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Abstract: Automated detection of objects in aerial imagery is the basis for many applications, such as
search and rescue operations, activity monitoring or mapping. However, in many cases it is beneficial
to employ a detector on-board of the aerial platform in order to avoid latencies, make basic decisions
within the platform and save transmission bandwidth. In this work, we address the task of designing
such an on-board aerial object detector, which meets certain requirements in accuracy, inference
speed and power consumption. For this, we first outline a generally applicable design process for
such on-board methods and then follow this process to develop our own set of models for the task.
Specifically, we first optimize a baseline model with regards to accuracy while not increasing runtime.
We then propose a fast detection head to significantly improve runtime at little cost in accuracy.
Finally, we discuss several aspects to consider during deployment and in the runtime environment.
Our resulting four models that operate at 15, 30, 60 and 90 FPS on an embedded Jetson AGX device
are published for future benchmarking and comparison by the community.

Keywords: aerial object detection; deep learning based detection; embedded platforms; runtime op-
timization

1. Introduction

Object detection in aerial imagery is a key requirement in many applications, such as
disaster relief, mapping, navigation, traffic analysis, change detection, intrusion detection
and many more. Employed platforms to acquire aerial imagery range from drones to
airplanes and even satellites. In many of these image analysis applications, the bandwidth
from platform to ground is limited. This may negatively impact image quality or prevent
real-time processing due to transfer delays. To address this, it is desirable to perform
fundamental key tasks, e.g., object detection, on the platform itself. On-board object
detection in aerial or spaceborne platforms enables not only real-time processing but is
also suited to optimize transmission bandwidth by, e.g., only transferring image regions
with relevant detected objects. Of course, key requirements for detection models deployed
in an on-board environment have a fast runtime and a low energy footprint.

In this work, we develop such an aerial object detector, which we term Fast Aerial
Embedded Real-Time Detector (FastAER Det). Our goal is not only to provide a specific
model design but rather to highlight a general workflow for designing such models for
a variety of on-board image processing tasks. While specific optimizations often depend
on the task at hand, we propose the following four general steps as a guideline for model
design. (1) Initial model design or selection: This step is guided by external requirements
and aims to fix key aspects of the model and establish a baseline upon which to build.
In our case, this includes, for example, the choice of detection framework and backbone
network. (2) Accuracy optimization: The aim of the next step should be to optimize model
accuracy for the given baseline. Crucially, this optimization should come at as little cost
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in runtime as possible. Optimizations at this stage include key model parameters and
of particular interest are optimizations, which only impact the training process, such as
additional losses or data selection strategies. (3) Runtime optimization: This step aims to
improve runtime by decreasing model complexity while maintaining the baseline accuracy
level to the degree possible. For our task, optimizing the classification head yields the best
trade-off between gain in runtime speed and loss in accuracy. (4) Optimized deployment:
The final step includes optimizations after model training, such as selection of floating
point precision at runtime. Furthermore, characteristics of the runtime environment and
deployment process, such as which model operations are affected by possible format
conversions and which can be run efficiently, should inform the design during previous
steps as well.

In addition to outlining this workflow, our work makes the following contributions:
(i) We follow our proposed workflow for the task of object detection in aerial imagery by
investigating several methods for improving accuracy at no or little cost in runtime for
aerial detection. We then propose a new and lightweight classification head for aerial object
detection and discuss several adaptations to the runtime environment. (ii) We compare
and improve methods for oriented bounding box (OBB) detection in aerial imagery with
respect to their accuracy-runtime trade-off. (iii) Finally, we publish our final four models
that operate at different runtimes and power requirements on a Jetson AGX platform to
enable future benchmarking on other platforms.

The code and the models can be downloaded at https://github.com/wolfstefan/
fastaer-det, accessed at 3 April 2021.

2. Related Work

In literature, there exists a multitude of deep learning based object detectors, which
can be roughly categorized into single-stage approaches and two-stage approaches. Single-
stage approaches perform classification and detection at once, while two-stage approaches
initially predict candidate regions that are classified in a subsequent stage. Pioneering
singles-stage approaches are SSD [1] and YOLO [2], which clearly outperformed two-
stage approaches in terms of inference time. By introducing a feature pyramid network,
approaches like DSSD [3], RetinaNet [4], RefineDet [5], YOLOv3 [6] and YOLOv4 [7]
achieved a large gain in detection accuracy, in particular in case of small-sized objects.
Recently, anchor-free methods, e.g., FCOS [8], CenterNet [9] and FoveaBox [10], have been
proposed as an alternative to the regression-based methods. The predominant two-stage
detectors are Faster R-CNN [11] and its variants like FPN [12], which makes use of a top-
down pathway to generate multiple feature maps with rich semantics. Cascade R-CNN [13]
performs bounding box regression in a cascaded manner to improve the detection accuracy,
while Libra R-CNN [14] leverages multiple balancing strategies to improve the training
process. Mask R-CNN [15] offers an auxiliary mask branch that allows for joint detection
and instance segmentation. In [16], the authors enhance object detection by optimizing
anchor generation. An overview about deep learning based object detection methods is
given in [17,18].

Adaptations of these detection frameworks to aerial imagery generally focus on a
high detection accuracy [19–40] and less on the application on embedded devices [41–44].
ShuffleDet [42] has been proposed for car detection in parking lots on embedded devices.
To achieve a high framerate, ShuffleNet is used as the base network for a modified variant
of SSD. Ringwald et al. [44] proposed UAV-Net for vehicle detection in aerial images
with a constant ground sampling distance (GSD). To speed up the inference time of the
baseline SSD, the authors replaced the backbone network by PeleeNet and introduced a
novel pruning strategy. In [43], the authors propose a simple short and shallow network
termed SSSDet for vehicle detection in aerial imagery. Kouris et al. [41] proposed an UAV-
based object detector that makes use of prior knowledge, e.g., flying altitude, to decrease
the number of region candidates and, thus, the computational costs. In other domains,
lightweight architectures have been generally proposed for object detection on embedded
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devices [45–49], while recent works directly focus on the deployment of convolutional
neural networks (CNNs) on specific embedded devices [50,51].

3. Methodology

In this section, we introduce our proposed detection algorithm applied for fast object
detection in aerial imagery. First, we briefly describe the fundamental principles of Reti-
naNet [4], which is used as a base detection framework. Then, the main modifications to
improve the detection accuracy as well as the inference time are presented. Furthermore,
optimizations of the employed runtime environment are discussed. Finally, we describe an
extension of our proposed detector to allow for oriented predictions. An overview of our
proposed detection algorithm is shown in Figure 1.

Backbone

+

+

Neck

Head

Centerness
Prediction

Box
Prediction

Class
Prediction

RoI Align( )
Mask Branch

Optimized Runtime Environment

Figure 1. Overview of Our Architecture Adjustments. Grey convolutions and unsaturated channels are removed to decrease
runtime while preserving a good accuracy. The mask branch is improving the detection accuracy during training and can be
removed for inference. A centerness prediction branch is applied to delete inaccurate detections which are triggered from a
feature map pixel that is far off the detection’s center. Depending on the targeted runtime we use a smaller backbone.

