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Abstract: Wideband multiple-input-multiple-output (MIMO) imaging radar can achieve high-
resolution imaging with a specific multi-antenna structure. However, its imaging performance
is severely affected by the array errors, including the inter-channel errors and the position errors
of all the transmitting and receiving elements (TEs/REs). Conventional calibration methods are
suitable for the narrow-band signal model, and cannot separate the element position errors from
the array errors. This paper proposes a method for estimating and compensating the array errors
of wideband MIMO imaging radar based on multiple prominent targets. Firstly, a high-precision
target position estimation method is proposed to acquire the prominent targets’ positions without
other equipment. Secondly, the inter-channel amplitude and delay errors are estimated by solving
an equation-constrained least square problem. After this, the element position errors are estimated
with the genetic algorithm to eliminate the spatial-variant error phase. Finally, the feasibility and
correctness of this method are validated with both simulated and experimental datasets.

Keywords: MIMO imaging radar; array error calibration; inter-channel error; element position error;
prominent target

1. Introduction

Landslide events are one of the most typical and frequent geological phenomena.
Surface deformations normally occur before the macro failure of natural and engineered
slopes. Deformation measurement is of great significance to monitor and forecast landslide
events. Ground-based synthetic aperture radar (GB-SAR) has been widely utilized to
measure the surface deformation of large-scale scenes, with the advantages of being all-day,
all-weather, non-contacting, and highly accurate [1,2]. Generic GB-SAR systems acquire
a large aperture based on the mechanical movement of the transmitting and receiving
(T/R) antennas along a rail track. A novel and equivalent measuring tool with traditional
GB-SAR, i.e., multiple-input-multiple-output (MIMO) radar, has been developed [3,4].

MIMO radar, featured with a multi-antenna structure including transmitting and
receiving arrays, is a state-of-the-art technique in radar applications. Utilizing a small
number of actual T/R antennas, it can be equivalent to a rather large number of obser-
vation channels. MIMO radar uses the waveform diversity technique to synthesize a
large aperture, which is the largest difference to a generic GB-SAR. To acquire good range
resolution, MIMO radar typically transmits wideband signal. It should be noted that
the GB-MIMO radar discussed in this paper is an imaging radar system. Different from
tracking MIMO or array radar, the main advantages of GB-MIMO radar are focused on
its fast image acquisition and good image resolution, which has shown great application
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potential in deformation monitoring, weak vibration measurement and other typical InSAR
(interferometric synthetic aperture radar) applications [5,6].

Due to the specific multi-antenna structure of MIMO radar, different types of array
errors are inevitable in its practical use, mainly including element position error and inter-
channel error [7,8]. These errors affect the designed performance of the system and defocus
image results, thus affecting the subsequent InSAR applications. The first type is caused
by mechanical working accuracy or structural distortion of the array panel and antennas,
causing the actual positions of T/R elements to slightly deviate from their theoretical
design positions. Although position errors are on the milli- or sub-millimeter level, the
phase errors caused by the position errors cannot be ignored. Relevant research prove that
these phase errors are spatially variant, which means that phase errors for targets with
different azimuths are different [9,10]. The second type of error is specific to MIMO radar.
Since the radar hardware, including amplifiers, transmission lines, and electronic switches,
are independent between different T/R channels, the echo’s amplification, delay and phase
modulation are also slightly inconsistent [11].

The calibration methods of array errors have been widely studied and can be mainly
divided into two types, including the active calibration method and the self-calibration
method [12–15]. The first type demands some reference targets whose positions are known,
while the second type usually constructs a cost function according to an optimization
criterion, and then iteratively estimates the array errors. Although some methods are useful
for traditional searching MIMO, they cannot be directly used for wideband imaging MIMO.
Firstly, the phase-only calibration method is invalid due to the narrow-band assumption
and the theoretical basis of array steering vectors [16,17]. Secondly, the conventional
methods do not distinguish the inter- and position-errors [18]. The spatial-varying errors
can only be compensated in a small scale or be averaged through the whole image. None
can achieve good estimation with both wide-coverage and high-precision.

A method proposed in [19] estimates the inter-channel amplitude and phase errors
based on a single prominent target. By adjusting the weights of all channels, errors between
the azimuth imaging result and the ideal result of this prominent target are minimized with
a least square error method. However, this method can only estimate the inter-channel
errors. Another method is proposed in [20] to calibrate the amplitude and phase errors
of intra- and inter-channels for near-field MIMO radar. Utilizing multiple prominent
targets whose positions are known, the total energy of these targets’ sidelobes is minimized
based on a criterion that the peaks of all the targets reach ideal levels. However, this
method ignores the spatial variation caused by the element position errors, and good focus
performances for targets over the whole image cannot be guaranteed.

