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Abstract: Shoreline change analysis is an important environmental monitoring tool for evaluating
coastal exposure to erosion hazards, particularly for vulnerable habitats such as coastal wetlands
where habitat loss is problematic world-wide. The increasing availability of high-resolution satellite
imagery and emerging developments in analysis techniques support the implementation of these data
into shoreline monitoring. Geospatial shoreline data created from a semi-automated methodology
using WorldView (WV) satellite data between 2013 and 2020 were compared to contemporaneous
field-surveyed Global Position System (GPS) data. WV-derived shorelines were found to have a mean
difference of 2 ± 0.08 m of GPS data, but accuracy decreased at high-wave energy shorelines that
were unvegetated, bordered by sandy beach or semi-submergent sand bars. Shoreline change rates
calculated from WV imagery were comparable to those calculated from GPS surveys and geospatial
data derived from aerial remote sensing but tended to overestimate shoreline erosion at highly
erosive locations (greater than 2 m yr−1). High-resolution satellite imagery can increase the spatial
scale-range of shoreline change monitoring, provide rapid response to estimate impacts of coastal
erosion, and reduce cost of labor-intensive practices.
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1. Introduction

Coastal wetlands serve as a natural barrier between marine and terrestrial habitats
and provide essential ecosystem services such as fish and wildlife habitat, carbon seques-
tration, and natural flood control for upland areas [1,2]. External forcing from sea-level
rise, storms, and anthropogenic modifications [3,4] create highly dynamic conditions for
coastal wetland evolution, often causing wetland loss through shoreline erosion, interior
peat collapse, and submergence. Shoreline erosion is a primary cause of wetland loss in
many parts of the world [5] and erosion has been linked to wind-driven waves, sediment
availability and delivery, boat traffic, and sea level rise [6–10]. Changes in sea level, sedi-
ment delivery, and storm frequency and intensity in coastal areas due to climate and other
environmental changes increases the threat of these hazards on wetland survival [11,12].
Environmental monitoring and assessment are critical for detecting the impacts of en-
vironmental change and developing adaptative management strategies [11,13]. This is
particularly true for coastal areas where erosion hazards are threatening critical habitats
such as coastal wetlands.

Shoreline change analysis (SCA) is a common monitoring procedure for evaluating
coastline dynamics and the vulnerability of communities and habitats to erosion hazards,
such as sea level rise, storms, and anthropogenic modifications [14–16]. SCA involves the
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repeated measurement of shoreline position over time and estimating the rate of erosion or
accretion based on movement trends over time. The most common method is to calculate
the slope of the linear trend of distance against time using ordinary least squares [17]. SCA
relies on consistency within two critical elements: identification of the shoreline and how
the position is mapped. A shoreline is defined as the boundary between land and water,
but because that boundary may be partial or gradual, mapping consistency requires the use
of a shoreline proxy [18]. For sandy beach environments, a common practice is to identify
the shoreline position based on elevation and a tidal datum, such as mean high water.
Other proxies may be the high water line, wet-dry line, cliff base or top, or low water line.
For marsh shorelines, many of the water line features are obscured by vegetation, therefore
the outer edge of the vegetation is dubbed the “apparent shoreline” [19,20]. As with many
shoreline proxies, boundary delineation is influenced by ambiguity and interpretation;
however, the water–vegetation boundary can be identified both in the field and from
remotely sensed data and, therefore, provides a consistent proxy for wetland shoreline
change analyses.

Modern shoreline position is determined from several different types of source data,
including field surveys and remote sensing [21]. One of the primary modern sources of
shoreline data is laser altimetry, such as Light Detection and Ranging (lidar), where an
elevation proxy is identified to delineate the shoreline position [22,23]. Though lidar has
been used to map shorelines for coastal wetlands [24], often laser altimeter data are not
available or the accuracy is limited for salt marsh shorelines due to poor laser penetration
through the dense vegetation [25–27]. Additionally, lidar collection times are irregular
or focused on a specific episodic event, such as for post-storm assessment, consequently
making it unreliable for regular monitoring of shorelines in coastal wetland habitats. Aerial
imagery is another primary source for mapping wetland shoreline position since it is col-
lected semi-regularly (approximately every 2–3 years for most coastal areas in the United
States). The disadvantage of aerial imagery is that each image covers a small area and is
collected along a flight path, thereby adjacent images may be collected on considerably
different days or tidal cycles impacting data consistency [28]. This inconsistency challenges
automated procedures to delineate the shoreline position (typically the wet-dry line), mak-
ing it necessary to manually map the shoreline boundary by digitizing within Geographic
Information System (GIS) software and manually correcting for tidal stages [22,29]. Manual
digitization of shorelines is costly, time and labor intensive, but continues to be a standard
for modern shoreline mapping [29,30].

Advances in remote sensing allow for pixel and object-based classifications of satellite
imagery to extract shoreline features and previous studies have used satellite imagery to
extract shoreline positions using various methods [31–35], however most of these satellite-
based studies focused on beach environments. Maglione et al. [36] developed a method for
extracting estuarine shorelines using high-resolution (<2 m spatial resolution) WorldView
(WV) imagery (Maxar Technologies, Inc.) but did not evaluate or quantify the accuracy of
the delineated shorelines against other available shoreline data. High-resolution satellite
imagery could be a valuable source of data for shoreline delineation due to its regular return
interval for repeated collection, consistent spectral characteristics, high spatial resolution,
and broad-scale coverage. The combination of these factors could make high-resolution
satellite imagery more cost effective and efficient for high-frequency environmental moni-
toring of shoreline change than aerial imagery or lidar.

With the introduction of high-resolution satellite imagery with frequent return inter-
vals, satellite-derived wetland shoreline data could provide the same spatial and temporal
detail as other sources of data, including field-based Global Positioning System (GPS) or
aerial imagery-derived shoreline data, but gain greater spatial coverage and reduce the
cost of shoreline monitoring by either replacing GPS field surveys or reducing the necessity
of survey frequency. In this study, we used a semi-automated procedure to map wetland
shorelines from WV imagery from 2013 to 2020 and compared them to contemporaneous
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shoreline data from GPS and digitized aerial imagery for study sites at the Grand Bay
National Estuarine Research Reserve, Moss Point, MS, USA.