3.1. Base Detection Framework

We adopt RetinaNet as a base detection framework due to its good trade-off between
detection accuracy and inference time. As localization and classification is performed in a
single stage, the inference time is less compared to two-stage approaches like Faster R-CNN.

RetinaNet is a fully convolutional network that mainly comprises three modules: a
backbone network, a feature pyramid network and a classification head. The base network
is used as a feature extractor and is generally an off-the-shelf CNN, e.g., ResNet-50. The
feature pyramid network, also referred to as neck, is applied on top of the base network
to generate semantically rich feature maps. For this purpose, features from deep layers
are up-sampled and connected with features from shallow layers via element-wise sum.
The classification head is then applied on multiple feature maps in order to account for
various object scales. The classification head is composed of two sub-networks: one for
classification and one for bounding box regression. Both sub-networks comprise a sequence
of 3 × 3 convolutional layers. The classification sub-network outputs at each feature map
location the probability of object presence for all classes, while the bounding box regression
network predicts class-agnostic bounding box offsets for each feature map location. For
this, anchor boxes centered at each feature map location are used as bounding box reference.
By default, anchor boxes with three different aspect ratios, i.e., 1:2, 1:1 and 2:1, and three
different scales are employed, yielding a total of nine anchor boxes per feature map. Note
that differing anchor scales are used for each pyramid level so that the anchor box areas
range from 322 pixels on pyramid level P3 to 5122 pixels on pyramid level P7. To address
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the issue of an extreme imbalance between foreground and background classes during
training faced by a single-stage detector, RetinaNet applies focal loss as classification loss.

3.2. Adaptations for Improved Detection Accuracy

We perform several modifications of the original RetinaNet to improve the detection
accuracy without increasing the inference time.

To account for the small dimensions of occurring objects in aerial imagery, we reduce
the anchor box sizes for each pyramid level by setting the anchor base size to 2. Thus, the
anchor box size distribution fits better to the GT box size distribution, which generally
yields an improved detection accuracy, in particular in case of small objects [35]. Using
an auxiliary feature map with higher resolution, i.e., P2, has been rejected because of the
significant computational overhead.

We further extend our single-stage detector by adopting the mask branch of Mask
R-CNN [15] to exploit more semantic context information and to improve the localization
accuracy. The mask branch is applied on top of our single-stage detector similar to the RPN
in [11] and outputs a binary segmentation mask for each prediction. For this purpose, a
ROI Align layer extracts the corresponding features for each prediction, yielding a small
feature map of fixed extent. The small feature map is then passed through a sequence of
convolutional layers, and the last layer is used for a pixel-wise classification. By applying
an auxiliary loss function termed mask loss Lmask, i.e., a binary cross-entropy loss averaged
over a prediction’s pixels, the mask branch is trained simultaneously with the classification
and bounding box regression. Note that the additional mask branch can be disabled during
inference, so that the inference time is not affected.

Due to the imbalanced distribution of occurring classes in aerial imagery datasets, e.g.,
iSAID [52], we apply the data resampling strategy proposed in [53]. A repeat factor ri is
specified for each training image i:

ri = max
c∈ci

(max(1,
√

t/ fc)), (1)

where ci are the classes labeled in i and fc is the fraction of training images that contain at
least one instance of class c. The threshold parameter t is a hyper-parameter inserted to
control the oversampling.

We further adopt several optimization techniques proposed in [54], i.e., Adaptive
Training Sample Selection (ATSS) [54], using the generalized IoU [55] as regression loss,
introducing an auxiliary centerness branch [8] and adding a trainable scalar per feature
pyramid level [8]. ATSS replaces the traditional IoU-based strategy to define positive and
negative samples during training. Instead of using a fixed IoU threshold value to assign
positive samples, the IoU threshold is dynamically set based on statistical measures of the
IoU thresholds of anchors close to the GT box. While there is no strong correlation between
minimizing the commonly used regression losses such as smooth L1 loss and improving
the IoU values between GT boxes and predicted boxes, using the metric itself, i.e., IoU, is
the optimal objective function [55]. Employing the generalized IoU, which addresses the
weakness of the conventional IoU by extending the concept to non-overlapping cases, as
regression loss further improves the training and consequently the detection accuracy. The
centerness branch is introduced to suppress poorly predicted bounding boxes caused by
locations far away from the center of the corresponding object. For this, a centerness score is
predicted for each location, which is applied to down-weight the scores of bounding boxes
far from the center. For each feature map, the anchor sizes are specified by a fixed scalar
termed octave base scale, which is multiplied with the feature map stride. By introducing a
trainable scalar per feature map, this value can be automatically adjusted during training,
thus allowing for differing anchor sizes. Note that for simplicity we term the optimization
techniques proposed in [54] as ATSS. Besides the adopted optimization techniques, group
normalization [56] in the classification head has been proposed in [54]. Since the employed
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TensorRT 6 does not support group normalization, no normalization is performed, which
showed superior results compared to applying batch normalization (see Appendix A.1).

3.3. Light-Weight Classification Head

The inference time is mainly affected by the backbone network and the classification
head.

While using light-weight network architectures, e.g., PeleeNet or MobileNetV3, as
backbone network reduces the inference time, the detection accuracy decreases, in par-
ticular for small object instances. Thus, we employ ResNet-50 as backbone network,
which showed, among various network architectures, the best trade-off between detection
accuracy and inference time.

The large computational costs of the classification head is caused by the sequences
of four 3 × 3 convolutional layers in the sub-networks. The number of multiply-add
computations (MACs) of a convolutional layer depends on the kernel size k× k, the number
of kernels C, the number of input channels D and the output width W and height H:

#MACs = k · k · C · D ·W · H. (2)

We lower the number of input channels and the number of kernels from 256 to 170,
respectively, which reduces the number of MAC operations by roughly 56%. For this,
we set the depth of each feature map to 170 as well. Furthermore, we discard the last
convolutional layer, which reduces the computational costs by additional 25%. Preliminary
experiments showed that our light-weight classification head yields the best trade-off
between inference time and detection accuracy.

3.4. Adapted Runtime Environment

As runtime environment, we make use of NVIDIA’s TensorRT library instead of the
original deep learning framework MMDetection based on PyTorch, which notably reduces
the inference time. For this, we convert our PyTorch model to ONNX format, which is then
parsed to TensorRT. To further speed-up the inference, we use TensorRT’s FP16 arithmetic
instead of the usual FP32.

Besides ONNX, torch2trt (https://github.com/NVIDIA-AI-IOT/torch2trt, accessed
at 3 April 2021) and TRTorch (https://github.com/NVIDIA/TRTorch, accessed at 3 April
2021) exist as paths to convert models from PyTorch to TensorRT. Torch2trt implements its
own tracing mechanism to directly build the TensorRT network based of PyTorch opera-
tions. TRTorch is a converter from TorchScript to TensorRT and thus relies on PyTorch’s
tracing and scripting mechanisms to convert PyTorch operations to TorchScript. However,
ONNX is still the most established conversion path. While the conversion process might
not seem to need a lot of effort, in practice, some functionality is lacking and manual
optimization is required for good performance as described below. Thus, a lot of manual
effort is still required as can also be seen from other projects porting MMDetection to
TensorRT (https://github.com/grimoire/mmdetection-to-tensorrt, accessed at 3 April
2021).