In order to solve those problems above, a high-precision estimation and calibra-
tion method of array errors based on multiple prominent targets is proposed. Firstly, a
multi-target position joint estimation method is proposed to estimate prominent targets’
coordinates without other equipment. Secondly, the inter-channel amplitude and delay
errors are compensated by solving an equation-constrained least square problem. After
this, the element position errors are estimated to eliminate the residual phase error. Finally,
a numerical simulation and a field experiment are performed. The processing results prove
that with the proposed method, the imaging performance of the wideband MIMO radar
can be significantly improved.

2. Modeling and Analysis of Array Errors
2.1. Error Classification and Echo Modeling

For a MIMO radar system, its performance is severely affected by the array errors,
which can be mainly divided into two types: inter-channel errors and element position
errors. As shown in Figure 1, the inter-channel errors are mainly caused by the inconsistency
of the amplitude, phase and delay characteristics of different channels. The element position
errors are mainly caused by the limitation of mechanical working accuracy, which further
affect the phase center of the array.
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Figure 1. Array errors of MIMO imaging radar.

As shown in Figure 2, the geometric center of the transmitting array is used as the
coordinate origin, the line along the transmitting array is used as the y axis, and the target
P is located in the positive direction of the x axis. Because of the element position errors,
the TEs are not completely collinear. It is assumed that the coordinates of all the TEs and
REs are (x̃T,m, ỹT,m), m = 1, 2, . . . , M and (x̃R,n, ỹR,n), n = 1, 2, . . . , N, respectively.
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Figure 2. Schematic diagram of a target and an array.

The target P is located at (xP, yP) in the Cartesian coordinate system, and at (ρ, θ) in
the polar coordinate system. The following condition is satisfied{

ρ =
√

x2
P + y2

P
θ = arctan(yP/xP)

. (1)

From this, the echo of the target P for the channel (m, n) can be expressed as:

s̃r(t, m, n; ρ, θ) = AT,m AR,nσ(ρ, θ) exp[j(φT,m + φR,n)]s

(
t−

R̃P
T,m + R̃P

R,n

c
− ∆τT,m − ∆τR,n

)
(2)

where σ(ρ, θ) is the complex scattering coefficient; AT,m, φT,m and ∆τT,m are the amplitude,
phase and delay error of the mth TE; and AR,n, φR,n and ∆τR,n are the amplitude, phase
and delay error of the nth RE, respectively. R̃P

T,m and R̃P
R,n are the distances from P to the

mth TE and the nth RE, including the element position errors.
After pulse compression, the echo can be expressed as:

s̃m f (t, m, n; ρ, θ) = AT,m AR,nσ(ρ, θ) · exp(j(φT,m + φR,n))

·sinc
[

B
(

t−
(

R̃P
T,m+R̃P

R,n
c + ∆τT,m + ∆τR,n

))]
exp

(
−j 2π

λ

(
R̃P

T,m + R̃P
R,n + ∆τT,mc + ∆τR,nc

)) (3)

where B is the signal bandwidth.
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In far-field condition, with 1st-order Taylor expansion of R̃P
T,m and R̃P

R,n, the element
position error can be expressed as:

s̃m f (t, m, n; ρ, θ)

≈ AT,m AR,nσ(ρ, θ)
}

Amplitude

exp
(

j
(

φT,m + φR,n −
2π(∆τT,mc+∆τR,nc)

λ

))
}

Phase induced by Channel

·sinc
[

B
(

t−
(

2ρ−(x̃T,m+x̃R,n) cos θ−(ỹT,m+ỹR,n) sin θ
c + ∆τT,m + ∆τR,n

))]
}

Envelope

·exp
{
−j 2π

λ [2ρ− (x̃T,m + x̃R,n) cos θ − (ỹT,m + ỹR,n) sin θ]
}

}
Phase induced by Transmission Path

(4)

Inter-channel errors, including AT,m, AR,n, φT,m, φR,n, ∆τT,m, and ∆τR,n, belong to
systemic errors and are independent of the target’s position (ρ, θ). Thus, the first two
terms of (4) are spatially invariant. The phase term induced by the transmission path is
affected by the element position error, and changes with the target’s azimuth θ. Besides,
the inter-channel delay errors ∆τT,m and ∆τR,n not only affect the phase induced by the
channel, but also the signal envelope after pulse compression. For a wideband MIMO radar,
the internal delay characteristics may cause a shift comparable to the range resolution.

