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Abstract: Air pollution in North China (NC) is an important issue affecting the economy and health.
In this study, we used a regional climate model, the Weather Research and Forecasting Model with
Chemistry (WRF-Chem) to project air pollution in NC and investigate the variations of air pollutions
response to future climate changes, which probably has an implication to strategy and control policy
for air quality in NC. A comprehensive model evaluation was conducted to verify the simulated
aerosol optical depth (AOD) based on MODIS and MISR datasets, and the model also showed
reasonable results in aerosol concentrations. Future changes of air pollution in the middle of the 21st
century (2031–2050) were projected in the two Representative Concentration Pathways (RCP4.5 and
RCP8.5) and compared with the situation in the historical period (1986–2005). In the two RCPs, the
simulated averaged PM2.5 concentration was projected with the highest values of 50–250 µg·m−3 over
the Bohai Rim Economic Circle (BREC) in winter. The maximum AOD is in the Beijing–Tianjin–Hebei
(BTH) region in summer, with an average value of 0.68. In winter, in the RCP4.5 scenario, PM2.5

concentration and AOD obviously declined in BTH and Shandong province. However, in the RCP8.5
scenario, PM2.5 concentration and AOD increased. Results indicated that air pollution would be
reduced in winter if society developed in the low emission pathway. Precipitation was projected
to increase both in the two RCPs scenarios in spring, summer, and winter, but it was projected to
decrease in autumn. The planetary boundary layer height decreased in the two RCPs scenarios in the
central region of NC in the summer and winter. The results indicated that changes of meteorological
conditions have great impact on air pollution in future scenarios.

Keywords: air pollution; Representative Concentration Pathways (RCP) scenarios; projection; North
China; meteorological influence

1. Introduction

With the development of the economy and urbanization, China has been suffering
from an air pollution problem in the past two decades. Many previous studies revealed
that in China, a significant decline in air quality has become more serious [1,2]. There
was no doubt that air quality has been an important issue around the world. Urban air
pollution is associated with increased mortality and morbidity in both developed and
developing countries [3,4]. In 2019, the World Health Organization (WHO, 2019) [5] listed
air pollution as the most important environmental problem that threatens public health
and causes about 7 million deaths worldwide every year. Therefore, the assessment of
air quality is a very critical issue. Air pollution in China is worse than other countries in
East Asia, which has caused a severe impact on climate change [6–8]. A large number of
previous studies have demonstrated that the effects of aerosol pollution on climate change
were significant [9,10].
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The further urbanization was a consequence of the growing industry. In the period
of 1978–2017, more than 550 million migrants moved to cities, resulting in a large rising
of urban population from 18 to 57% [11]. Figure 1 showed the population density of
China in 2000. Most of the population was concentrated in the NC plain, the Yangtze
River Delta, and the Pearl River Delta due the development of prosperous cities. The
Beijing–Tianjin–Hebei (BTH) Economic Circle and the Bohai Rim Economic Circle (BREC)
are located in NC. Therefore, the manufacturing and services industries in coastal areas are
relatively developed.
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At present, air pollution has gradually shifted from the traditional total suspended
particulate matter and inhalable particle matter (PM10) and SO2 pollution to a compound
pollution that is a mixture of fine particles (PM2.5) and polluting gases such as O3, SO2,
and NOx in China. The fine particulate pollution threatens the health of more than
400 million people in NC. Haze was affected by both atmospheric aerosol loadings and
weather conditions [12]. Recent studies have shown that the region suffers the highest
particle matter (PM) concentrations and the longest pollution episodes [13]. The highest
PM concentrations were observed, and more dust aerosols were observed in NC [14].
The annual population-weighted-average (PWA) concentrations of various pollutants
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in NC were greater than those in Southern China, and PM2.5 pollution in winter was
worsening [15]. Many studies have explored the changes in air quality in different regions
in the climate change scenarios. Yahya et al. (2017) used WRF-Chem to project the climate
and air quality, and the results illustrated that the difference in the spatial distribution
of meteorological elements were induced by variations of aerosols’ emissions in future
scenarios [16]. Another study based on RAMS-CMAQ projected changes of aerosol species
between three RCP scenarios and indicated that the impact of climate change on different
species tends to be consistent [17]. The study by Cai et al. (2013) simulated spatial
distributions of PM10 by WRF-Chem and manifested that northwestern and northern
China are the two regions with the largest dust aerosol sources in East Asia [18].