2. Materials and Methods
2.1. Study Area

In 1972, the Coastal Zone Management Act was passed that established the National
Estuarine Research Reserve (NERR) system in the United States (US). The NERR system
was designed to facilitate long-term research and monitoring, education, and stewardship
of estuarine habitats [37]. In 1999, the Grand Bay NERR (GNDNERR), located in the
Northern Gulf of Mexico in the state of Mississippi (Figure 1), was designated through a
partnership between the National Oceanic and Atmospheric Administration (NOAA) and
the Mississippi Department of Marine Resources [38]. The GNDNERR also overlaps por-
tions of the Grand Bay National Wildlife Refuge, located within Alabama and Mississippi.
The GNDNERR is approximately 73 km2 of relatively undisturbed estuarine habitat and
contains a variety of habitats such as wet pine savanna, maritime forests, tidal creeks, salt
pans, wetlands, bayous, and bays [39]. Grand Bay has diurnal astronomical tides (microti-
dal with 0.42 m average amplitude) and experiences wind-driven water level fluctuations.
The shoreline of Grand Bay is largely vegetated by saltmarsh grasses Juncus roemerianus
Scheele, Spartina alterniflora Loisel., and Spartina patens (Aiton) Muhl. with some sandy
shorelines along highly dynamic margins.
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Figure 1. Map of the Grand Bay National Estuarine Research Reserve (red boundary line) with white
stars depicting the location of shoreline erosion study sites (a). The inset map (b) shows the location
of the study region on the border of Mississippi and Alabama, USA, in the northern Gulf of Mexico.
Sites names refer to: BHM = Bayou Heron Mouth; MBN, MBW, MBS = Middle Bay North, West, and
South, respectively; GBE = Grand Batture East; BSI = Bird Island; SPAL = North Jose Bay; MET = Met
Station Island; PACN, PACM, PACS = Point aux Chenes North, Middle, and South, respectively. Data
sources: Shoreline from © OpenStreetMap contributors (https://www.openstreetmap.org/ accessed
on 30 October 2018). Image basemap from © Maxar Technologies, 2020 (https://www.maxar.com/,
accessed on 28 July 2021). All rights reserved.

https://www.openstreetmap.org/
https://www.maxar.com/


Remote Sens. 2021, 13, 3030 4 of 19

Wetland loss in the form of shoreline erosion is a pressing management concern at
GNDNERR [38,39] and within the northern Gulf of Mexico in general [16,40,41]. Shorelines
in some areas of GNDNERR are eroding more than 2 m per year [42]. With a relative sea
level rise of 0.41 cm yr−1 [43], the erosion rates are higher than would be expected based
on wetland retreat from sea level rise alone. Exposure to wind-driven waves and reduced
sediment supply may all contribute to the high shoreline erosion rates. Wetland shoreline
position at various sites within the reserve have been monitored using GPS field surveys
on a semi-quarterly basis since 2013 (Figure 1 and Table 1). Sites are generally named after
their geographic location, while a few are associated with monitoring stations and include
the following: Bayou Heron Mouth (BHM); Middle Bay North, West, and South (MBN,
MBW, and MBS, respectively); Grand Batture East (GBE); Bird Island (BSI); North Jose Bay,
also known as the Spartina Sentinel Site (SPAL); Met Station Island (MET); and Point aux
Chenes North, Middle, and South (PACN, PACM, PACS, respectively). The goal of the
monitoring program is to understand wetland shoreline dynamics at a finer spatiotemporal
scale than could be done with large-scale remote sensing techniques. Due to the labor-
intensive nature of field-based surveys, the current study focuses on eleven field sites
with different shoreline types and wind-wave exposure and explores a semi-automated
technique to map wetland shorelines using WorldView satellite imagery.

Table 1. Site location, vegetation, elevation, and sedimentary characteristics for the eleven Grand Bay National Estuarine
Research Reserve shoreline erosion study sites.

Site 1 X Coordinate 2 Y Coordinate 2 Species Present 3 Scarp Height
(m)

Marsh
Slope

Nearshore
Slope

Marsh
Elevation (m)

Shoreline
Sediment Type 4

BHM 365771.947 3361950.554 SA, JR 0.26 ± 0.07 0.05 ± 0.02 0.2 ± 0.05 0.25 ± 0.02 M
MBN 364948.644 3362581.497 SA, JR 0.29 ± 0.02 0.04 ± 0.01 0.16 ± 0.01 0.28 ± 0.02 M
MBW 364397.654 3361443.661 SA, JR 0.44 ± 0.03 0.04 ± 0.01 0.13 ± 0.02 0.23 ± 0.02 M
MBS 365652.416 3360740.168 SA 0.32 ± 0.12 0.02 ± 0.01 0.15 ± 0.04 0.36 ± 0.03 M
GBE 366084.354 3358576.051 SA, SP, BF 0.15 ± 0.03 0.08 ± 0.02 0.15 ± 0.06 0.49 ± 0.06 Ss, M
BSI 364642.111 3357926.278 SA, SP 0.15 ± 0.05 0.12 ± 0.03 0.08 ± 0.03 0.46 ± 0.05 Ms, Ss

SPAL 363916.729 3359351.988 SA, JR 0.54 ± 0.04 0.05 ± 0.01 0.11 ± 0.04 0.34 ± 0.02 M
MET 363621.959 3358939.945 SA 0.32 ± 0.04 0.07 ± 0.04 0.17 ± 0.05 0.33 ± 0.02 Ms
PACN 361468.093 3359292.170 SA 0.27 ± 0.02 0.01 ± 0.01 0.25 ± 0.08 0.5 ± 0.01 M
PACM 360722.683 3356944.082 SA, SP 0.16 ± 0.03 0.01 ± 0.01 0.11 ± 0.1 0.49 ± 0.02 M, S
PACS 359405.655 3355908.173 SA 0.18 ± 0.05 0.08 ± 0.02 0.24 ± 0.19 0.46 ± 0.05 S

1 BHM = Bayou Heron Mouth; MBN, MBW, MBS = Middle Bay North, West, and South, respectively; GBE = Grand Batture East; BSI = Bird
Island; SPAL = North Jose Bay; MET = Met Station Island; PACN, PACM, PACS = Point aux Chenes North, Middle, and South, respectively.
2 Coordinates in the Universal Transverse Mercator Zone 16 North referenced to the North American datum of 1983 (UTM 16N NAD83).
3 Species codes: SA (Spartina alterniflora Loisel), SP (Spartina patens [Aiton] Muhl), JR (Juncus roemerianus Scheele), BF (Borrichia frutescens [L]
DC). 4 Sediment codes: M (fine grained/mud), S (sand), Ms (mud with shells or shell hash), Ss (sand with shells or shell hash).