Since the non-maximum suppression (NMS) of ONNX has a dynamically sized tensor
as output, TensorRT does not provide an implementation of the ONNX NMS. Thus, we
define a custom ONNX node that uses two fixed size outputs so that it is compatible
with the output format of TensorRT’s NMS. The first output is a tensor, which has space
for 1000 detections and the second tensor describes the number of valid detections in
the first tensor. Additionally, we add a parser for the new node type to the ONNX-to-
TensorRT converter.

MMDetection’s ATSS implementation filters the detections based on their classification
score and multiplies the centerness score with the classification score prior to the NMS.
In case of TensorRT, the filtering based on the classification score and the NMS are by
default done in a single step. As TensorRT’s NMS does not handle different score types, we
multiply the centerness score before the NMS and halve the score threshold for the filtering
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to cope with the reduced absolute score values. Ignoring the centerness score would be a
clearly inferior solution.

To reduce the inference time, we use the TensorRT profiler to find opportunities for
optimization. One step which takes exceptionally long is the extraction of the bounding
boxes from the feature maps. When all convolutions have been executed, five tensors exist
from the different octaves. In MMDetection and therefore also in the converted model,
even for batch size 1 these tensors contain a dimension for the batch size. However, for the
output a single tensor containing all detections for a single image has to be created. Thus,
for each image of the batch, the feature map has to be extracted, flattened, and afterwards
concatenated with the detections from the other octaves. The code in Listing 1 is used for
the extraction in MMDetection.

However, when exporting this code to ONNX, a Gather node is created which has a
relatively high inference time with TensorRT. Thus, we replace the code with the code from
Listing 2 which generates a Squeeze node in the exported ONNX file. Running RetinaNet
with the older version result in 13.9 FPS while the new version is running at 14.6 FPS. While
the shown code only handles the feature maps for class prediction, the same principle
applies to the feature maps for regression and centerness prediction.

Listing 1: Original MMDetection Code for Extracting Feature Maps

[ cls_scores [ i ][ img_id].detach() for i in range(num_levels) ]

Listing 2: Adjusted Code for Extracting Feature Maps

[ torch.squeeze(cls_scores[i ]) .detach() for i in range(num_levels) ]

4. Experimental Results

In this section, we first provide the experimental settings and introduce the applied
evaluation metrics. Then, we compare different configurations of our proposed object
detector to work published on iSAID and to state-of-the-art object detectors fine-tuned
on iSAID. Next, we provide an ablation study to highlight the impact of the proposed
techniques to optimize the detection accuracy without affecting the inference time followed
by an analysis of the proposed light-weight classification head. Finally, the main settings of
our final configurations are given and qualitative examples are shown.

4.1. Experimental Setup

For our experiments, we use the iSAID dataset [52] that comprises 2806 aerial images
with more than 650k annotated object instances for 15 classes. While most classes are very
different and are thus a challenge for the detection of objects, small vehicles and large
vehicles are very close in its appearances and are highly difficult to distinguish. Another
major difficulty for detecting objects in the images are the large range of GSDs (1.0 m
to 4.5 m) of the images included in the iSAID. A subset of the classes in iSAID and the
different ground sampling distances are shown exemplary in Figure 2. Moreover, the many
small objects in the iSAID are a challenge for embedded real-time detectors since large
input images and large feature maps lead to an increased runtime. As can be seen in
Figure 3, this is different to datasets like MS-COCO [57] which are mainly used in object
detection research and are lacking this difficulty. As annotations are not publicly available
for the test set, we only use the official training and validation set for our experiments. The
training and validation set comprise 1411 and 458 images, respectively. For each set, the
histogram of the number of instances per class is given in Figure 4.
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Figure 2. Three images from iSAID. The first image shows the high variety in appearance and size of the classes in iSAID.
The second and third images show the high difference in terms of GSD. The color coding for the classes is applied in
all figures.
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Figure 3. Distribution of object sizes in iSAID [52] (a) and MS-COCO [57] (b). The distribution of iSAID is heavily skewed
towards small objects. Thus a focus on the small objects is needed. However, even though large objects are rare, each of
them is more important for the average precision since they are typically in rare classes. This discrepancy combined with
the many small and thus hard to detect objects poses a major challenge for the detector.

Figure 4. Histogram of the number of instances per class.

We train all models on cropped images with a size of 800× 800 pixels that are extracted
from the original training set with a sliding window approach. Note that the baseline
detectors are trained on a set of cropped images that have an overlap of 200 pixels as
provided by [52], while our ablation studies are based on models trained on a set that uses
an overlap of 400 pixels and cropped ground truth objects with an IoU less than 50% to
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the original GT bounding box are discarded. During training multi-scale augmentation
ranging from 50% to 150% and horizontal flip augmentation are used.

The baseline detectors shown in Table 1 and the ablation studies are trained with a
batch size of 4 and stochastic gradient descent as optimizer using an initial learning rate of
1 × 10−2. Note that we restart the training with a lower learning rate, i.e., 5 × 10−3, if the
training diverges. We use the NMS settings recommended by [52]. The training settings for
our final models are described in Section 4.5.

Following [52], we use the standard MS COCO metrics to evaluate the detection
accuracy: AP (averaged over IoU thresholds in the range between 0.5 and 0.95), AP50, AP75,
APS, APM and APL, with the area ranges for S, M and L being adjusted according to [52].
The inference time is reported in frames per second (FPS). Faster R-CNN, RetinaNet and
Mask R-CNN are evaluated with MMDetection [58], EfficientDet is evaluated with AutoML
and YOLOv4 is evaluated with DarkNet. All ablation studies and our final models are
evaluated with TensorRT 6 and 16-bit floating point. Because of the high effort needed to
port models to TensorRT and since the porting process typically involves modifications to
the model not part of the original model, we refrain from using TensorRT and FP16 for the
baseline models. However, at least the models implemented in MMDetection would likely
profit. We use MMDetection 1.0, PyTorch 1.3 [59], ONNX opset 10 and TensorRT 6 [60].
The experiments are run on a Nvidia Jetson AGX Xavier using JetPack 4.3 and the 30 W
power mode with two CPU cores enabled and the clock frequencies fixed to the power
mode’s maximum values.

Table 1. Comparison of our proposed object detector to different state-of-the-art detectors. Even though the compared
detectors are close in terms of accuracy, our detectors have a significantly higher frame rate. The increased accuracy
compared to the baseline RetinaNet are due to the multiple improvements mentioned in Section 3.2. The main reasons for
the increased performance of the 15 FPS model are the application of TensorRT and half-precision floating-point. The faster
models benefit from carefully scaling the backbone, the head and the resolution.