Meteorological condition was another factor inducing the serious air pollution in NC,
which influenced the processes of removal, diffusion, and transformation [19,20]. Climate
change in NC might have caused the frequency, intensity, and duration of atmospheric
compound pollution events to increase [21]. Several air pollution events were caused by
weather conditions rather than sudden increases of emissions. He et al. (2013) revealed that
local meteorological conditions were the main factors causing the day-to-day variations
of SO2, NO2, and PM10 for the winter of 2002–2007 in Lanzhou, Northwestern China [22].
In recent years, several extreme air pollutions in the vast areas of NC in winter were
related to extreme weather conditions [23]. Furthermore, some studies had attempted to
identify the correlation between pollutants and meteorological factors [24,25]. The results
have shown that the low planetary boundary layer height (PBLH) [26], the weakening of
northerly winds [27], the decrease of relative humidity [28], and the increase of sea level
temperature [29] have also led to the increase of winter haze in eastern China.

Although there were a few studies focused on the projection of air pollutions, which
was also based on the model simulation, few of them paid attention to those variations
in NC. In this study, we focused on the projection of air pollutions in NC in the two
RCP scenarios based on a high-resolution regional climate model WRF-Chem V.3.9.1. The
main purpose was to investigate the variations of air pollutions response to future climate
changes, which probably has an implication to strategy and control policy for air quality
in NC.

2. Model, Data, and Methodology
2.1. Model and Simulation
2.1.1. WRF-Chem Model Configuration

WRF-Chem is a regional atmospheric chemistry model that fully couples a meteoro-
logical module and chemical mode online. Different from the global climate model (GCM)
with coarse resolution, WRF-Chem can be used to simulate the feedback process on a wide
range of spatial scales, as it is a non-hydrostatic model with domain nesting [30]. More
details about WRF-Chem were described in a previous study [31]. Now, the development
of WRF-Chem is more comprehensive, and the application is more extensive.

The 3.9.1 version of WRF-Chem (Figure S1) was used in this study, the projection was
centered at 33◦N, 103.3◦E with 170 and 124 grid points in the east–west and north–south
directions, respectively. The horizontal resolution was 27 km, and the vertical grid in the
model consists of 27 levels ranging. The Lin microphysics scheme [32] was used in this
simulation. The Rapid Radiative Transfer Model (RRTM) was applied to calculate long
wave radiation processes [33]. Aerosol and gas phase chemistry were described, using the
second Regional Acid Deposition Mode (RADM2) photochemical mechanism [34] and the
Modal Aerosol Dynamics model for Europe (MADE), which incorporates the Secondary
Organic Aerosol Model (SORGAM) [35,36]. RADM2 included 63 prognostic species and
136 reactions [37]. Aerosol direct feedback was turned on. Short-wave radiation was the
Dudhia scheme [30]. More details about WRF-Chem simulations are summarized in Table 1.



Remote Sens. 2021, 13, 3064 4 of 17

Table 1. Physical and chemical scheme adopted in the WRF-Chem simulations.

Model Configurations Aerosol-Containing Feedback Mechanism

Microphysics scheme Lin
Shortwave radiation scheme Dudhia
Long wave radiation scheme RRTM

Cumulus parameterization scheme Multi-scale KF
Photolysis scheme Fast-J

Gas chemical scheme RADM2
Aerosol chemistry scheme MADE/SORGAM

Aerosol effect feedback On

2.1.2. Simulation Design

In this study, WRF-Chem simulated air quality and climate over NC for a historic
period (1986–2005) and future decades (2031–2050) in the RCP4.5 and RCP8.5 scenarios. The
initial and boundary conditions, with a horizontal resolution of 1◦ × 1◦ and time resolution
of 6 h, used in WRF-Chem were from the global Bias-Corrected Climate Model output,
which is the first version of NCAR’s CESM [38] (https://rda.ucar.edu/datasets/ds316.1/
(accessed on 20 May 2020)). The daily surface meteorological observation data in NC are
supported by the CN05.1 data [39] provided by the China Meteorological Administration
(CMA), with a horizontal resolution of 0.25◦(latitude) × 0.25◦(longitude).

