation, as shown in Figure 1a.

Different from the fixed-length representation and fully connected layers of SPP [57],
and the invariable kernel size and stride of multiple kernel CNN [58], the proposed MKMP
module contains contextual information for four different sizes of receptive fields:

2 × 2, 3 × 3, 5 × 5 and 6 × 6. Without the massive increase of the number of neurons,
the multikernel approach considers that multiscale water bodies (such as rivers, ponds,
and seas) are problematic for distinguishing them through a single pooling kernel. At the
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same time, it also makes use of more context information via expanding receptive fields.
Additionally, its four-level output includes feature maps of diverse sizes. Moreover, we
utilize a 1 × 1 convolution to diminish the dimensional weight after each level of max
pooling, reducing the dimension of the feature map to 1

n of the original dimension, where
n indicates the number of channels in the original feature map. Then, we upsample the
low-dimensional feature map to gain the equivalent size through bilinear interpolation.
Finally, we fuse the original feature map and four-level outputs to gain a total feature map.
Through the MKMP module, local features and global features are fused at the feature map
level, enriching the expression ability of the final feature map and improving the accuracy
of the water-body detection.

Figure 1. The structure of the proposed MSResNet including the (b) MSDC module and (a) MKMP module.
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3.2. Self-Supervised Learning (SSL) Strategy for Optimizing MSResNet

In general, applying a large amount of manually labeled data to train a DSSN and
obtain a decent performance is common, but this method is extremely time-consuming
and expensive. Additionally, SSL could directly learn the crucial characteristics of data
from unlabeled data which is simple to obtain in RS field; thus, according to general
knowledge of water bodies and image fusion strategy, we propose a novel SSL strategy
for optimizing MSResNet that can make better use of the information extracted from
the unlabeled validation and test datasets, and its SSL loss function can constrain the
training process of MSResNet. In detail, during the training processing, we propose a
comprehensive loss function by mixing the supervised learning loss and SSL loss. The
following formula describes the total loss:

L = LCE(Xtrain, Ytrain) + α·LSSL

(
f (Xall), T−1( f (T(Xall))) (1)

where LCE(·) represents cross-entropy loss in supervised learning, and Xtrain and Ytrain
represent the images and labels of the training datasets, respectively. LSSL(·) is the general-
ized self-supervised loss function, including geometric transformation learning loss, noise
disturbance learning loss, image resolution learning loss and image context fusion learning
loss in this paper. Xall represents all images in the training, validation, and test datasets.
f (·) and T(·) are the prediction function of the DSSN and the generalized transformation
function, respectively. T−1(·) is the inverse transformation output, and α is the weight of
the SSL loss.

Considering the prior knowledge of water bodies in optical RS imagery, we propose
geometric transformation learning, noise disturbance learning, image resolution learning
and image context fusion learning as our SSL strategy, as shown in Figure 2.

Figure 2. The workflow of the proposed SSL strategy, including geometric transformation learning, noise disturbance
learning, image resolution learning and image context fusion learning. During the process of training, the total training loss
contains supervised cross-entropy loss and SSL loss.
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3.2.1. Geometric Transformation Learning

There is no doubt that the classification of each pixel in optical RS imagery is unlikely to
change via rotation or flipping. According to this prior knowledge, during the supervised
learning of our proposed MSResNet, we rotate the unlabeled images by 90, 180, and
270 degrees to explore the semantic information contained in the imagery and share the
network parameters with supervised learning. Similarly, horizontal and vertical flips are
also applied to the images, as this can effectively help MSResNet learn the spatial structure
information and improve the robustness of the network. These transformations are shown
in Figure 3.

Figure 3. The structure of geometric transformation learning.

Simply put, we design the geometric transformations learning loss that is described
as Equations (2) and (3) and add it to the total loss:

Lr
SSL = Ld

MSE

(
f (Xall), Rd

−1( f (Rd(Xall))) (2)

L f
SSL = LMSE

(
f (Xall), F−1( f (F(Xall))) (3)

where Lr
SSL and L f

SSL represent the rotation and flip transformation learning loss, respec-
tively, d is the rotation degree, and Rd(·) and R−1

d (·) represent the rotation and counterro-
tation with d degrees, respectively. F(·) and F−1(·) represent the horizontal and vertical
flips and their inverse flips. LMSE(·) represents the mean squared error loss, which en-
courages the pixel-level consistency of the output under different rotation transforms or
flip transforms.