Model Backbone Parameters AP AP50 AP75 APs APm APl FPS

Faster R-CNN + FPN [12] ResNet-50 41,424,031 41.6 64.2 45.7 44.1 50.4 42.2 2.8
RetinaNet [4] ResNet-50 36,620,267 33.2 53.1 35.9 35.2 41.2 27.6 3.0

Mask R-CNN [15] ResNet-50 44,050,863 42.8 65.2 47.7 45.3 52.6 44.8 2.3
Mask R-CNN + PA-FPN [61] ResNet-50 47,591,343 42.5 64.7 47.1 44.9 52.8 67.5 2.2

EfficientDet D2 [48] EfficientNet-B2 8,020,764 25.4 45.6 25.7 27.0 32.4 33.0 7.6
YOLOv4 [7] CSPDarkNet53 64,079,388 44.4 70.1 47.6 46.7 51.0 52.5 3.3

15 FPS (ours) ResNet-50 34,770,281 45.3 68.4 49.3 46.8 57.9 70.2 15.7
30 FPS (ours) ResNet-50 27,910,733 43.6 65.7 47.8 45.2 58.6 87.0 30.7
60 FPS (ours) ResNet-18 13,005,801 39.4 62.9 41.7 40.4 56.8 76.1 63.3
90 FPS (ours) ResNet-18 13,005,801 31.9 53.2 33.2 31.6 56.7 79.9 97.8

4.2. Baseline Experiments

The results of our proposed models compared to baseline detectors on the iSAID
validation set are shown in Table 1. The best result for each column is marked bold. The
first part of the table shows results of baseline detectors and the second part provides
results of our optimized models.

The evaluated baseline detectors are Faster R-CNN, RetinaNet, Mask R-CNN, Effi-
cientDet D2 and YOLOv4 with the first three being widely adopted object detectors and
the latter two being state-of-the-art models for mobile object detection. Faster R-CNN is a
two-stage model that predicts region proposal and afterwards classifies them in a second
stage. RetinaNet is a modern one-stage detector that applies a focal loss to handle the
high class-imbalance between foreground and background. Mask R-CNN extends Faster
R-CNN by a mask branch to predict instance segmentation. EfficientDet is a one-stage
detector that employs a modern EfficientNet [48] backbone and a BiFPN neck with multiple
consecutive top-down and bottom-up paths. YOLOv4 is a one-stage detector which uses a
cross stage partial network [62], spatial attention and heavy data augmentation.
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Amongst the baseline detectors, Mask R-CNN achieves the best AP. Using the PA-FPN
as neck similar to PANet shows no improvement. The best inference time (evaluated with-
out TensorRT) is achieved for EfficientDet followed by YOLOv4 and RetinaNet. However,
EfficientDet exhibits a poor AP and one reason for the superior inference time is the Tensor-
Flow environment. Thus, we decided to use RetinaNet as base detector since the two-stage
models are more complex to deploy and YOLOv4 is not available in MMDetection, which
limits the possibility to evaluate different configurations. Overall, we propose four models
optimized for different frame rates, i.e., 15 FPS, 30 FPS, 60 FPS and 90 FPS. Our model that
runs at 15 FPS achieves the best AP and clearly outperforms the baseline detectors in AP
and FPS.

The results of our proposed models compared to published results on the iSAID test
set are shown in Table 2. Though the proposed model comprises a smaller backbone and
neck to ensure a fast inference time, the AP is close to the AP achieved for PANet. Since the
evaluation server for the test set only supports a limited amount of detections, we can not
apply our optimization of a reduced score threshold as mentioned in Section 4.3. Thus, our
results on the test set as presented are lower compared to a normal evaluation.

Table 2. Comparison of our proposed object detector to different results published for the iSAID. All
evaluations are executed on the test set.

Model Backbone AP AP50 AP75 APs APm APl

Mask R-CNN [52] ResNet-101 37.2 60.8 40.7 39.8 43.7 16.0
PANet [52] ResNet-101 46.3 66.9 51.7 48.9 53.3 26.5
PANet [52] ResNet-152 47.0 68.1 52.4 49.5 55.1 28.0

15 FPS (ours) ResNet-50 43.6 64.3 48.7 46.2 49.4 19.6
30 FPS (ours) ResNet-50 41.9 62.3 46.5 44.4 49.8 19.1
60 FPS (ours) ResNet-18 38.3 60.1 41.6 40.1 49.6 18.6
90 FPS (ours) ResNet-18 31.0 51.0 32.5 31.3 49.0 29.2

4.3. Adjustments Not Impacting the Runtime

In the following, TensorRT and FP16 are used for all experiments. The advantage of
using TensorRT over MMDetection and reducing the data precision is shown for RetinaNet
in Table 3. Using TensorRT and FP16 speeds up the inference time by a factor of about
5, while the detection accuracy is almost unchanged. The AP values differing from the
AP value reported in Table 1 are due to more training data used for the ablation study as
described above.

Table 3. Comparing RetinaNet evaluated with MMDetection and TensorRT and different floating
point precisions. Both applying TensorRT and reducing the precision to 16 bit is slightly increasing
the runtime. However, applying both optimizations increases the runtime by a multiple while not
impacting the accuracy.

Executor Precision AP AP50 AP75 FPS

MMDet FP32 35.3 58.6 37.2 3.0
MMDet FP16 35.3 58.6 37.2 5.0

TensorRT FP32 35.2 58.4 37.1 4.2
TensorRT FP16 35.3 58.4 37.2 14.8

In the following subesction, we evaluate multiple optimizations that improve the accu-
racy while not impacting the runtime or only impacting it slightly. These optimizations are

• Adjusting the Anchor Box Size
• Adopting ATSS
• Class-Balanced Training
• Denser Cropping Strategy
• Auxiliary Mask Branch
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• Adopting AdamW Optimizer

Adjusting the Anchor Box Sizes: Reasons for the higher AP values of Faster R-CNN
and Mask R-CNN compared to RetinaNet, in particular for small object instances (see
Table 1), are the employed feature maps and the size of the corresponding anchor boxes. By
default, RetinaNet uses the outputs from the feature pyramid levels P3 to P7 as feature maps
for prediction. Faster R-CNN and Mask R-CNN take the output from feature pyramid level
P2 as auxiliary feature map. The corresponding anchor boxes are in the range of 162 pixels
and thus, smaller compared to the anchor boxes employed for RetinaNet. In the following,
we evaluate the impact of using an auxiliary feature map with higher resolution, i.e., P2,
and of reducing the anchor box sizes by varying the octave base scale (see Table 4). While
using P2 provides the best accuracy, it more than halves the FPS due to the computational
overhead. Setting the octave base scale to 2, which yields anchor boxes in the range of
162 pixels, exhibits an almost similar improvement without impacting the runtime. Thus,
we reduce the octave base scale from 4 to 2 (8 to 4 for experiments with ATSS) for our
experiments and the final models.

Table 4. Comparison of RetinaNet with varying octave base scales and different feature maps. Note
that start and end indicate the first and last pyramid level used as feature map. Reducing the smallest
anchor by either reducing the anchors’ base size or incorporating an earlier feature map in the
detection head to accommodate the many small objects increases the AP. While incorporating an
earlier feature map leads to the best average precision, it heavily impairs the FPS because of the
processing of the high resolution feature map.