The anthropogenic emission inventory was an important part of air quality numerical
research and prediction. The pollution emission data used in the simulation is based on
the China Multi-Resolution Emission Inventory (MEIC) [40], which was developed by the
INTEX Inventory team at Tsinghua University and provides a monthly grid emission list
with a spatial resolution of 0.25◦ × 0.25◦ (http://meicmodel.org/index.html (accessed on
21 May 2020)). The MEIC emissions are representative of the year 2016 with the domain
(Figure S2) applicable spans from 30◦ to 45◦N and from 104.8◦ to 125◦E. This inventory was
a model of China’s anthropogenic emissions of air pollutants and greenhouse gases based
on a cloud computing platform. Therefore, it could assess China’s carbon emissions more
accurately than the IPCC method [41,42]. It covers ten major air pollutants and greenhouse
gases including SO2, NOx, CO, NMVOC, NH3, CO2, PM2.5, PM10, black carbon (BC), and
organic carbon (OC) from five sectors such as power, industry, residential, transportation,
and agriculture.

2.2. Data and Methodology
2.2.1. Selection of Climate Change Scenarios

In this study, we selected the RCP4.5 and RCP8.5 scenarios, which are the two most
used by the climate modeling community and represent relatively low and high GHG
radiative forcing, respectively. In the RCP4.5 scenario, global emissions of three types of
GHGs will peak in 2040; then, GHG (greenhouse gas) concentrations and radiative forcing
will stabilize in 2070. Regarding the RCP8.5 scenario, GHG concentrations and radiative
forcing will increase over time from 2000 to 2100 [43,44].

2.2.2. Observational Datasets and Model Evaluation Protocol

In order to evaluate the model performance, we used AOD data from satellite retrievals
the Multi-angle Imaging Spectroradiometer (MISR) [45] and Medium-Resolution Imaging
Spectroradiometer (MODIS) [46] aboard the NASA Terra satellite and Aqua satellite in
this study. AOD measurements obtained from satellite remote sensors could provide
a cost-effective method as a source of supplementary information for determining the
concentration of ground particles. This parameter is proportional to the number of particles
in the air and depends on their mass concentration [47]. It could be used to calculate
large aerosol content and was the key factor to determine the climate effect of aerosol
radiation and the degree of air pollution. So, it could be used as a parameter to estimate

https://rda.ucar.edu/datasets/ds316.1/
http://meicmodel.org/index.html
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the ground particulate matter [48,49], which is also an important factor to determine the
aerosol climate effect.

The model evaluation includes spatial distribution, temporal variation, and statistical
analysis. Two sets of satellite data were used to verify the AOD simulated by the WRF-
Chem model. For historical periods, based on model validation, we also conducted a basic
analysis of the pollutants output by the model during the period 1986–2005. Then, we
evaluated PM2.5 and BC, sulfate (SO4), and other pollutants closely related to pollutant
emissions based on previous studies and conducted quantitative analysis on them. The lim-
itations and uncertainties of model input and the representation of atmospheric processes
in WRF-Chem could be better verified by this evaluation and comparison.