2.2. Data

WV-derived shorelines (WVS) were compared to vector digital shoreline data from
two other data sources: GPS-based shorelines (GPSS) and aerial imagery-derived shorelines
(AIS). Details on data collection and vectorization are included in the following sections for
all three shoreline data sets.

2.2.1. GPS Data

Since 2013, shoreline positions have been surveyed using real-time kinematic (RTK)
GPS at eleven locations in GNDNERR to quantify shoreline change rates. GPS data were
collected using a Trimble R8 Model 3 Global Navigation Satellite System (GNSS) and
TSC3 data collector from 2013 to 2018, or a Trimble R10 GNSS system and TSC3 data
collector from 2018 to 2020. Each were attached onto a 2 m graphite rod with a mounted
foot to obtain both horizontal and vertical shoreline position. The positional accuracy of
Trimble R8 Model 3 GPS points was ±10 mm + 1 parts per million (ppm) root mean square
(RMS) horizontal error and ±20 mm + 1 ppm RMS vertical error [44]. The horizontal
error of the Trimble R10 GPS points was ±8 mm + 0.5 ppm RMS and vertical error was
±15 mm + 0.5 ppm RMS [45]. The GPS points were collected roughly 5 to 10 m apart
along the vegetation-water boundary, which typically represented the top of an erosional
scarp; where an erosional scarp was not visible, the most suitable shoreline position based
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on dense shoreline vegetation is mapped. After field data collection, the GPS data were
imported into ArcGIS software by Esri [46] as points. Points were connected into lines
to create a polyline feature class using the ArcGIS tool Points to Line within the Data
Management toolbox for each site and year surveyed.

During May of 2021, additional field RTK GPS and site descriptive data were collected
at each site to measure salt marsh platform elevations and estimate platform slope. Between
three to five cross-shore transects were selected at each study site depending on the
shoreline length (extra transects were collected at sites with longer shorelines). Along each
transect, multiple GPS points were surveyed, including two locations in the marsh interior,
at the marsh-estuary shoreline (the scarp crest, if present), and two points in the nearshore
(one point at the scarp toe, if present). General site descriptions were also noted, including
approximate percent cover of vegetation species present at the marsh shoreline using
the 1 m quadrat technique [47] and nearshore sediment properties (mud/fine-grained
sediments, sand, or presence of shells). These data provided information regarding the
cross-shore profile, including the marsh platform elevation and slope, which were used
to correct satellite-derived shoreline features for water inundation distance (described in
Section 2.2.1. WorldView-derived shoreline accuracy and Equation (3)).

2.2.2. Aerial Imagery-Derived Shoreline Data

Orthoimagery from the National Agriculture Imagery Program (NAIP) of the U.S.
Department of Agriculture was downloaded via the U.S. Geological Survey (USGS) Earth
Explorer (https://earthexplorer.usgs.gov/, accessed on 23 February 2021) for available
dates between 2013 and 2020. NAIP collected new imagery every 2 to 3 years, with each
state following on a cycle. Since GNDNERR is located along the border of two states,
parts of the reserve are surveyed more frequently. A total of five NAIP acquisition dates
were identified to have coincident spatial and temporal coverage as WV or GPS collection
dates for the study sites (Table 2). NAIP imagery has a 1 m ground sample distance with a
ground positional accuracy of 5 m. Shoreline position was identified using the land/water
boundary as a shoreline proxy for vegetated shorelines or the wet/dry line for whenever
beaches were present seaward of the marsh. Shoreline boundaries were digitized at a scale
of 1:1,500 from natural color imagery [48].

Table 2. The dates of collection for WorldView satellite imagery, Real-time Kinematic Global Posi-
tioning System (GPS) field-surveys, and aerial imagery shoreline (AIS) data. The remote sensing data
were paired by year with the closest available GPS field survey date.

Year WorldView Date GPS Date NAIP Date

2013 17 December 2013 19 September 2013
2014 14 November 2014 17 November 2014 15 October 2014
2015 3 May 2015 11 June 2015
2016 2 July 2016 12 May 2016 24 June 2016
2017 14 May 2017 1 May 2017

9 August 2017 14 August 2017
30 December 2017 8 November 2017

2018 23 June 2018 9 May 2018
10 December 2018 4 December 2018

2019 16 November 2019 19 June 2019 16 November 2019
2020 17 November 2020 13 November 2020 16 June 2020

2.2.3. WorldView-Derived Shoreline Data

High-resolution satellite imagery was obtained for collection dates that overlap the
available GPSS and AIS data from either of the two WV satellites with color and infrared
spectrum data (WorldView-2 [WV2] or WorldView-3 [WV3] © Maxar Technologies, 2020).
Briefly, both WV satellites collect high-spatial resolution imagery (1.84 and 1.24 m, respec-
tively) in eight spectral bands, including five bands for visible wavelengths (coastal blue,
blue, yellow, green, and red bands) and three bands for infrared wavelengths (red-edge

https://earthexplorer.usgs.gov/
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and two near-infrared bands). A total of ten dated images between 2013 and 2020 were
selected that provided either complete or partially complete coverage of the study area and
were collected as close to the date of the GPS field-based shoreline as possible (Table 2). If
the closest dated WorldView image had extensive clouds covering the shoreline or minimal
study area coverage, the next closest WorldView image date was selected. At least one
image was obtained for each year, except for 2017 where three images were selected. The
three images in 2017 were collected in May, August, and December and provided additional
information on how seasonality might impact automatic shoreline extraction methodology.
Images were radiometrically and atmospherically corrected and then pansharpened using
ERDAS IMAGINE 2020 (version 16.6.0) to obtain measures of ground reflectance.