It should be noted that geometric transformation learning contains two transformation
approaches: different rotation transforms and horizontal and vertical flip transforms.

3.2.2. Noise Disturbance Learning

Noise disturbance always has an important influence on segmentation performance,
so many clear images are widely applied. However, some semantic information can also
be obtained from noisy images. We design the strategy of noise disturbance learning based
on random noise disturbance that never changes the result of water-body extraction and
define the noise disturbance learning loss, which is described as follows:

Ln
SSL = LMSE( f (Xall), f (Xall + G(Xall))) (4)

where Ln
SSL represents the noise disturbance learning loss and G(Xall) represents adding

Gaussian noise to the original images and can be defined by G(Xall) =
1√
2πσ

exp
(
− (Xall−µ)2

2σ2

)
.
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3.2.3. Image Resolution Learning

As an important factor in determining the segmentation results, the image spatial
resolution is determined by the type of satellite. In general, the higher the image spatial
resolution is, the better the water-body detection performance can be. However, a large
number of water-body images with low spatial resolution is easily obtained; thus, we
apply the upsampling and downsampling functions to change the spatial resolutions of
the datasets and help MSResNet learn more spatially detailed information. The image
resolution learning loss can be defined as Equation (5):

Lresolution
SSL = LMSE

(
f (Xall), S−1( f (S(Xall)))

)
(5)

where S(·) and S−1(·) represent upsampling and downsampling, respectively, which apply
nearest-neighbor interpolation. The original image’s height and width are Hin and Win,
respectively, and the shape of the output image is Hout, Wout, which is sampled with scale
factor β and is described as follows.

Hout = bHin × βc (6)

Wout = bWin × βc (7)

3.2.4. Image Context Fusion Learning

By randomly combining optical RS imagery with water bodies, the shapes and scales
of water bodies can be expanded widely, which has the advantage of helping the network
learn more contextual information. We design the strategy of image context fusion learning
inspired by the classical data augmentation CutMix [59], but it is different in that ground
truth is not cut and pasted and we define the consistency difference between two conditions:
the prediction of the water-body probability of the CutMix-ed images and the processed
water-body confidence by CutMix, as depicted in Figure 4.

Figure 4. The structure of image context fusion learning.

The image context fusion learning loss is defined as follows:

L f usion
SSL = LMSE

(
f
(

mix
(

X1
all , X2

all
))
−mix

(
f
(

X1
all
)

, f
(

X2
all
)))

(8)

where Xall
1 and Xall

2 are two randomly selected images among the training, validation, and
test images. mix(·) can be described as follows:

mix(x1, x2) = M⊗ x1 + (1−M)⊗ x2 (9)
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where M ∈ {0, 1}W×H denotes a binary mask indicating where to drop out and fill in
from the two images, 1 represents a binary mask filled with ones and ⊗ is elementwise
multiplication.

4. Experimental Results

In this section, the datasets’ descriptions are introduced first. Afterward, the evalua-
tion metrics and details of the experimental settings are shown. Finally, the experimental
results and related analyses are given.

4.1. Evaluation Datasets

To verify our methodology, we conducted experiments on the 2020 Gaofen Challenge
water-body segmentation dataset [27] and the Gaofen image dataset (GID) [28], and some
examples and their labels are shown in Figures 5 and 6, respectively.

Figure 5. Raw images and ground truth masks from the 2020 Gaofen Challenge water-body segmentation dataset.

Figure 6. Raw images and ground truth masks from the GID dataset.
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The 2020 Gaofen Challenge water-body segmentation dataset contains 1000 RGB
images with the size of 492 × 492 containing multiscale and multishape water bodies. The
images are pansharpened and have a 0.5 m spatial resolution with no infrared bands. The
positive annotations include lakes, ponds, rivers, paddies and so on, while the other pixels
are treated as negative. These images and their labels are randomly divided into three
sets. In total, 60% are used for training, 20% are used for validation, and 20% are used
for testing.

The original GID contains 150 large-scale annotated Gaofen-2 satellite images with the
advantages of large coverage, wide distribution and high spatial resolution. To meet the
needs and requirements for our experiments, we only select the high intraclass difference
images and crop them to a size of 256 × 256, and the original labels are processed. The
positive annotations include lakes, ponds, rivers and sea, while pixels of other classes
are treated as negative. Finally, we obtain 11700 GF-2 satellite images with NIR-RGB
bands. Similarly, these cropped images are randomly divided into a training set, validation
set, and test set with 7020, 2340 and 2340 images and proportions of 60%, 20%, and 20%,
respectively.