Base Size Start End AP AP50 AP75 FPS

4 P3 P7 32.7 52.5 35.2 14.8
4 P2 P7 35.8 57.2 38.7 6.4
3 P3 P7 35.2 56.4 38.3 14.8
2 P3 P7 35.3 58.4 37.2 14.8
1 P3 P7 26.1 49.2 24.9 14.8

Adopting ATSS: As can be seen in Table 5, adopting ATSS (Section 3.2) provides a great
advantage in terms of accuracy over the original RetinaNet. The AP increases by 2.5 points
and another 0.1 points can be gained by lowering the score threshold to compensate the
centerness score. ATSS also increases the FPS from 14.8 to 15.7 since it typically uses only
one anchor while RetinaNet uses nine anchors with three different aspect ratios and three
different scales.

Table 5. Comparison of RetinaNet with and without ATSS. The centerness score prediction is typically
applied after filtering low confidence detections. However, the TensorRT NMS has not support for
such an operation. Thus, we evaluate both multiplying the centerness score before filtering detections
and ignoring the centerness score. Both variants significantly increase the precision compared to
not applying ATSS while multiplying the centerness score with the class score prediction before the
filtering procedure shows a higher precision. To accommodate the lower scores, we reduce the score
threshold which slightly increases the precision. All variants with ATSS significantly increase the
FPS since ATSS uses only 1 anchor instead of 9.

Detector Threshold AP AP50 AP75 FPS

RetinaNet 0.5 35.3 58.4 37.2 14.8
RetinaNet 0.25 35.3 58.5 37.2 14.8

ATSS * 0.5 37.8 58.5 41.0 15.7
ATSS * 0.25 37.9 58.8 41.1 15.7
ATSS † 0.5 37.2 58.5 40.0 15.7
ATSS † 0.25 37.2 58.6 40.1 15.7

* Centerness score multiplied before threshold filtering; † Centerness score ignored.
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Class-Balanced Training: The classes in iSAID are highly unbalanced, e.g., the number
of small vehicles is about 1500 times the number of ground track fields. This leads to
frequent classes generating a large part of loss, while less frequent classes have a smaller
contribution to the weight adjustments. However, the AP is weighting less frequent
classes equally to frequent classes. By applying the data resampling strategy described in
Section 3.2 to increase the contribution of less frequent classes to the loss, we increase the
AP by 2.6 points (see Table 6). For this, the oversampling threshold is set to 0.1. The impact
on the class-wise detection results is shown in Table 7. As expected, the rare classes are
having the greatest improvement with helicopter being detected twice as good. However,
even highly frequent classes like small vehicle show a slight improvement. We assume
that this is due to rare classes producing a smaller loss per annotation with class-balanced
training since the prediction is more accurate and thus causing less adjustments negatively
impacting the accuracy of frequent classes. Ship is the only class which has a slightly lower
AP when using class-balanced training.

Table 6. Comparison of dataset preparation settings, i.e., w/ and w/o discarding of boxes with
low IoU to the original box in the uncropped image and class-balanced resampling. The third line
is the default data preparation strategy proposed by [52]. To prevent confusing the detector by
unidentifiable objects during training, we discard objects which have a visibility of less than 50%
in the experiments for the ablation studies. However, since the validation set includes such objects,
discarding impairs the performance. The denser cropping strategy with only 200 pixel overlap in the
application of the sliding window significantly increases the precision.

Discard Overlap Class-Bal. AP AP50 AP75

X 400 - 35.3 58.6 37.2
X 400 X 37.9 61.9 40.2
- 200 - 34.0 57.4 35.8
- 400 - 38.3 62.5 41.1
- 400 X 41.1 66.0 44.2

Table 7. Class-wise results comparing RetinaNet with and without class-balanced sampling. Even though the rare
classes like Helicopter are obviously benefiting most from the oversampling of the images including them, frequent
classes like small vehicles also show a better precision. Ship is the only class that is slightly impaired by the class-
balancing. Abbreviations: BD—Baseball Diamond, GTF—Ground Track Field, SV—Small Vehicle, LV—Large Vehicle,
TC—Tennis Court, BC—Basketball Court, ST—Storage Tank, SBF—Soccer Ball Field, RA—Roundabout, SP—Swimming
Pool, HC—Helicopter.

Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC

% of Annotations 2.8 0.2 0.5 0.2 69.1 8.2 11.9 0.8 0.2 3.0 0.3 0.2 2.1 0.6 0.1

No class-bal. 60.6 42.8 19.2 24.3 21.4 34.1 52.3 68.9 32.3 38.4 20.1 32.6 39.7 36.1 7.3
With class-bal. 61.1 48.1 20.4 27.7 21.8 35.0 52.2 71.7 37.8 39.3 25.0 35.1 40.8 38.3 14.6

Denser Cropping Strategy: Furthermore, we examine the impact of different settings
to crop the original images during training. Using an overlap of 400 pixels instead of
the initially applied 200 pixels results in an improved detection accuracy, as clearly more
training samples are considered. However, discarding bounding boxes whose overlap to
its original bounding box is below 50% shows no gain in AP and thus, is not applied for
further experiments.

Auxiliary Mask Branch: Additionally, we evaluate the impact of an auxiliary mask
branch. For this, the same number of convolutions and channels are used as for the
classification head. The results of applying the mask branch for different input image
resolutions are shown in Table 8. It can be seen that the auxiliary mask branch increases
the AP over all tested resolutions by 1.2 to 1.6 points.
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Table 8. Comparing RetinaNet with auxiliary mask branch and without mask branch for different
input resolutions. Across all resolutions the auxiliary mask branch is showing a significant increase
in precision while not impairing the FPS since it is not executed during inference.

Mask Branch Res. AP AP50 AP75 FPS

- 800 × 800 38.2 62.3 41.1 14.8
- 600 × 600 37.2 60.1 39.8 23.5
- 400 × 400 30.6 52.1 31.7 39.6

X 800 × 800 39.6 63.6 42.8 14.8
X 600 × 600 38.4 61.6 41.3 23.6
X 400 × 400 32.1 53.6 33.5 39.8

Adopting AdamW Optimizer: Finally, we evaluate different optimizers in Table 9.
Since Adam-based optimizers usually work best with lower learning rates, we reduce
the learning rate for these. The tests are conducted using RetinaNet with Mask Branch.
Adam results in an increase of 1.5 points average precision over SGD and AdamW leads to
another 0.7 point increase.

Table 9. Comparing different optimization algorithms on RetinaNet. Since Adam-based optimizers
typically require a lower learning rate, we execute Adam and AdamW with a learning rate of
1 × 10−4 instead of 1 × 10−2. Adam shows a significant increase in terms of precision compared to
SGD and AdamW further increases the precision slightly.