To improve comparisons between WVS and AIS, images were automatically co-
registered to high-resolution aerial imagery (NAIP) using AutoSync Workstation toolbox in
ERDAS Imagine. First, an NAIP image mosaic was created for an extent larger than the WV
image coverage. Autosync generates automatic tie points between two images, in this case
the WV and NAIP image. The tie points coincident on both images were used to adjust the
WV image to the corresponding location on the NAIP. Tie points with an error value greater
than 1 m were removed. The co-registration of the WV imagery improved the spatial
accuracy of the WV imagery to less than 3.5 m and allowed for the direct comparison of
WV and NAIP-derived shoreline data.

To generate vector shorelines from WV images, we modified the methodology de-
scribed by Maglione et al. [36]. All WV images were classified into binary land-water
rasters using tools within ArcGIS. First, normalized difference vegetation index (NDVI)
was calculated using WV band 5 in the visible red spectrum (RED) and band 7 in the near
infrared spectrum (NIR1) using the following Formula (1):

NDVI =
NIR1 − RED
NIR1 + RED

(1)

NDVI is used to estimate the density of vegetation, therefore it distinguishes between
vegetation and water or bare soil [49]. Since wetland shorelines in the study area are
densely vegetated with salt marsh grasses, the NDVI provided the best approximation of
the shoreline position. Maglione et al. [36] provide the following NDVI values for land-
water classification: vegetation was classified as high values (above 0.2), water represents
low values (usually less than −0.2), and soil somewhere in between −0.2 and 0.2. However,
the exact threshold used to identify the shoreline may differ depending on the type of
wetland, shoreline, and image acquisition parameters. This procedure worked well for
vegetated shorelines but was inadequate in areas where sandy or shell beaches were present
seaward of the salt marsh, a feature of marsh adjacent to former barrier islands and with
high wave energy. Sandy beaches in this region tend to be bright white from high quartz
content [50]. To improve the shoreline classification for these beach shorelines, we selected
a static threshold (5000) using band 8 (NIR2), which shows high reflectance for the white
sand and shell beach. The “beach” classification was merged with the NDVI vegetation
layer to create a final binary land-water raster. Several tools within ArcGIS were used
to clean raster boundaries and produce a vector shoreline; if not otherwise specified, the
default parameters were used. The raster was generalized using Expand and Shrink tools
(using 1 cell) to remove any isolated and extraneous pixels, then filtered with Boundary
Clean (Spatial Analyst toolbox) to smooth edges. The filtered raster was then converted into
polygons (Raster to Polygon tool in Conversion toolbox) and polylines (Polygon to Polyline
in the Data Management toolbox). The polylines were smoothed using the Polynomial
Approximation with Exponential Kernel (PAEK) algorithm and a 2-m smoothing filter
to reduce the cell structured appearance. Sometimes multiple shorelines were identified,
including interior marsh ponds or streams, or shorelines were located outside the study
area (due to a larger image extent); these extraneous shoreline vectors were manually
deleted to produce a clean estuary-marsh shoreline geospatial data set.
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2.3. Data Analysis

Several analysis techniques were selected to evaluate the accuracy of the WVS to field
measurements and determine how well WVS replicated other methods for calculating short-
term shoreline change rates. Most of these analyses were conducted in ArcGIS [46] and
R [51], utilizing a package called Analyzing Moving Boundaries Using R (AMBUR) [52].

2.3.1. WorldView-Derived Shoreline Accuracy

Since field based GPSS is the most accurate available shoreline position data, we
compared the WVS data to GPSS to estimate error in the WVS methodology. Comparisons
were made on WVS and GPSS data collected as close together as possible (Table 2). Most
comparisons were made on data collected less than two months apart to reduce error
associated with time between data collection, such as changes in shoreline position and
seasonal tidal cycles. The exception was the 2019 data sets which were approximately five
months apart but were the only available data for that year.

Two methods were used to estimate the WVS error based on GPSS measurements.
The first was to calculate the distance between the GPSS points and closest WVS vector (the
WVS could be either landward or seaward of the GPSS point, thereby always providing
a positive value) (Figure 2a). This was performed in ArcGIS using Near Analysis which
measures the distance to the closest feature between two data sets. Distances are calculated
in meters based on the closest available node on the WVS vector at any angle from the
GPS point.
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Figure 2. Differences between shoreline from WorldView satellite imagery and field-based surveys
from Real-time Kinematic Global Positioning System (GPS) are estimated in two ways: (a) the
distance between the GPS point and the nearest WV shoreline vector, and (b) the distance between
the GPS approximated shoreline (by connecting the points) and the WVS using the intersection
along transects.

The second method was to connect the GPSS points to create vector shorelines in
ArcGIS, then calculate the distance between the GPSS and WVS along a cross-shore transect
(Figure 2b). This calculation was performed using AMBUR [52]. AMBUR is a package
within the statistical program R that calculates the distance and rate of change for shorelines
using a cross-shore transect-based method. The program generates transects by connecting
between offshore and onshore baselines parallel to the shoreline at a set interval distance
(for our analyses, we chose 10 m increments between transects). We chose 10 m transect
increments to coincide with the spatial resolution of the GPS data, which were collected
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approximately 5 to 10 m apart. The program generates points where the transects intersect
the shorelines. The distances between the points are calculated to generate shoreline
movement distances and rates of change for each transect. Several shoreline change
statistics are calculated by AMBUR, but this analysis used the net distance of change (∆x).
The ∆x is the distance in meters (m) between the earliest and latest shoreline and provided
an estimate of the difference between the GPSS and WVS pairs for each year (the distance
between the position along the transect).

Shoreline change rates calculated using only GPSS data were compared with WVS- and
AIS-only rates to determine if WVS provided a comparable analysis in to more commonly
used remote sensing techniques. Shoreline change rates (also called the linear regression
rate or shoreline rate-of-change) were also calculated using AMBUR. The shoreline change
rate (b̂) is the slope of the best fit line of the linear regression for shoreline distance against
calendar date in meters per year (m yr−1). A negative b̂ value indicate erosion, while a
positive value indicate accretion. Shoreline change statistics also include a 95% confidence
interval (c.i.) used to estimate the confidence in the rate of change statistic. We used the
b̂ ± c.i. to create shoreline change categories. If both b̂ + c.i. and b̂ – c.i. were negative,
the shoreline was classified as eroding; if both were positive, the shoreline was classified
as accreting; if one was positive and another negative, then the general trend could not
be ascertained (uncertainty on whether the shoreline was accreting or eroding) and was
therefore classified as stable or indeterminate.