4.2. Evaluation Metrics

In this paper, we calculate the overall accuracy (OA), the mean intersection over union
(MIoU), and the frequency weighted intersection over union (FWIoU) to evaluate the
performance of the water-body detection [60]. These evaluation indicators can be defined
as Equations (10)–(12):

OA =
TP + TN

TP + FP + TN + FN
(10)

MIoU =
1

n + 1

n

∑
i=0

TP
FN + FP + TP

(11)

FWIoU =
1

n + 1

n

∑
i=0

(
TPi

TPi + TNi + FNi
· TPi + FNi
TPi + FPi + TNi + FNi

)
(12)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives,
and false negatives, respectively, and n is the number of classes.

4.3. Experiment Settings

In our experiments, our MSResNet adopts residual blocks 1–4 from ResNet-34 [54],
which is initialized with the weights trained on ImageNet [26] and fine-tuned with our
datasets for feature extraction; the decoder uses convolution and transposed convolution
and a residual block skip connection to replace the normal skip connection. Four SSL
strategies we propose are applied in MSResNet. In the experiments on the SSL strategy, we
only use images without labels in the training, validation, and test datasets.

During the training of the DSSN, for a fair comparison between our and other methods,
all methods are trained with the Adam optimizer [61], and the learning rate is initially
set to 0.0001 which gradually decays during the training process. We set the batch-size to
4 or 8 and maximum epoch to 100 and determine the most appropriate epoch according
to the performance on validation dataset. Cross-entropy is applied as the supervised loss
function, and different self-supervised losses are adopted in the related methods. Extensive
experiments, such as sensitivity analyses of the weighting parameters, can help in choosing
the most appropriate weighting parameter and examining the effectiveness of our proposed
SSL strategy. Moreover, to verify the performance of our proposed method, we compare
our proposed MSResNet (without or with different SSL sub-strategies) with LinkNet [12],
HR-Net [13], FCN [11], DeepLab V3+ [37], and MECNet [51]. LinkNet is a classical network
that uses the structure of an encoder-decoder, and DeepLab V3+ and HR-Net achieve state-
of-the-art semantic segmentation performance on natural images. MECNet [51] is a novel
network for water-body segmentation and obtains superior performance. All experiments
are conducted on the PyTorch framework with a single NVIDIA GeForce RTX 3090 GPU.
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4.4. Sensitivity Analysis of the Weighting Parameter

The weighting Parameter α in Equation (1) is an important hyperparameter that
determines the influence degree of the SSL strategy in the total training process. In general,
the meaning of loss during the training process indicates the difference between the
predicted value and target value. The smaller the loss value is, the closer the predicted
detection result is to the label, and the more convergent the DSSN is. In our experiments,
the total loss mainly includes supervised cross-entropy loss and self-supervised learning
loss, so the weighting parameter indicates the proportion of SSL loss and influences the
time of network convergence. To discover the best weighting parameter in the two datasets,
we experiment on the performance of our methods in the validation datasets of the 2020
Gaofen Challenge water-body segmentation dataset and GID dataset when α is equal to
0.5, 1, 2, 4, and 8.

Figure 7 shows how the results of the five SSL strategies we propose change with
the adjustment of the weight parameters, including OA, MIoU, and FWIoU. In the test of
the GID dataset, our MSResNet via noise disturbance learning performs best when the
weight coefficient is 0.5. For image resolution learning and image context fusion learning, a
weight coefficient of 1 may be the most suitable. Rotation transformation learning and flip
transformation learning achieve the best scores when the weight coefficients are 2 and 4,
respectively. Similarly, after the sensitivity analysis on the 2020 Gaofen Challenge water-
body segmentation dataset, it is concluded that (1) the choice of weight parameter has
a greater impact on the detection accuracy; (2) three utilized methods, such as rotation
transformation learning, obtain the best performance when the weight parameter is 2;
(3) the remaining two methods are more suitable for training with a weight parameter of
4 or 8.