Optimizer Learning Rate AP AP50 AP75 APs APm APl

SGD 1 × 10−2 39.7 63.7 43.0 42.0 47.6 49.5
Adam [63] 1 × 10−4 41.2 65.9 44.6 43.5 50.3 45.0

AdamW [64] 1 × 10−4 41.9 66.5 45.3 43.8 53.7 50.0

4.4. Optimizing the Accuracy-Runtime Trade-Off

To optimize the trade-off between detection accuracy and inference time, we initially
analyze the impact of each detector component on the overall inference time (see Table 10).
For this, the runtime of each component is separately measured using the TensorRT profiler.
The largest portion of the runtime are spent on the backbone and the classification head
with 43% and 45%, respectively, while the neck only requires 9% of the total time. The
time spent for the NMS is almost negligible with only 1%. Note that some layers like copy
operations that are added by TensorRT can not be traced back to the original components
and thus, these layers are termed unassigned.

Table 10. Runtimes of RetinaNet’s components. Due to technical reasons some operations could not
be assigned to a certain component. The backbone and the head are the two significant parts sharing
almost 90% of the runtime equally. The remaining share is mainly consumed by the neck.

Component Ms per Image Share

Backbone 28.0 42.98%
Neck 6.1 9.41%
Head 29.1 44.64%
NMS 0.9 1.44%

Unassigned 1.0 1.52%

At first, we examine the usage of different backbone networks in Figure 5. Even
though multiple modern architectures are used to replace ResNet [65] as backbone, ResNet
still offers the best trade-off between detection accuracy and runtime. While certain
configurations of RegNetX [66] are a suitable alternative to ResNet, using light-weight
networks, e.g., PeleeNet [49], MobileNetV3-Large [45] and EfficientNet [48] results in clearly
worse AP. Backbones targeted towards a high accuracy like ResNeXt [67] or HRNetV2 [68]
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also provide an inferior trade-off between detection accuracy and runtime compared to
ResNet.

Thus, our focus lies on optimizing the inference time spent for the classification head
by reducing the number of stacked convolutions and the number of channels as described
in Section 3.4. Results for different configurations of number of stacked convolutions and
number of channels are shown in Table 11. The best trade-offs between inference time and
detection accuracy are achieved for 3 stacked convolutions and 170 channels and 2 stacked
convolutions and 128 channels, respectively. Removing more convolutions or channels
results in worse AP. Note that a balanced adaption of these parameters is appropriate to
avoid a large drop in AP. The impact of reducing the resolution as a further scaling factor
is shown in Figure 6. For each configuration, the input image resolution is varied between
400× 400 and 800× 800 pixels. Decreasing the input image resolution to 600× 600 pixels
shows a large speed up with only a small drop in AP for all configurations, while for an
input image resolution of 400× 400 pixels the AP becomes considerably worse.
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Figure 5. Comparing RetinaNet with different backbones. The ResNet family shows a good accuracy-
runtime-trade-off in almost all circumstances. Only in the high FPS regime RegNetX achieves a
higher precision with the same runtime comaped to ResNet-18. However, further experiments have
shown that ResNet-18 is better when other improvements are also applied.

Table 11. Comparing RetinaNet (ResNet-50 and ResNet-18) with different head and neck configurations. The first two steps
of downscaling the head and the neck lead to a significant speed-up with both backbones while only slightly impairing
the precision. Further reducing the number of channels to 64 and removing all stacked convolutions in the head leads to a
significant drop in accuracy. Thus we do not consider this setting for further experiments.

Backbone Neck Channels Head Channels Stacked Convs. AP AP50 AP75 APs APm APl FPS

R50 256 256 4 35.3 58.4 37.2 37.9 38.8 21.9 14.8
R50 170 170 3 34.8 58.1 36.7 37.6 38.5 22.6 18.3
R50 128 128 2 34.1 57.6 35.5 37.0 35.6 25.8 22.7
R50 64 - 0 30.3 53.1 30.7 33.4 26.4 12.2 25.4

R18 256 256 4 31.5 53.9 32.7 34.2 35.1 11.9 20.1
R18 170 170 3 30.1 53.2 30.6 33.1 30.9 16.3 27.1
R18 28 128 2 29.0 51.0 29.3 32.0 26.2 18.8 38.2
R18 64 - 0 22.8 42.7 21.8 26.3 13.3 2.7 48.1

4.5. Selecting Final Models

For the final models, we adopt an octave base scale of 2 to account for small object
instances and apply ATSS, an auxiliary mask branch during training and class-balanced
dataset augmentation. Based on the results from Figure 6, we choose the configurations for
the final models as shown in Table 12. The four models differ in the size of the backbone
(ResNet-50 or ResNet-18), the number of channels in the neck and the head (256, 170 or
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128), the number of stacked convolutions before the final prediction in the head (4, 3 or 2)
and the resolution of the input image (800 × 800, 600 × 600, 400 × 400). Note that AdamW
is used as optimizer with a learning rate of 1 × 10−4, which slightly improves the detection
accuracy as shown in further experiments with the final configurations. Qualitative results
of our proposed models compared to the GT indicate the good localization and classification
accuracy even at high frame rates (see Figure 7).
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Figure 6. Comparison of different classification head settings, i.e., number of stacked convolutions
and number of channels, for input images of size 800× 800 (left), 600× 600 (middle) and 400× 400
(right). Reducing the resolution to 600× 600 impairs the precision only slightly while the accuracy
is significantly increased. Further reducing it to 400× 400 decreases the precision heavily for large
model configurations. However, for small model configurations the relative impairment is lower
while still significantly increasing the frame rate. Thus, both steps are considered for selecting the
final models.

Table 12. Selected model configuration for each of the four targeted frame rates. Channels are the
number of channels in the neck and in the head. Convolutions are the number of stacked convolutions
in the head. For each targeted frame rate the most precise configuration is selected from Figure 6.

FPS Backbone Channels Convolutions Input Resolution

15 ResNet-50 256 4 800× 800
30 ResNet-50 170 3 600× 600
60 ResNet-18 128 2 600× 600
90 ResNet-18 128 2 400× 400

4.6. Power and Memory Measurement

The power consumption and the required VRAM of each model is shown in Table 13.
Note that the average power is an average over the complete inference including loading
the images, while the model power is the average drawn power without loading the
images. All power consumption results are averaged over three runs. All models consume
significantly less power than specified by the power mode since not all processing units
are fully utilized. As a result, the clock frequencies and thus, the FPS could be increased
without exceeding the power limit.

The VRAM required for executing the models is decreasing for the faster and smaller
models since they use less feature maps. Moreover, due to the smaller input resolution,
the input image has a smaller memory footprints and all feature maps also have a lower
resolution. Additionally, the smaller models have a lower number of parameters which
need to be kept in memory. However, even the 15 FPS model only requires about 1.7 GiB
of VRAM and can thus be also executed on devices offering drastically lower capabilities
than the tested Jetson AGX Xavier.
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Figure 7. Qualitative results of our 15 FPS model (second row), 30 FPS model (third row), 60 FPS model (fourth row) and
90 FPS model (fifth row) compared to RetinaNet (bottom row) and ground truth annotations (top row). These results
approve the quantitative results with the faster models dropping in accuracy because of more missed objects. While
RetinaNet does not miss many objects, it outputs many false positive predictions which leads to its poor quantitative results.
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Table 13. Power consumption and required VRAM of the four models in 30 W power mode. Average
power is the total power measured during inference including loading images. Model power is
the power averaged over the raw model execution, i.e., the power needed for loading images is
subtracted. The required power is significantly below the configured 30 W limit since not all of
Jetson’s processing units are utilized. Moreover, the power draw decreases with a higher frame rate
since the utilization of the high-power GPU decreases. The required VRAM decreases for the faster
models since the smaller number of feature maps have a lower resolution and the smaller models
have less parameters.