In addition, b̂ from GPSS data (b̂g) were used to correct the ∆x estimate for errors due
to changes in shoreline position between the GPSS and WVS collection dates. To correct
the data, we first used AMBUR to estimate b̂g using all available dated GPSS vector data
from 2013 to 2020. This provided an average shoreline change rate. The fraction of time
between GPSS and WVS date of collection multiplied by b̂g provided an estimate of how
much that shoreline would have moved between dates. This value was used to adjust the
calculated ∆x and account for the possible change in shoreline position between sample
dates, using the following Formula (2):

∆xt = ∆x + b̂g ∗ ∆t (2)

where ∆t is the time difference between the GPSS and WVS surveys (in fraction of the year)
and b̂g is the shoreline change rate calculated using GPSS field surveys in AMBUR.

In addition, water level can impact marsh shoreline detection by either obscuring
the shoreline (inundating the marsh when water level is high) or confusing detection
by exposing nearshore vegetation, such as sparse marsh grasses or seagrass blades. We
could find no simple method for correcting shoreline vector position for water level,
so we developed the following technique, modified from methods developed for beach
environments [53]. If water level was above the marsh platform elevation (determined as
the mean of the marsh platform elevation data, data collection described in Section 2.2.1), a
simple correction was applied to adjust the horizontal difference between the two shoreline
vectors using the following Equation (3):

∆xc = ∆x +
h − me

ms
, (3)

where ∆xc is the tidally corrected difference between GPSS and WVS, ∆x is the uncorrected
difference, h is the water level height at the time of image collection, me is the elevation of
the marsh platform, and ms is the marsh slope. To obtain an estimate of the marsh platform
slope (ms), we plotted the field collected GPS elevations against the distance from the
shoreline, calculated the linear trend slope (Figure 3). There was a great deal of variability
in marsh slope as shown by the low R2 value (0.26) and the site-based slope calculations
that range from 0.01 to 0.12 (Table 1) with a mean of 0.06 ± 0.03. However, we chose to use
0.07 as a conservative estimate of marsh slope for the study region rather than spatially
resolved GPS elevations from each study site to reduce the possibility of over-correcting
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the shoreline position for two reasons: (1) marsh tidal flooding has many properties that
influence the inundation distance other than slope that would impede water flow which
cannot be accounted for, such as surface roughness, sediment type, and vegetation, and
(2) if the marsh vegetation canopy is above the water level surface, this procedure could
classify it as “land” despite surface inundation based on our method of using NDVI, which
detects vegetation.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 3. Scatter plot of marsh platform elevations against distance from the shoreline (shoreline is 

located at 0) with the least-squares linear regression line (blue solid line), indicating marsh plat-

form slope is approximately 0.07. Red dashed lines depict the 95% prediction interval and grey-

shaded region show the 95% confidence interval. NAVD88 = North American Vertical Datum of 

1988. Site names refer to: BHM = Bayou Heron Mouth; MBN, MBW, MBS = Middle Bay North, 

West, and South, respectively; GBE = Grand Batture East; BSI = Bird Island; SPAL = North Jose 

Bay; MET = Met Station Island; PACN, PACM, PACS = Point aux Chenes North, Middle, and 

South, respectively. 

2.3.2. Shoreline Change Comparisons 

SCA for WVS was applied to the full study area of GNDNERR using AMBUR. The 

linear rate of change (LRR) statistic was selected to provide the shoreline rate of change. 

Cross-shore transects that were located within the eleven shoreline erosion study sites 

were classified with the study site name. Additionally, SCA from WVS data were com-

pared to rates from the two other methodologies (AIS and GPSS data) to determine 

whether WVS provided a cost-effective and repeatable methodology for calculating shore-

line rates of change. It is important to note that full WVS were created for each WV image 

date for the entire GNDNERR study area, whereas the GPSS and AIS were available only 

for the eleven study sites. This is due to availability, as well as the time- and cost-intensive 

nature of on-the-ground or manual-digitized shorelines. For these analyses, three sets of 

shoreline change rates ( �̂� ) were calculated using AMBUR (described in Section 2.3.1 

WorldView-derived shoreline accuracy) using exclusively WVS (𝑏�̂�), GPSS (𝑏�̂�), and AIS (𝑏�̂�) 

vector data dated from 2013 to 2020 (2014 to 2020 for AIS data). Shoreline change values 

using WVS and AIS data sets were compared to GPSS for each transect within the study 

sites using absolute difference and Bland–Altman plots [54–56]. Bland–Altman plots are 

a data plotting method that is used to analyze the agreement between two data sets. By 

comparing 𝑏�̂�  and 𝑏�̂�  to 𝑏�̂� , we are evaluating whether shorelines derived from the 

semi-automated method can yield similar results as field data (presumably the most ac-

curate method) and the traditional method of manual digitization of shorelines from aerial 

imagery. 

3. Results 

Figure 3. Scatter plot of marsh platform elevations against distance from the shoreline (shoreline is
located at 0) with the least-squares linear regression line (blue solid line), indicating marsh platform
slope is approximately 0.07. Red dashed lines depict the 95% prediction interval and grey-shaded
region show the 95% confidence interval. NAVD88 = North American Vertical Datum of 1988. Site
names refer to: BHM = Bayou Heron Mouth; MBN, MBW, MBS = Middle Bay North, West, and
South, respectively; GBE = Grand Batture East; BSI = Bird Island; SPAL = North Jose Bay; MET = Met
Station Island; PACN, PACM, PACS = Point aux Chenes North, Middle, and South, respectively.

The two methods provided different ways of evaluating the accuracy of the WVS in
comparison to the best available data (GPSS). The first method provided straightforward
differences between field measurements and WVS estimates. The second allowed for
temporal adjustments to account for shoreline change between sample dates and examine
the impact of water level on WVS estimates. By using two methods (point-based and
transect-based) and applying time difference and water level corrections (∆xtc), we provide
a robust evaluation of the WVS methodology in comparison to GPSS data. Data were
summarized by calculating the mean ± 95% c.i. by study site and date for each point or
transect (depending on method used).