2.2. Characteristics of Element Position Error

Assuming that the inter-channel errors can be completely eliminated, (4) can be
simplified as:

s̃m f (t, m, n; ρ, θ) = σ(ρ, θ)sinc
[

B
(

t− 2ρ−(x̃T,m+x̃R,n) cos θ−(ỹT,m+ỹR,n) sin θ
c

)]
· exp

{
−j 2π

λ [2ρ− (x̃T,m + x̃R,n) cos θ − (ỹT,m + ỹR,n) sin θ]
} (5)

Since the element position errors are far smaller than the radar range resolution, the
offset of the ‘sinc’ peak caused by the element position errors can be negligible. When taking
the azimuth focusing with the back-projection (BP) algorithm [21], the echoes should be
compensated according to the target’s range history. The compensated phase is calculated
based on the ideal element position yT,m and yR,n:

φre f (m, n; ρ, θ) = −2π

λ
[2ρ− (yT,m + yR,n) sin θ] (6)

Therefore, the residual phase of each channel can be expressed as

∆φm f (m, n; ρ, θ) ≈ 2π

λ
(∆xT,m cos θ + ∆yT,m sin θ) +

2π

λ
(∆xR,n cos θ + ∆yR,n sin θ) (7)

where ∆xT,m, ∆yT,m, ∆xR,n and ∆yR,n are the 2D element errors of the MIMO system. The
residual phase errors are proportional to the element position errors. If the element position
error cannot be well compensated, a severe grating lobe problem would be caused.

3. Array Errors Calibration Based on Multiple Prominent Targets
3.1. Position Estimation of Prominent Targets

As shown in Figure 3, K prominent targets {Pk|k = 1, 2, . . . , K } are placed at K different
azimuths in the far field. Since it is necessary to extract the peaks’ phase of each target
in each channel, it should be ensured that the main-lobes of any two prominent targets
after pulse compression are separated. A high-precision position estimation method of
multi-point targets is proposed. In order to accurately estimate the position (ρk, θk) of
each prominent target in the polar coordinate as shown in Figure 2, a three-step method
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is adopted, including relative azimuth angle estimation, reference angle estimation and
range estimation.
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Firstly, the MIMO radar transmits and receives the wideband signals. After taking
pulse compression, MN channels of compressed signals can be obtained. After, K peaks
corresponding to every prominent target for each channel are extracted. From (4), the
phase components of the (m, n)th peak of a prominent target can be expressed as

Φ
{

sm f (m, n; ρ, θ)
}

= 〈σ(ρ, θ)〉+ φT,m + φR,n −
2π(∆τT,mc+∆τR,nc)

λ
− 2π

λ [2ρ− (x̃T,m + x̃R,n) cos θ − (ỹT,m + ỹR,n) sin θ]

(8)

A cancellation is firstly operated between two prominent targets’ peak signals to
eliminate the inter-channel errors. It can be obtained as,

Φd(m, n) = Φ
{

sm f (m, n; ρ1, θ1)
}
−Φ

{
sm f (m, n; ρ2, θ2)

}
= 〈σ(ρ1, θ1)〉 − 〈σ(ρ2, θ2)〉 − 2π

λ

 2(ρ1 − ρ2)
−(x̃T,m + x̃R,n)(cos θ1 − cos θ2)
−(ỹT,m + ỹR,n)(sin θ1 − sin θ2)

 (9)

After, another cancellation between any two adjacent channels is further operated,

Φdd(m, n) = Φd(m + 1, n)−Φd(m, n)
= 2π

λ (cos θ1 − cos θ2)(∆xT,m+1 − ∆xT,m)

− 2π
λ (sin θ1 − sin θ2)(∆yT,m+1 − ∆yT,m)− 2πd

λ (sin θ1 − sin θ2)

(10)

where d is the interval of the virtual array of the MIMO system. For a wideband MIMO
imaging radar, d is usually designed to be a constant of λ/2 [22,23].

Considering that the expectation of the element position error is almost zero, the
relative azimuth angle of any two prominent targets can be acquired through the two-step
cancellation data,

sin θ1 − sin θ2 =
E[Φdd(m, n)]
−π

. (11)

where E[ ] denotes the expectation operation.
Secondly, a reference angle θ̂1 of the first target is estimated to get these prominent tar-

gets’ exact azimuth angles. According to the peak locations of each channel of compressed
signal, the peak range of the kth target for the MN channels, Rk,m,n, can also be acquired.
Since the angle deviation would cause a variance increment of the range history Rk,m,n of
each target, θ̂1 is estimated by finding the minimum value of the below equation:

θ̂1 = arg
θ1

(
min

(
K

∑
k=1

var(Rk,m,n − (yT,m + yR,n) sin(θ1 + ϑk))

))
(12)



Remote Sens. 2021, 13, 2997 6 of 16

where ϑk is the relative angle between the kth and first targets, and can be calculated
from (11).