Figure 7. Cont.
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Figure 7. The sensitivity analysis results of five different SSL strategies we proposed, including (a) sensitivity analysis
results of rotation transformation learning, (b) sensitivity analysis results of flip transformation learning, (c) sensitivity
analysis results of noise disturbance learning, (d) sensitivity analysis results of image resolution learning, and (e) sensitivity
analysis results of image context fusion learning.

4.5. Ablation Study

This part verifies the effectiveness of our five proposed SSL strategies and selects the
SSL strategy with the best performance on the abovementioned datasets. As shown in
Tables 1 and 2, the abovementioned five SSL strategies are proven to play important roles in
improving the performance of our MSResNet approach and learning the prior knowledge
of optical RS imagery via the SSL strategies we proposed has an important role in en-
hancing the detection performance. Geometric transformation learning, including rotation
transformation learning and flip transformation learning, can achieve especially great
performance on the GID dataset and the 2020 Gaofen Challenge water-body segmentation
dataset, respectively.
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Table 1. Quantification of the effectiveness of our MSResNet via five SSL strategies on the 2020
Gaofen Challenge water-body segmentation dataset (%).

Network Architecture SSL OA MIoU FWIoU

Our MSResNet - 94.93 85.34 90.57

Our MSResNet Rotation Transformation Learning 94.94 85.69 90.68
Our MSResNet Flip Transformation Learning 95.10 85.82 90.88
Our MSResNet Noise Disturbance Learning 94.87 85.12 90.45
Our MSResNet Image Resolution Learning 94.89 85.62 90.64
Our MSResNet Image Context Fusion Learning 95.07 85.58 90.77

Table 2. Quantification of the effectiveness of our MSResNet via five SSL strategies on the GID
dataset (%).

Network Architecture SSL OA MIoU FWIoU

Our MSResNet - 96.96 93.94 94.12

Our MSResNet Rotation Transformation Learning 97.47 94.94 95.08
Our MSResNet Flip Transformation Learning 97.39 94.76 94.91
Our MSResNet Noise Disturbance Learning 97.08 94.17 94.34
Our MSResNet Image Resolution Learning 97.36 94.71 94.86
Our MSResNet Image Context Fusion Learning 96.93 93.87 94.05

4.6. Comparison with the State-of-the-Art Methods

To evaluate the performance and measure the time consuming of our proposed MSRes-
Net via SSL strategies, we conduct experiments on the 2020 Gaofen Challenge water-body
segmentation dataset and GID dataset. We compare our proposed methods with several
outstanding methods, including LinkNet [12], HR-Net [13], FCN [11], DeepLab V3+ [37]
and MECNet [51]. For a fair comparison, all compared methods adopt the same device,
maximum epoch, learning rate and Adam optimizer [61]. What is worth mentioning is that
popular water indexes, such as AWEI [30] and WI2015 [31], are not considered because of
the spectrum bands limitation of our datasets.

4.6.1. Results for the 2020 Gaofen Challenge Water-Body Segmentation Dataset

The overall accuracy (OA), mean intersection over union (MIoU) and frequency-
weighted intersection over union (FWIoU) of the segmentation on the 2020 Gaofen Chal-
lenge water-body segmentation dataset are shown in Table 3. We observe that our proposed
MSResNet via the SSL strategy achieves higher scores for OA, MIoU, and FWIoU than
LinkNet, HR-Net, FCN, DeepLab V3+, and MECNet. In particular, the OA/MIoU/FWIoU
increased by 1.03%/2.98%/1.85% for our proposed MSResNet compared with HR-Net,
and the OA/MIoU/FWIoU increased by 1.45%/3.48%/2.4% compared with DeepLab V3+,
which certifies the effectiveness of our proposed MSResNet.

Table 3. Performances for the 2020 Gaofen Challenge water-body segmentation dataset (%).

Method OA MIoU FWIoU

LinkNet [12] 93.85 82.68 88.76
HR-Net [13] 93.90 82.36 88.72

FCN [11] 92.44 78.99 86.36
DeepLab V3+ [37] 93.48 81.86 88.17

MECNet [51] 94.66 84.96 90.21

Our MSResNet 94.93 85.34 90.57

Our MSResNet via Rotation
Transformation Learning 94.94 85.69 90.68

Our MSResNet via Flip
Transformation Learning 95.10 85.82 90.88
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We also observe that our proposed MSResNet via flip transformation learning achieves
the best performance among all methods, which improves the OA/MIoU/FWIoU by
0.44%/0.86%/0.67% compared with MECNet and gains an improvement of 0.17%/0.48%/
0.31% for OA/MIoU/FWIoU.