3. Evaluation of Model Performance
3.1. Aerosol Optical Depth

The observed and simulated annual mean AOD in NC in 2000–2005 are shown in
Figure 2a–c. Despite there being a slightly bias low at local scales, the observations and
modeled results presented similar spatial distribution. There was a large AOD enhance-
ment over industrial and densely populated regions, including the BTH region and the
coastal areas. The three data sets all illustrated lower AOD values over north of the study
area such as Inner Mongolia and Shanxi Province. In general, compared to MODIS, the
simulation underestimated the AOD in NC, which agreed with the previous studies [50].
The reason for the underestimation in NC was the understated injection height of the
total dust emissions and biomass burning emissions by WRF-Chem [51,52]. The spatial
distribution of AOD could not clearly represent the range and the uncertainty.
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Therefore, we compared simulated annual and monthly time series of AOD during
the training period with MODIS and MISR observations. WRF-Chem, MISR, and MODIS
data were shown by using the box and whisker plots for average level, degree of volatility,
and upper and lower bounds from 2000 to 2005 (Figure 3a,b). The middle line in the
boxplot represented the median, bottom, and top lines of the boxplot represent 25th and
75th limits respectively, and the markers at the end of dotted lines represent minimum and
maximum values that are not outliers. From Figure 3a, it was found that there was almost
no difference between the WRF-chem and MISR for annual variation of median AOD, while
some distinction existed for MODIS. The 25th and 75th percentiles of AOD values were
close, especially in 2004 and 2005. We also summarized the AOD monthly statistics across
different regions in NC (Figure 3b). In spite of a statistically lower number of simulated
variations of the monthly AOD (given by the error bar), it was close to the MISR dataset.
Column AOD was reasonably well simulated in winter, autumn, and spring, even though
there were some discrepancies in summer and April. Compared with MODIS and MISR,
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the simulation performed well for median AOD in winter, spring, and autumn. It was
interesting to note that the AOD of 2000, 2004, and 2005 was consistent for MISR and the
model (Figure 3c); however, underestimations existed between MODIS and the simulation.
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3.2. Ground Distribution of Major Components

Figure 4 shows the spatial distribution of annual mean mass concentrations of major
chemical components, which include PM2.5, BC, OC, SO4, nitrate (NO3), ammonium (NH4),
and secondary organic aerosol (SOA) in NC simulated by WRF-Chem from 1986 to 2005.
The spatial variation of annual major pollutants concentration is consistent with the spatial
distribution of AOD (Figure 2), which also showed the increasing trend of pollutants
from northwest to southeast in NC. It showed a high concentration of pollution over
the industrial or densely populated regions. PM2.5 concentration and its major chemical
species showed spatially similar spatial distribution. The maximum annual averaged PM2.5
concentration was observed in the mega cities in NC (150 µg·m−3), such as Beijing and
Tianjin. Similar spatial distributions of other chemical components were also presented.
The amount of BC emission in Hebei, Henan, and Shandong provinces was more than
those in other places [53].

The annual averaged variation of PM2.5 in NC was basically in the range of 26 to
32 µg·m−3 (Figure 5). Most of the components of PM2.5 were derived from OC, followed
by NO3, BC, NH4, SOA, and SO4. The fluctuations in the total PM2.5 were influenced
by changes of NO3 and OC. Their concentrations were in the range of 5–7 µg·m−3 and
12–14 µg·m−3, respectively. The annual mean carbonaceous aerosols (the sum of OC and
BC) fluctuated during 1986–2005 with a peak in 1995, which was consistent with the results
of Streets et al. (2009) [54]. The variations of annual averaged BC, SO4, SOA, and NH4
were relatively stable during 1986–2005. The multi-year averaged concentrations were
4 µg·m−3, 1.8 µg·m−3, 3.2 µg·m−3, and 2.4 µg·m−3, while the proportions in PM2.5 were
about 14%, 6%, 11%, and 9% respectively. The NH4, NO3, and SO4 in atmosphere were
basically formed by a gas-to-particle process as a result of chemical reactions of precursor
gases [55,56] and were named “secondary inorganic ions”. The secondary inorganic ions
(the sum of SO4, NO3, and NH4) were in the range of 9 to 12 µg·m−3, which comprised
one-third of the annual average PM2.5 in NC.