2.3.2. Shoreline Change Comparisons

SCA for WVS was applied to the full study area of GNDNERR using AMBUR. The
linear rate of change (LRR) statistic was selected to provide the shoreline rate of change.
Cross-shore transects that were located within the eleven shoreline erosion study sites were
classified with the study site name. Additionally, SCA from WVS data were compared
to rates from the two other methodologies (AIS and GPSS data) to determine whether
WVS provided a cost-effective and repeatable methodology for calculating shoreline rates
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of change. It is important to note that full WVS were created for each WV image date
for the entire GNDNERR study area, whereas the GPSS and AIS were available only for
the eleven study sites. This is due to availability, as well as the time- and cost-intensive
nature of on-the-ground or manual-digitized shorelines. For these analyses, three sets
of shoreline change rates (b̂) were calculated using AMBUR (described in Section 2.3.1
WorldView-derived shoreline accuracy) using exclusively WVS (b̂w), GPSS (b̂g), and AIS
(b̂a) vector data dated from 2013 to 2020 (2014 to 2020 for AIS data). Shoreline change
values using WVS and AIS data sets were compared to GPSS for each transect within
the study sites using absolute difference and Bland–Altman plots [54–56]. Bland–Altman
plots are a data plotting method that is used to analyze the agreement between two data
sets. By comparing b̂w and b̂a to b̂g, we are evaluating whether shorelines derived from
the semi-automated method can yield similar results as field data (presumably the most
accurate method) and the traditional method of manual digitization of shorelines from
aerial imagery.

3. Results

The WV-derived shoreline procedure described in the Section 2.2.3 was applied to
ten WV images. We visually compared shoreline vectors to the temporally coincident WV
imagery displayed as both natural color and color infrared and discovered the value of
0.21 consistently provided an adequate representation of the shoreline (vegetation-water
boundary). The accuracy of an automated technique for mapping saltmarsh shoreline
position using WV satellite data was quantified by comparing WV-derived shorelines
to field-collected GPS shoreline data using both a point- and transect-based technique.
Next, we looked at shoreline change rates from all three methods to evaluate whether
satellite-based shorelines could be used for future short- and long-term monitoring of
wetland shoreline change.

3.1. WVS and GPSS Comparisons

WVS accuracy was estimated by calculating the mean distance between GPSS points
collected during a similar time period as the WV image for eleven sites throughout the
study area. The mean difference between GPSS points and WVS position was 2.03 ± 0.08 m,
but ranged from 0 to 20 m. The mean difference showed large variability between study
sites, ranging from 0.70 ± 0.06 to 4.71 ± 0.52 m (Table 3). Sites that were the most accurate
in comparison to GPS measurements include SPAL and MBS, both with less than 1 m
error between WV and GPS shore position. The shoreline of both these sites have a visible
scarp that is vegetated with dense marsh grasses (20–60% estimated percent cover of
Spartina alterniflora) and nearshore sediments are fine-grained mud. Sites with a difference
of greater than 2 m between GPSS and WVS were PACS, BSI, and GBE, all sites with sandy
nearshore sediment type. To calculate the mean for the transect-based method, we first
took the absolute value in order to accurately account for both negative or positive values
(seaward or landward data).

To account for temporal inconsistencies associated with the date of imagery capture,
mean distance between GPS point data and WVS were also calculated for each date-paired
data set. We evaluated ten image dates, one for each year from 2013 to 2020, with three
different data sets in 2017. The mean differences between WVS and GPSS measurements
were less variable between years, ranging from 1 to 3 m (Table 4). Water level varied
between WV image dates from −0.34 to 0.54 m North American Vertical Datum of 1988
(NAVD88) and represented all four seasons. The net difference between GPSS and WVS
ranged from 1.4 ± 0.18 to 3.16 ± 0.34 m. The 2014 data had the lowest error with only
4 days between image date and GPS data collection, and water levels below the average
marsh platform elevation. The highest error between the WVS and GPSS occurred with
the August 2017 image, where the dates between WV and GPS collection were only five
days apart, but the image was collected during higher water level (0.54 m NAVD). Overall
differences between GPSS and WVS were small, even when uncorrected for water level
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variations and temporal differences between image and field data collection dates, well
within the image geolocation accuracy (<3.5 m).

Table 3. Mean difference between Global Positioning System shorelines (GPSS) and WorldView-
derived shorelines (WVS) (∆x) by study site using both a point and transect-based method. Transect
data were corrected for differences between collection date (∆xt) and water level (∆xtw). N is the
number of points or transects for each study site.

Points Transects

Site N ∆x N ∆x ∆xt ∆xtw

BHM 396 1.66 ± 0.15 177 1.79 ± 0.3 1.68 ± 0.3 1.53 ± 0.3
BSI 555 3.82 ± 0.36 278 1.27 ± 0.13 1.18 ± 0.13 0.93 ± 0.11

GBE 777 3.22 ± 0.22 321 5.22 ± 0.59 4.81 ± 0.58 4.75 ± 0.58
MBN 332 1.43 ± 0.11 91 6.69 ± 1.34 6.08 ± 1.39 5.96 ± 1.36
MBS 323 0.93 ± 0.09 99 4.1 ± 0.72 3.9 ± 0.69 3.83 ± 0.68
MBW 311 1.17 ± 0.08 103 6.07 ± 1.28 5.55 ± 1.28 5.46 ± 1.25
MET 529 1.26 ± 0.13 130 1.57 ± 0.43 1.43 ± 0.44 1.38 ± 0.44

PACM 252 1.23 ± 0.19 88 4.08 ± 1.08 4.03 ± 1.08 3.93 ± 1.07
PACN 497 0.92 ± 0.07 122 2.74 ± 0.62 2.65 ± 0.62 2.52 ± 0.6
PACS 264 4.71 ± 0.52 91 0.96 ± 0.13 0.91 ± 0.14 0.72 ± 0.12
SPAL 372 0.7 ± 0.06 137 1.79 ± 0.44 1.63 ± 0.41 1.64 ± 0.41

Table 4. Mean difference between Global Positioning System shorelines (GPSS) and WorldView-
derived shorelines (WVS) (∆x) by year using both a point and transect-based method. Transect data
were corrected for differences between collection date (∆xt) and water level (∆xtw). N is the number
of points or transects for each satellite image date.