Model Average Power Model Power VRAM

15 FPS 12.2 W 15.3 W 1777 MiB
30 FPS 10.3 W 14.1 W 1725 MiB
60 FPS 8.4 W 12.7 W 1669 MiB
90 FPS 7.6 W 11.7 W 1657 MiB

5. Oriented Bounding Boxes

Oriented object detection in aerial imagery is of rising interest, since horizontal bound-
ing boxes (HBBs) might not fit the requirements of certain applications. However, works on
oriented object detection in aerial imagery only focus on improving the detection accuracy,
while the impact of the applied modifications on the inference time are not considered. In
the context of this work, we examine the inference time of oriented object detection on a
Nvidia Jetson AGX Xavier as example for a mobile device. For this purpose, we evaluate
two different schemes to predict OBBs, i.e., adding a fifth parameter in the regression
representing the bounding box’ angle and a regression type based on eight parameters rep-
resenting the coordinates of the corners. For the first scheme, we further apply modulated
loss [69], which prevents the loss from punishing the network for predicting almost correct
bounding boxes in terms of IoU but with a different representation than the GT box. Note
that iSAID contains no annotations for OBBs. Thus, we create the oriented annotations by
calculating the minimal surrounding bounding box based on the segmentation mask of
each object.

Our implementation is based on Aerial Detection (https://github.com/dingjiansw1
01/AerialDetection/, accessed at 3 April 2021) which extends MMDetection with detection
heads for oriented bounding boxes. Table 14 shows the detection results for oriented object
detection. Compared to the results for the horizontal counterpart, the AP drops from 38.3
to 27.6 in the best case, which indicates that oriented object detection is a significantly
more difficult task than predicting HBBs. Among the evaluated OBB detectors, the five-
parameter configuration including modulated loss has the highest accuracy and thus, is
used for further experiments.

Table 14. Comparing RetinaNet predicting horizontal bounding boxes (HBBs) and oriented bounding
boxes (OBBs) in different configurations. Both bounding box types are trained and evaluated on their
respective dataset type. While the AP is heavily impaired, the AP50 is only slightly reduced when
predicting OBBs since the precise estimation of the angle is not important for objects with a ratio close
to 1 to achieve an IoU above 50%. Among the tested configurations, predicting the usual bounding
box parameter and an angle while using modulated loss to handle angle periodicity achieves the
best results.

Configuration AP AP50 AP75

HBB 38.3 62.5 41.1

5 Par. 26.0 54.2 20.5
5 Par. + Modulated Loss 27.6 55.3 23.4

8 Par. 25.4 52.5 20.5

https://github.com/dingjiansw101/AerialDetection/
https://github.com/dingjiansw101/AerialDetection/
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Bottleneck of the deployment of oriented object detection on embedded devices is the
NMS, since the skew IoU computation [70] between two OBBs is much more complicated
than the regular IoU computation for HBBs. As TensorRT provides no NMS for OBBs, we
implement it by ourselves. Generally, surrounding HBBs are generated for a pair of OBBs
and their IoU is computed. If no IoU exists, the skew IoU does not need to be computed.
However, since only some boxes need the skew IoU computation while others does not,
this leads to a high branch divergence when parallelizing the NMS which is unfavorable
for GPUs. Thus, we propose to not only parallelize the NMS on bounding box level but
also parallelize each skewed IoU computation by making use of the pairwise intersection
calculation of both bounding boxes’ lines which are 16 independent computations. This
leads to a higher warp utilization since at least 16 of the 32 threads of a warp are used.
Without this extended parallelization, it can happen that only a single thread out of 32
is used. Since the assignment of warps is fixed, the unused shader cores cannot be used
by other threads. The impact of this optimization is shown in Table 15. Increasing the
IoU threshold applied for the check of the surrounding HBBs boosts the inference time.
While this is not an optimal solution in terms of correctness, it reduces the number of boxes
that require a skew IoU computation. With the parallelized skew IoU computation and
increasing the horizontal IoU threshold to 60 %, RetinaNet predicting OBBs is only 4.4 ms
slower per image than a default RetinaNet.

Table 15. Evaluating the impact of parallelizing the skew IoU computation and increasing the
IoU threshold used for checking for a horizontal overlap. Without further optimizations, the NMS
becomes a bottleneck when predicting OBBs and reduces the advantage of TensorRT and half-
precision floating-point arithmetics. Parallelizing the skew IoU to increase the GPU utilization and
only calculating the skew IoU if a significant horizontal IoU is given, increases the performance to a
level close to HBB prediction.

Executor OBB IoU HBB IoU AP AP50 AP75 FPS

TensorRT HBB Reference 38.2 62.3 41.1 14.8

MMDet Sequential >0% 27.6 55.3 23.4 2.3

TensorRT Sequential >0% 27.5 55.2 23.3 8.8
TensorRT Sequential >60% 27.5 55.0 23.3 12.8
TensorRT Parallel >0% 27.5 55.2 23.3 10.7
TensorRT Parallel >60% 27.5 55.0 23.3 13.9

Figure 8 shows that the oriented bounding boxes are correctly predicted for both small
objects like cars and large objects such as tennis courts.
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Figure 8. Qualitative result of RetinaNet predicting oriented bounding boxes. The resulting predictions are almost perfect.
Longish objects which are not axis-aligned have a much tighter bounding box when predicting OBBs compared to HBBs.
This also reduces the risk of the NMS dropping correct bounding boxes because of a high overlap.

6. Conclusions

In this work, we present a workflow for optimizing object detection models to enable
real-time processing with low power consumption. The four steps of this workflow are:
initial model selection, accuracy optimization, runtime optimization and deployment
optimization. We executed this workflow exemplary for object detection in aerial imagery
and thereby proved the effectiveness of this workflow. Our final models provide a good
trade-off between accuracy and runtime with the 30 FPS model operating at real-time on
an embedded device. State-of-the-art models are outperformed in terms of inference time,
while still achieving a similar accuracy.

A denser cropping policy for creating the training images proved to be the single most
important aspect for improving the accuracy. Sampling the images in a class-balanced
manner, adapting the ATSS including a centerness prediction branch and the generalized
IoU loss and adjusting the anchor sizes to the small objects in the iSAID also proved
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to have a highly positive impact on the accuracy. However, replacing the default SGD
optimizer with AdamW and applying a mask branch during training also show a significant
improvement in terms of accuracy.

To optimize the detection architecture for runtime the head is the most import compo-
nent which can be shrunken with a small reduction of the accuracy with a comparative high
reduction in terms of runtime. Another important aspect for a better accuracy-runtime-
trade-off is the resolution of the input images which should be reduced. Besides the head,
the backbone also demands a large share of the runtime. However, more modern backbones
do not prove advantageous over the ResNet family and choosing smaller backbones cause
a significant drop in accuracy. Thus, we choose them only for the models with 60 FPS
or more.