Moreover, the visualization of water-body detection results via our methods and other
methods are shown in Figure 8; the figure shows the visual results of the LinkNet, HR-Net,
FCN, DeepLab V3+, MECNet, our MSResNet, our MSResNet via rotation transformation
learning, and our MSResNet via flip transformation learning from (c) to (j). Through these
predictions, we can find that our proposed method has a great impact on the accuracy of
the water-body detection.

Figure 8. Visible water-body detection of the 2020 Gaofem Challenge water-body segmentation dataset. (a,b) Raw images
and ground truth, respectively. (c,d) The results of LinkNet and the results of HR-Net, respectively. The results of FCN and
the results of DeepLab V3+ are shown in (e,f), respectively. (g) The results of MECNet, and (h) the results of our MSResNet.
The results of our proposed MSResNet via rotation transformation learning and flip transformation learning are displayed
in (i,j), respectively.

Additionally, the running times for detecting water bodies from one single image via
our method and other methods on the 2020 Gaofen Challenge water-body segmentation
dataset are measured, as shown in Table 4. The time consumption of our MSResNet
is relatively short and ranks 4th among all aforementioned methods. Due to the same
number of parameters, our proposed MSResNet via SSL strategies do not spend extra time
compared with our MSResNet.
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Table 4. The running times for detecting water bodies from one single image by different methods
on the 2020 Gaofen Challenge water-body segmentation dataset.

Method Time of Single Image (ms)

LinkNet [12] 89
HR-Net [13] 117

FCN [11] 86
DeepLab V3+ [37] 104

MECNet [51] 119

Our MSResNet 108

Our MSResNet via Rotation Transformation Learning 106
Our MSResNet via Flip Transformation Learning 108

4.6.2. Results for the GID Dataset

Table 5 compares the proposed approach with five published network results from
the GID dataset. Our proposed MSResNet via rotation transformation learning achieves
the best performance of OA/MIoU/FWIoU. In detail, our proposed MSResNet via rota-
tion transformation learning achieves 94.94% on MIoU, while the highest MIoU among
other published networks is 93.13%. Compared to MSResNet, our proposed MSResNet
via rotation transformation learning obtains an improvement of 1.00% for MIoU and an
improvement of 0.96% for FWIoU. It can be observed that the use of our MSResNet via SSL
for water-body detection has more image information to increase the detection precision.

Table 5. Performances for the GID dataset (%).

Method OA MIoU FWIoU

LinkNet [12] 96.17 92.49 92.64
HR-Net [13] 96.02 92.15 92.37

FCN [11] 94.26 88.89 89.19
DeepLab V3+ [37] 96.54 93.13 93.33

MECNet [51] 96.44 92.94 93.15

Our MSResNet 96.96 93.94 94.12

Our MSResNet via Rotation
Transformation Learning 97.47 94.94 95.08

Our MSResNet via Flip
Transformation Learning 97.39 94.76 94.91

Figure 9 displays some samples of the water-body detection results and their ground
truth for the GID dataset. Figure 9 shows that the results from (c) to (j) are the water-body
detection results of LinkNet, HR-Net, FCN, DeepLab V3+, MECNet, our MSResNet, our
MSResNet via rotation transformation learning, and our MSResNet via flip transformation
learning. The performance for both the 2020 Gaofen Challenge water-body segmentation
and GID datasets shows the effectiveness and robustness of our approach.

In addition, Table 6 presents the running times for detecting water bodies from one
single image by eight approaches on the GID dataset. The time consumption of our
proposed method is relatively short and ranks 3rd among all aforementioned methods.
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Figure 9. Visible water-body detection of the GID dataset. (a,b) are raw images and ground truth, respectively. (c,d) are the
results of LinkNet and the results of HR-Net, respectively. The results of FCN and the results of DeepLab V3+ are shown in
(e,f), respectively. (g) The results of MECNet, and (h) the results of our MSResNet. The results of our proposed MSResNet
via rotation transformation learning and flip transformation learning are displayed in (i,j), respectively.

Table 6. The times for detecting water bodies from one single image by different methods on the GID
dataset.