Points Transects

Year N ∆x N ∆x ∆xt ∆xtw

2013 486 2.54 ± 0.26 115 2.83 ± 0.77 2.6 ± 0.76 2.39 ± 0.73
2014 585 1.4 ± 0.18 161 3.85 ± 0.76 3.62 ± 0.75 3.54 ± 0.74
2015 452 1.43 ± 0.11 139 3.17 ± 0.8 2.93 ± 0.79 2.63 ± 0.75
2016 284 1.44 ± 0.22 105 3.21 ± 0.81 3.02 ± 0.8 2.67 ± 0.77
2017 515 2.38 ± 0.28 189 3.58 ± 0.7 3.33 ± 0.69 3.09 ± 0.67
2017 503 3.16 ± 0.34 205 3.08 ± 0.56 2.9 ± 0.55 2.77 ± 0.51
2017 618 1.52 ± 0.15 226 2.75 ± 0.54 2.52 ± 0.53 2.45 ± 0.5
2018 194 1.33 ± 0.23 78 2.46 ± 0.67 2.22 ± 0.62 2.07 ± 0.62
2019 253 2.21 ± 0.21 118 3.48 ± 0.91 3.21 ± 0.89 3.07 ± 0.85
2020 718 2.34 ± 0.24 301 3.18 ± 0.46 2.98 ± 0.45 2.8 ± 0.43

Differences between the GPSS and WVS were higher using the transect-based method
compared to the point-based method, even after accounting for time between survey dates
and water level, which reduced the difference by 4% to 26%, with the greatest reductions
occurring at the sites BSI and PACS. For each date-paired data set, the distance between
GPSS and WVS range from 2.46 ± 0.67 to 3.85 ± 0.76 m without water level or temporal
corrections; with corrections, the difference between the two data sets decreased, with the
highest value for the 2014 data set with 3.58 ± 0.75 m. Temporal and water level corrections
accounted for approximately 7% to 13% of the error in the values.

3.2. Shoreline Change Analyses

A total of 2422 cross-shore transects were created at an approximate 10 m spacing
along the GNDNERR estuarine shoreline. All transects intersect between 4 and 10 WVS
with a temporal coverage of 2.5 to 7 years between 2013 to 2020. Using b̂w and c.i. to
classify shoreline change category, approximately 73.1% of the measured rates indicated
shoreline erosion, 25.7% were stable or indeterminate (confidence interval indicates b̂w
could be either erosional or depositional), and 1.2% of shorelines showed accretion. Mean
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shoreline erosion rate was −2.46 ± 0.10 m yr−1 (N = 1770 transects) and mean accretion
was 2.12 ± 0.48 m yr−1 (N = 30 transects).

Availability of AIS and GPSS limited comparative analyses to transects with all three
data sets. A total of 358 transects also contained four or more dated shorelines from each
data source. The correlation between b̂w and b̂g was statistically significant (R2 = 0.89,
p-value < 0.001). The correlation plot shows an increase in point spread in the highly
erosive measurements and below the trend line, suggesting a slight overestimation of b̂w
in location with high erosion rates (Figure 4). The correlation between b̂a and b̂g was also
significant (R2 = 0.93, p-value < 0.001). The scatter plot indicates a few values where AIS
provided an overestimation of shoreline erosion at low erosive locations.
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only versus shoreline change rates calculated from (a) WorldView-derived shorelines (WVS) exclusively and (b) aerial
imagery-derived shorelines (AIS) exclusively. Solid blue line depicts the mean and blue dashed lines show the 95%
confidence interval.
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Mean shoreline change calculated for each site using GPSS, WVS, and AIS data are
depicted in Figure 5a. Both b̂a and b̂w were similar to b̂g, with the exception of PACS and
PACN sites, where b̂w calculated higher erosion rates than the b̂g.
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change rate calculated using Global Position System (GPS) data and shoreline change from two
remote sensing data sets: WorldView (WV) satellite imagery and aerial imagery (AI) (b).

The difference between b̂g versus b̂w and b̂a provide an indication of the ability for
each shoreline data source to accurately estimate shoreline change calculated from GPSS
data (Figure 5b). The mean difference between b̂g and b̂w was 0.64 ± 0.09 and between b̂g

and b̂a was 0.44 ± 0.05. The difference between b̂g and b̂w were lower than b̂a at sites MBW,
BSI, and PACN, whereas the difference between b̂g and b̂a were lower than b̂w at PACM
and PACS.

4. Discussion

Overall difference of the WV-derived shorelines from field-based GPS measurements
was low at 2 m and is lower than the geolocation accuracy of the pan-sharpened WV
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imagery (approximately 3.5 m). These results support the conclusion that high-resolution
satellites provide a valuable data source for monitoring shoreline change of coastal wetland
environments. Shorelines with high discrepancies in comparison to field measurements
were highly dynamic shorelines exposed to wind-waves from the Gulf of Mexico [57] and
high long-term erosion rates [42]. Site characteristics included a gradual slope or indistinct
scarp, low (<30%) or no vegetation cover (exposed shoreline), and the presence of shells
or sand along the shoreline and in the nearshore (displayed on imagery as white sandy
beach). The sand and shells indicate that shoreline would not have been identified using
the threshold NDVI technique, rather from the beach threshold analysis step, because the
goal of this study was to focus on the vegetated shorelines. Since vegetated estuarine
shorelines have been largely overlooked in the literature, a basic approach for sandy
shorelines was adopted to include them in this study. The mixed shoreline type (vegetation
and beach) is not a unique feature to Grand Bay and can be found frequently in other
estuarine and marsh-dominated coastlines; therefore, a methodology that adopts a mixed
analysis approach to address multiple shorelines types would be more appropriate for
regional or national estuarine shoreline mapping programs. The simple method used here
can be improved in light of other research that use high-resolution imagery (WV and other
satellite data) to delineate beach shorelines [22,31,53], which may provide a method to
improve delineations of wetland shorelines that are bordered by sandy beach. In addition,
we discovered an NDVI value of 0.21 consistently provided an adequate representation of
the shoreline (vegetation-water boundary) for coastal marsh habitat of southern Mississippi.
This value may not provide an adequate boundary when applied to other wetland habitat
types, such as mangrove or salt marsh where Juncus or Spartina are not the dominant
species and should be investigated further.