The maximum seasonal averaged PM2.5 concentrations were observed in winter and
the minimum were observed in summer. It was noted that the air pollution in NC mainly
occurred in autumn and winter (Figure 5). The highest seasonal average PM2.5 that was
produced in winter in all urban cities in China may be due to high emissions from the
heating period and/or poor dispersion of air pollutants [53]. The OC and BC concentrations
in the spring and summer were less than those in the autumn and winter. The seasonal
variations of carbonaceous aerosols in winter should be related to the heating activities and
biomass burning in this region [57–60].
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More coal consumption combined with a stable meteorological condition might be the
reason for the high PM2.5 concentrations in winter [61–64]. The secondary inorganic ions
also have obvious seasonal changes; e.g., secondary inorganic ions accounted for 50% of
PM2.5 concentration in winter and only 18% in summer. It was noted that NO3 increased
obviously from 8 to 12 µg·m−3, which was one of the main reasons for the increase in PM2.5
concentration in winter. Based on consistency with previous studies, it proved that the
model reproduced the air pollution distribution in the historical period in NC.

4. Projection of Air Pollution and Meteorological Conditions in the RCPs Scenarios
4.1. Projection of Air Pollution

Figure 6 shows the spatial distribution of the seasonal averaged AOD in the RCP4.5,
RCP8.5, and their changes with respect to historical period. The seasonal average AOD
in summer (JJA, June–July–August) was the greatest, followed by winter (DJF, December–
January–February), autumn (SON, September–October–November), and spring (MAM,
March–April–May).

In the two RCPs, their mean AOD was in the range of 0.08–0.48 in spring, 0.16–0.68 in
summer, 0.12–0.48 in autumn, and 0.08–0.56 in winter, respectively. The seasonal variation
of AOD had the peak value of 0.68 in summer over BTH. One of the most important factors
was the highest PBLH in summer. Secondly, the summer temperature and humidity were
high, which were conducive to the formation of aerosols [65]. The greatest values in other
seasons were 0.52, 0.48, and 0.44 in winter, autumn, and spring respectively, which were
located in the areas close to mega cities, e.g., Beijing and Tianjin. Compared to the historic
period, the junction of Inner Mongolia and Liaoning had a slightly larger increase than
other regions in the summer under two scenarios. The AOD showed the largest reductions
with the range of 0.02–0.08 in the RCP4.5 scenario over NC in autumn, especially in Hebei
and Henan Province. The spatial distributions of projected AOD under RCP8.5 were similar
to those under RCP4.5. It was noted that in winter, the changes of simulated AOD basically
demonstrated different spatial performance under two scenarios. AOD was projected
to decrease in the study region of NC excepted to BTH. However, the simulated AOD
performed an obvious increase in the whole NC in the RCP8.5 scenario, with a maximum
increase exceeding 0.06. This may be attributed to the decrease in precipitation in winter,
but high humidity is conducive to the formation of aerosols. We further compared the
seasonal differences of AOD between the RCP4.5 and RCP8.5 scenarios (bottom panel in
Figure 6). In RCP4.5, AOD was slightly less than that under the RCP8.5 in NC in spring
and summer, with a value of 0.02–0.04. Compared with RCP4.5, AOD in autumn showed
a minor increase in western NC but decreased in BTH under the RCP8.5. Importantly, in
winter, RCP8.5 could lead to an apparent increase of AOD in NC against RCP4.5, such as
in BTH and Henan province. That meant more serious pollution in winter in the RCP8.5
compared to that in the RCP4.5.

Figures 6 and 7 show the spatial distribution of PM2.5 in the two RCP scenarios and
their differences. It was found that the spatial distributions of PM2.5 concentration and
AOD were similar in the two RCP scenarios. The PM2.5 concentrations both demonstrated
the maximum in winter and the minimum in summer. This may be attributable to more
frequent rainfall in summer, which could remove PM2.5 [65]. The averaged PM2.5 concentra-
tion in most of the areas of NC were in the range of 10–100 µg·m−3 in spring and summer.
In autumn, there was a concentration of PM2.5 100–200 µg·m−3 in most regions. The aver-
aged concentration was 100–250 µg·m−3 in winter. This was due to the increased emission
derived from the heating winter, low PBL, and less precipitation [66,67]. The simulated
PM2.5 concentrations in NC were consistent with previous studies and corresponding to
the frequent occurrence of haze pollution in recent years [12,68].