Method Time of Single Image (ms)

LinkNet [12] 11
HR-Net [13] 29

FCN [11] 7
DeepLab V3+ [37] 24

MECNet [51] 23

Our MSResNet 22

Our MSResNet via Rotation Transformation Learning 21
Our MSResNet via Flip Transformation Learning 21

5. Discussion

The weighting parameter was viewed as a hyperparameter, and we analyzed the
detection accuracies of the different kinds of SSL strategies we proposed for validation. We
selected the most appropriate weighting parameters and regarded their performance as the
results of the corresponding approaches. In the ablation study, we compared our proposed
MSResNet and five SSL strategies, exploring the degree of influence on the results. The
experimental results compared with the state-of-the-art methods show that our method
can achieve the best performance. On the 2020 Gaofen challenge water-body segmentation
dataset, our MSResNet via flip transformation learning achieves the best performance, and
our OA (95.10%), MIoU (85.82%), and FWIoU (90.88%) are greater than those of the other
approaches. In addition, on the GID dataset, our MSResNet via rotation transformation



Remote Sens. 2021, 13, 3122 18 of 21

learning achieves the best results, and our OA (97.47%), MIoU (94.94%), and FWIoU
(95.08%) are also greater than those of other approaches. The sensitivity of the weighting
parameter has a significant influence on the SSL strategy. We argue that the improvement
of MSResNet may result from multiscale and multilayer characteristics, which is beneficial
for the water-body detection. Tables 1 and 2 demonstrate the improvements of each SSL
strategy. (1) The majority of SSL strategies we mention are suitable for two water-body
segmentation datasets, revealing the universal adaptability and robustness of our method.
(2) Although we do not utilize the labels of the test or validation datasets, we successfully
extract the helpful imagery information.

However, we observe in Table 1 that the improvement of our approaches is not vast.
Our best method on the 2020 Gaofen Challenge water-body segmentation dataset merely
gains an improvement of 0.17%/0.48%/0.31% for OA/MIoU/FWIoU, respectively. The
main reason may be that the number of test images in the 2020 Gaofen Challenge water-
body segmentation dataset is not enough. Figure 10 shows the visual results of water-body
detection. It is not difficult to see that our methods can pay more attention to the spatial
structure information and have common adaptability of different scales of water bodies.
However, it is still a challenging task for our proposed method to more easily identify
categories such as water bodies, farms and barren areas. As shown in the red circles in
Figure 10, the results of our MSResNet via flip transformation learning are better than other
methods, but all methods cannot adapt to all conditions.

Figure 10. The results of water-body detection. (a) Raw image, (b) ground truth, (c) results of our
MSResNet via rotation transformation learning and (d) results of our MSResNet via flip transforma-
tion learning, (e) results of our MSResNet via rotation transformation learning, flip transformation
learning, noise disturbance learning and image resolution learning.
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6. Conclusions

Due to their excellent feature-extraction abilities, DSSNs have been widely used in
water-body detections of RS images and have achieved great success. However, a general
DSSN is insufficient to take the full characteristics of water bodies into account. Moreover, a
large amount of unlabeled data is ignored during the training process. Accurate water-body
detection remains a challenging task. Thus, in this paper, according to the characteristics of
water-body detections, we proposed MSResNet via SSL for water-body detections. To apply
multiscale structural information and merge it effectively, we designed an MSDC module
and an MKMP module that maintain a high spatial resolution and expand the receptive
field. In addition, novel SSL strategies, including geometric transformation learning, noise
disturbance learning, image resolution learning and image context fusion learning, were
able to flexibly utilize the image information of test and validation datasets and consider
the prior knowledge about image contexts by adding the self-supervised learning loss to
the total loss during the process of training.

To verify our method, the 2020 Gaofen Challenge water-body segmentation dataset
(images with RGB bands) and the GID dataset (images with NIR-RGB bands) were used
to analyze our method and compare it with existing approaches. The results confirmed
that our method achieved the best performance and was greatly improved compared to
other methods. To be more specific, our proposed approach achieves the state-of-the-art
performance on the 2020 Gaofen Challenge water-body segmentation dataset, with OA,
MIoU, and FWIoU of 95.10%, 85.82%, and 90.88%. Likewise, the performance of our
method is superior to other five methods on the GID dataset, which means OA, MIoU
and FWIoU achieve 97.47%, 94.94%, and 95.08%, respectively. In future work, we may
explore more SSL strategies and a combination of different SSL strategies and try to utilize
heterogeneous unlabeled images for SSL.
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