The transect-based method resulted in higher differences than the point-base compar-
isons between the field-based data and satellite shorelines. This could be due to several
and possibly compounding reasons. First, the transect-based method requires the GPSS
points to be converted to a line, therefore the shoreline in between each GPS point is
not a “true” shoreline. This results in the transect measuring the difference between an
approximation of the shoreline from GPS data (based on adjacent measurements) and the
satellite-derived shoreline. This approximation could introduce error depending on the dis-
tance between points and shoreline sinuosity. Second, the transect-based analysis method
is well-documented and used by many researchers for shoreline change analyses but was
developed for sandy ocean-facing shorelines [14,17,30,58–63]; estuarine and wetland shore-
lines are generally more sinuous and spatially complex than ocean-facing beach shorelines.
Because the shorelines frequently curve and bend, transects that extend from a baseline at
regular intervals toward the shore may intersect the shoreline at an obtuse or acute angle
rather than directly perpendicular to the shoreline (example can be noted on Figure 2 of
a small-scale spit feature). When transects intersect shorelines at angles greater or less
than 90º, distances between shoreline vectors are impacted and therefore the rates change.
Techniques to reduce this effect are to increase transect frequency or creating curvilinear
baselines that closely match the bends of the shoreline, however both options would require
a greater time investment for data analyses. Other methodologies for evaluating shoreline
changes over time, such as point-based techniques that evaluate distances between shore-
line points [59,64], “fuzzy boundaries” techniques [65], Bayesian methods [15], or machine
learning [66,67] may be appropriate for the gradual, indistinct boundaries common to wet-
land and estuarine shorelines. Calkoen et al. [68] evaluated machine learning techniques
against ordinary least squares regression techniques (the transect-based approach explored
here) to predict future shoreline change, but research that evaluates different shoreline
extraction methods and their impact on statistical calculation of shoreline change rates for
estuarine shorelines is a topic that warrants greater attention.

When corrected for shoreline change rate and water level, the difference between
GPSS and WVS decrease, indicating that survey date and water level have an impact on
the position of satellite-derived shorelines. Therefore, field verification data should be
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collected as close as possible to the date of satellite image collection with the maximum
interval dependent on shoreline change rates. The maximum interval between field and
image collection date would be less of a concern for slowly changing coastlines, whereas
would have a greater impact on rapidly changing (eroding or accreting) shorelines. This
process could explain the discrepancies between WVS and GPSS, particularly with high
erosion rates. Shoreline position was not adjusted to water level prior to rate of change
analyses and therefore the higher rates of change may be a product of changing water
level conditions. Other studies applied water level corrections to satellite-derived beach
shorelines [31,53], but we could not find examples where similar corrections were applied
to vegetated shorelines. Other variables, such as vegetation and soil characteristics, could
impact both sensor detection of shoreline position and distance of inundation, therefore
we used a conservative estimate of marsh slope to avoid over-correction and provide
our analysis to demonstrate the need to consider these impacts on results. There was a
great deal of variability in marsh slope as shown by the low R2 value and the site-based
slope calculations that range from 0.01 to 0.12, highlighting the potential importance of
this variable in evaluating water level impacts on the detection of shoreline position. To
our knowledge, this is the first attempt to correct shoreline position for marsh inundation
from high water level at the time of image collection and the method requires refinement.
Methods could be improved with greater attention to characteristics of wetland inundation
and the interpretation of vegetated shoreline position by optical sensors. Additionally,
methods that have been shown to improve wetland classifications from Landsat might be
adopted to improve overall results of wetland shoreline features [69]. Another option is
to select imagery of consistent water level or tidal datum to reduce variability caused by
water level. Given the high revisit time of many high-resolution satellites (approximately
once per day for WV2 and WV3), the availability of cloud-free imagery of appropriate
water levels could be substantial. Considering the timing and environmental conditions
during image collection when using high-resolution satellite imagery to delineate vegetated
shorelines is important since tidal flooding and vegetation can impact shoreline position.

5. Conclusions

One of the greatest challenges to environmental monitoring is access to timely and
consistent data that can be efficiently analyzed to support both short- and long-term man-
agement decision-making, restoration planning, and resiliency studies. Coastal wetlands
have not received as much attention as ocean-facing sandy beaches for broad-scale shore-
line change assessments, but wetlands are critically important resources to protect coastal
communities from storms, provide habitat and refugia for economically important fish and
shellfish species, act as water purifiers for floodwaters, and store carbon within organic rich
sediments. In many areas of the United States and the world, availability of modern high-
resolution wetland shorelines is non-existent, or data are out-of-date due to data limitations
or the labor-intensive process for mapping these areas. The availability of high-resolution
satellite imagery and new developments in rapid image analysis techniques can help fill
the data gap and provide critical information for coastal wetland monitoring programs.
Primary conclusions from this research include:

• A simple procedure to auto-delineate wetland shorelines from WorldView imagery
was performed and, compared with field-survey data, resulted in an accuracy of
approximately 2 m, but ranged from 0 to 20 m. Shorelines with gradual nearshore
slope and sparse shoreline vegetation (bare mud or beach) may reduce boundary
distinction and introduce positional error.

• Shoreline change analyses calculated exclusively from wetland shorelines extracted
from WorldView imagery were strongly correlated to shoreline change calculations
from field-based data (R2 = 0.89, p-value < 0.001) indicating that these satellite-derived
shorelines can provide an adequate assessment of short-term shoreline change by
extending the applicability of field-based surveys to much larger areas. The timing of
image collection and water level are important considerations when selecting imagery.
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Further characterization of the impact of these considerations on wetland shoreline
position could improve future analyses and methodology.

• Improvement of the auto-delineation of mixed shoreline types (wetland, sandy beaches,
rocky cliffs, etc.) that are common in estuaries or evaluate the effectiveness of the
transect-based shoreline change analyses and other methodologies on wetland and
estuarine shorelines is possible, particularly using other methodologies, such as fuzzy
boundaries or pixel-based analyses, may have greater success for gradual or indistinct
boundaries commonly found in coastal wetlands and estuaries.

• Shorelines derived from high-resolution (meter-scale spatial resolution) satellite data
with superior spatiotemporal coverage can provide a valuable data source to managers
for frequent (e.g., annually) and consistent broad-scale monitoring of coastal wetlands
or after extreme erosion events.
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