In consideration of the difference between historic period and the future, PM2.5 levels
in the RCP4.5 are expected to be controlled well except for autumn PM2.5 concentrations
in BREC with an increase range of 4–12 µg·m−3. In winter, the largest reduction of PM2.5
concentrations with the range of 10–12 µg·m−3 were in Tianjin, Hebei, and Shandong
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provinces. Jiang et al. (2013) also showed the largest decreases in winter in NC, which
was based on GEOS–Chem models [69]. However, the degree of reduction was slightly
different. The large reduction in PM2.5 concentration in our simulation could be attributed
to the difference in emission reduction between the RCP and A1B scenarios and our higher
model resolution, which can better represent the oxidant environment and transportation
process. In the RCP8.5, the seasonal spatial distribution changes in spring and summer
were slightly similar to those in the RCP4.5. In autumn, there was an apparent reduction
in central Hebei, with values of 4–10 µg·m−3. Furthermore, PM2.5 increased by about
6–10 µg·m−3 in the coastal part of Hebei and Shanghai province. In winter, there was a
large increase mainly in the central area of NC, with values of 2–8 µg·m−3.
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There were also some points worth noting about the difference between the two sce-
narios. Compared to RCP4.5, the PM2.5 concentration in the RCP8.5 scenario at Shandong
province increased by 2–8 µg·m−3, whereas it decreased by 0–4 µg·m−3 in BTH in spring.
In autumn, the concentration of PM2.5 decreased in most of the regions of NC, especially in
Shandong in southern Hebei province, with values of 4–10 µg·m−3. In winter, the compar-
ison results revealed more PM2.5 concentrations in NC under the RCP8.5 scenario, with
the increase of 10–12 µg·m−3. Gao et al. (2021) also showed the largest increase of PM2.5
concentration in the RCP8.5 scenario over the NC region based on RAMS-CMAQ during
2045–2050 [17]. The predicted changes in the annual average concentration of PM2.5 and
AOD under RCP4.5 and RCP8.5 provided possible options for the control and reduction of
PM2.5 air pollution nationwide.



Remote Sens. 2021, 13, 3064 11 of 17

4.2. Projection of Meteorological Conditions

The previous study indicated that the meteorological elements, e.g., precipitation
and boundary layer height, were attributed to the interdecadal changes (or trends) of
regional air pollution in China [70]. For example, precipitation had a removing effect on
atmospheric pollution. PBLH was related to vertical mixing, which affects the dilution of
pollutants emitted near the ground through various interactions and feedback mechanisms.
In this section, we explored the seasonal changes of precipitation (Figure 8) and PBLH
(Figure 9) caused by the warming in the future and tried to find the connection between
meteorological elements and air pollutions.
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Precipitation in NC was mainly concentrated in summer due to the influence of
the East Asian monsoon, followed by autumn, spring, and winter. Compared to the
historic period, precipitation was projected to increase over all of NC in spring under
the two scenarios. It is noted that the greatest increases of precipitation were in summer,
with a value of 1.5 mm/day in BTH. On a regional scale, the changes in precipitation
responded relatively well to the pollution (Figures 6 and 7) in spring and summer. In
autumn, changes of precipitation both showed entire decreasing patterns. Under RCP4.5
and RCP8.5 scenarios, the overall precipitation increased in the entire region of NC in
winter, with values of 0.2–0.6 mm/day. The increase in winter pollutants under the RCP8.5
scenario (Figure 7) may be due to the insignificant increase in precipitation, but it provides
humidity conditions for air aerosols that are conducive to aerosol moisture absorption
growth, thereby increasing the concentration of PM2.5 [66].