To enable real-time object detection with oriented bounding boxes, we identify the
NMS as the main drawback and apply two optimizations to it. First, we parallelize the
IoU calculation to increase the GPU utilization. Second, we apply a higher horizontal IoU
threshold that must be exceed before the oriented IoU is considered. This optimization
significantly reduces the required workload.

Still to be investigated is the performance on different hardware and the potential of
integer quantization with 8 bits and below. To increase the accuracy without loosing
performance more data augmentation could be considered, e.g., copy-and-paste [71].
To improve the detection with oriented bounding boxes, the optimizations applied for
horizontal detections like ATSS and mask branch should be adopted. Furthermore, oriented
object detection is typically approached by two-stage pipelines. Thus, the deployment of
such two-stage pipelines with TensorRT should be considered.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
ATSS Adaptive Training Sample Selection
CNN Convolutional Neural Network
CPU Central Processing Unit
DSSD Deconvolutional SSD
FastAER Det Fast Aerial Embedded Real-Time Detector
FCOS Fully Convolutional One-Stage Object Detector
FP16 Floating Point 16
FP32 Floating Point 32
FPN Feature Pyramid Network
FPS Frames Per Second
GPU Graphics Processing Unit
GSD Ground Sampling Distance
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Remote Sens. 2021, 13, 3088 20 of 25

GT Ground Truth
HBB Horizontal Bounding Box
IoU Intersection over Union
iSAID Instance Segmentation in Aerial Images Dataset
MAC Multiply-Add Computation
MDPI Multidisciplinary Digital Publishing Institute
MS-COCO Microsoft Common Objects in Context
NMS Non-Maximum Suppression
OBB Oriented Bounding Box
ONNX Open Neural Network eXchange
PA-FPN Path Aggregation Feature Pyramid Network
PANet Path Aggregation Network
R-CNN Region Based Convolutional Neural Network
ROI Region of Interest
RPN Region Proposal Network
SGD Stochastic Gradient Descent
SSD Single Shot MultiBox Detector
SSSD Simple Short and Shallow Network
UAV Unmanned Aerial Vehicle
YOLO You Only Look Once

Appendix A

Appendix A.1. ATSS Experiments

Zhang et al. [54] propose to use ATSS with group normalization in the head. However,
because of the lack of group normalization support in TensorRT 6, we need to either
use batch normalization or no normalization in the head. Thus, we evaluate all three
normalization types in Table A1. Using batch normalization results in an average precision
of 1. Thus, we decide to use no normalization which results in 38 points. This result is even
0.3 points better than group normalization.

Table A1. Comparing ATSS with different normalization types in the head. Evaluation done with
MMDetection. ATSS typically applies group normalization. However, group normalization is not
supported by TensorRT 6. Thus, we evaluate batch normalization and applying no normalization as
alternatives. However, batch normalization is not working at all even if the batch size is increased.

Normalization AP AP50 AP75 APs APm APl

Group Normalization 37.7 59.7 40.5 40.3 43.7 48.6
Batch Normalization 1.0 1.9 1.0 1.1 0.4 0.0

Batch Normalization (Batch Size 8) 1.6 2.9 1.6 1.8 0.0 0.0
No Normalization 38.0 58.9 41.2 40.4 45.2 55.4

Appendix A.2. Head Experiments

In Figure A1, a comparison of different resolutions, backbones and head configurations
is shown. In contrast to the comparison in Figure 6, this also includes ResNet-34 and a
smaller head configuration.
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Figure A1. Comparing RetinaNet in different configurations with different input resolutions. Convs are the number of
stacked convolutions in the head. Channels are the number of channels in the head and in the neck. The left point of each
series is 800× 800, the middle point is 600× 600 and the right point is 400× 400.

Appendix A.3. Non-Maximum Suppression Hyper Parameters

In this section, we evaluate the selection of hyper parameters for the NMS. Three
parameters control the maximum number of detections during the NMS processing. The
first parameter is the layer-wise pre-NMS maximum which is applied per octave layer
before the NMS. Thereafter, the global pre-NMS maximum limits the total number of
detections that are used as input for the NMS. After the NMS, the post-NMS maximum
is applied. We first evaluate reducing the post-NMS maximum below 1000 and show the
results in Figure A2a. While the number of objects have a large impact on the accuracy, the
impact on the FPS is negligible. Thus, a reduction of post-NMS maximum is not sensible.
Increasing the post-NMS maximum above 1000 is only sensible when we also increase the
pre-NMS maximums. In Table A2, we show the result of different configurations of all
three parameters. The results indicate that the model is rather insensitive to changes in
the range of values larger than 1000. Even tough small increases in the average precision
can be gained, this also increases the inference time and makes the trade-off questionable.
Thus, we decided to use 1000 for all three parameters.

Table A2. Comparing impact of maximum number of detections before and after NMS processing on accuracy and inference
time. The number of detections is limited per neck layer before the NMS, after concatenating detections from all neck layers
but before applying NMS and after applying NMS. While increasing the maximum number of detections increases the
precision, it impairs the performance in similar ratio and does not provide a benefit in terms of accuracy-runtime-trade-off.

Maximum AP AP50 AP75 APs APm APl FPSLayer-Wise Pre-NMS Global Pre-NMS Post-NMS

1000 1000 1000 35.3 58.4 37.2 37.9 38.8 21.9 14.8
1000 2000 1000 35.4 58.6 37.3 38.1 38.9 21.9 14.7
1000 2000 2000 35.4 58.7 37.3 38.1 38.8 21.9 14.7
2000 2000 2000 35.5 58.9 37.4 38.2 38.8 21.9 14.6
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Another hyper parameter of the NMS is the IoU threshold that two boxes of the same
class need to exceed to discard one of them. We evaluate this parameter in the range of
0.4 to 0.7. The results for HBBs are shown in Figure A2b and the results for OBBs are shown
in Figure A2c. For both bounding box types, the values 0.5 and 0.6 are optimal. However,
the average precision is overall rather insensitive to the changes in the IoU threshold in the
range of the tested values. While the impact on the FPS is negligible for the HBBs, it has a
small impact on the FPS for the HBBs with a lower IoU threshold being faster since more
boxes are discarded early.
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Figure A2. Results for adjusting NMS hyper parameters. (a) Comparing impact of maximum number of detections after
NMS processing on accuracy and inference time. Reducing the number of detections to 500 is a good trade-off if the
maximum performance of a model is needed. However, further reduction significantly impairs the precision with a small
benefit in terms of performance. (b) Comparing impact of the IoU threshold of the NMS on accuracy and inference time.
The impact of the IoU threshold is rather small both in terms of precision and performance if it is in a reasonable range
between 0.4 and 0.7. (c) Comparing impact of the IoU threshold of the NMS in terms of accuracy and inference time for
detecting oriented bounding boxes. Similar to the prediction of HBBs is the impact only marginal.
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