A comparison of within-scenario results revealed that changes in the summer were
similar to those in spring, but the values were greater. There was decreased precipitation
in the range of 0.6–1.2 mm/day in southern Hebei and its surrounding regions. The result
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showed that the increase in relative humidity in winter under the RCP8.5 scenario caused
more serious pollution

The projected PBLH under the two RCP scenarios and their difference are shown in
Figure 9. The PBL is highest in summer and lowest in winter. The possible explanation is
that the higher solar radiation and heat flux in summer lead to stronger surface heating,
which in turn produces stronger turbulence and convection [71]. Compared to the historic
period, PBLH increased in most of NC except for the central region in spring under two
scenarios. In the summer, it is observed that most of the land areas of the NC domain
receive lower PBLH, especially in BTH, with decrement of 8–40 m. While in autumn, a
large increment of PBLH was found in basically the entire NC region. Correspondingly,
both the PM2.5 concentration and AOD in autumn decreased (Figures 6 and 7). In winter,
PBLH had undergone opposite changes under the two scenarios. It was mainly due to
the variations of turbulence processes induced by the different thermal states between
the two scenarios. RCP8.5 caused a decrease, which directly affected the distributions
and magnitudes of PM2.5 concentrations in NC along with PBLH changes. The difference
between the two scenarios revealed that PBLH decreased by 16–31 m in spring. However,
in summer and autumn, the PBLH increased in the RCP8.5 scenario compared with the
RCP4.5 scenario, with a range of 8–32 m. RCP8.5 could cause an obvious decrease in PBLH
in winter, with the maximum reduction of 48 m in southern Hebei and its surrounding
areas. It was found that the lower the local PBLH, the lower the turbulence intensity, which
is not conducive to the diffusion of pollutants.

5. Conclusions and Discussion

In this paper, WRF-Chem driven by the MEIC inventory was used to simulate the
seasonal changes of air pollution in NC in the RCP4.5 and RCP8.5 scenarios. The results of
the evaluations showed that WRF-Chem could capture the spatial distributions variations
of AOD at annual and seasonal temporal scales.

In the RCP4.5 and RCP8.5 scenarios, the projected spatial distributions of AOD were
similar, with the maximum in summer. The greatest concentration was located in BTH,
which averaged AOD peak values of 0.44, 0.68, 0.48, 0.52 across four seasons, respectively.
The maximum PM2.5 concentration was in winter, followed by autumn, summer, and
the lowest in spring, with values of 10–250 µg·m−3, 10–200 µg·m−3, 10–100 µg·m−3, and
10–100 µg·m−3, respectively. AOD and PM2.5 showed the great variation in autumn and
winter but weaker changes in spring and summer. In the two RCP scenarios, AOD showed
the maximum reduction in autumn compared with other seasons in BREC. In the RCP8.5,
AOD was effectively increased. A comparison between the changes in two scenarios
revealed that increased AOD was presented in the RCP8.5 pathway.

In the RCP4.5, the maximum decreased PM2.5 in the range of 2–12 µg·m−3 occurred in
winter. Compared to RCP4.5, there was a higher decline in autumn for RCP8.5, especially
in the coastal region, with values of 4–10 µg·m−3. However, there was more PM2.5 con-
centration in the range of 4–12 µg·m−3 in winter for RCP8.5 compared to RCP4.5, which
indicated heavy pollution while selecting a high emission pathway.

Meteorological conditions also had a large connection with the projection of air pol-
lution. Actually, the impact of meteorological conditions on air quality was not a single
one but rather the result of a combination of multiple factors. In autumn, precipitation
decreased, but PBLH increased in the two RCPs, which partly explained the decrease in
PM2.5 concentration and AOD in Hebei and the surrounding areas. In winter, the reduction
of PM2.5 and AOD in BERC could be affected by the increased precipitation and PBLH in
the RCP4.5. A high GHGs emission pathway induced decreased PBLH, which would be
further related to the increased air pollution through vertical mixing.

In summary, in the RCP8.5 scenario, the severe air pollution in NC was expected
to continue, especially in winter, but the situation was alleviated in the RCP4.5 scenario.
Our research provided a meaningful assessment of future emission scenarios. The RCP4.5
pathway probably improved air quality compared to that in the RCP8.5 scenario. Actually,
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the projection of air quality depended on the assumptions of future climate status and
emission scenarios, which had great uncertainties. Nevertheless, this study assessed the
impact of different scenarios on air pollution, which would help to guide the development
of emission control strategies.
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