Finally, the range coordinate ρ of each prominent target is estimated. The basic strategy
of range estimation is the same with that of azimuth estimation. According to (4), the range
history of the kth target in every channel can be expressed as

Rk,m,n = 2ρk − (yT,m + yR,n) sin(θk) + c(∆τT,m + ∆τR,n) + ε (13)

It should be noted that the range error caused by the element position error is ex-
pressed as a random noise ε since it is relatively small. θk has been acquired in (11) and
(12), so the second term of (13) can be calculated. The third term is independent of different
targets and can be eliminated by a cancelation between two targets’ peaks in every same
channel. Thus, the relative range pk between two targets can be expressed as

pk = ρk − ρ1 =
E[Rk,m,n + (yT,m + yR,n) sin(θk)− R1,m,n − (yT,m + yR,n) sin(θ1)]

2
(14)

The reference range ρ̂1 of the first target can be estimated by LS (least-squares) opti-
mization as below.

ρ̂1 = arg
ρ1

min

∑
k

∑
m,n

(Rk,m,n − 2(ρ1 + pk)− (yT,m + yR,n) sin(θk))
2

MN


 (15)

Combined with the relative angle estimation in (11) and the reference angle estimation
in (12), each target’s angle can be acquired as θk = θ̂1 + ϑk. Similarly, combined with the
relative range estimation in (14) and the reference range estimation in (15), each target’s
range can be acquired as ρk = ρ̂1 + pk.

3.2. Amplitude and Delay Error Estimation
3.2.1. Amplitude Error Estimation

As mentioned in Section 2, the amplitude and delay errors would not cause spatially
variant phase errors. The peak amplitude Ak(m, n) of the (m, n)th channel of the kth
prominent target in (4) can be expressed as

log(Ak(m, n)) = log(AT.m) + log(AR.n) + log(|σk|) (16)

Express all the equations in a matrix form (total k(MN − 1) equations) as

log


A1
A2
...

Ak

=


G
G
...

G

 · log
[

AT
AR

]
(17)

where

Ak =
[

Ak(2,1)
Ak(1,1) , · · · , Ak(M,1)

Ak(1,1) , Ak(1,2)
Ak(1,1) , · · · Ak(1,M)

Ak(1,1) , · · · , Ak(M,N)
Ak(1,1)

]T
∈ R(MN−1)×1

AT =
[

Ac
T,1 Ac

T,2 · · · Ac
T,M

]T
∈ RM×1

AR =
[

Ac
R,1 Ac

R,2 · · · Ac
R,N

]T
∈ RN×1

(18)
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and

G =



0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−1 1 · · · 0
...

...
. . .

...
−1 0 · · · 1

...
...

−1 0 · · · 1
−1 0 · · · 1

...
...

. . .
...

−1 0 · · · 1

0 0 · · · 0
−1 1 · · · 0

...
...

. . .
...

−1 0 · · · 1


∈ R(MN−1)×(M+N) (19)

Although the equation number is much bigger than the variables number, (17) is
a rank-deficient equation set, whose rank is M + N − 2. Two more constraints can be
added as [

1 0(M−1)×1 0 0(N−1)×1
1 0(M−1)×1 −1 0(N−1)×1

]
· log

[
AT
AR

]
= L · log

[
AT
AR

]
= 0 (20)

From this, (17) turns into an equation-constrained least square problem (ECLS).

min
ATAR

∥∥∥∥∥ log

 A1
...

Ak

−
 G

...
G

 · log
[

AT
AR

] ∥∥∥∥∥
2

s.t. L · log
[

AT
AR

]
= 0 (21)

According to [24], the closed solution can be obtained as:

log
[

ÂT
ÂR

]
=


 G

...
G

 · (I− L† · L
)

†

· log

 A1
...

Ak

 (22)

where I is the unit matrix, and † represents the Moore–Penrose inverse.

3.2.2. Delay Error Estimation

As for the delay error, the ECLS method can also be used to estimate it. It has good
consistency for different targets. The delay error can be compensated in MN equivalent
channels independently instead of M+N transmitting and receiving channels. Utilizing the
peak range Rk,m,n of the (m, n)th channel, and the estimated range and azimuth (ρk, θk) of
the kth target, the delay error R̂i for each channel is estimated with an average operation:

R̂i =

∑
k
[Rk,m,n − (yT,m + yR,n) sin θk − 2ρk]

k
, i = 1, 2, · · · , MN (23)

3.3. Estimation of Element Position Errors

According to (10), the residual phase after average removal can be written as follows:
∆Φ(m, n) = 2π

λ (cos θ1 − cos θ2)(∆xT,m+1 − ∆xT,m)− 2π
λ (sin θ1 − sin θ2)(∆yT,m+1 − ∆yT,m)

when RE is not switching
∆Φ(m, n) = 2π

λ (cos θ1 − cos θ2)(∆xT,1 − ∆xT,M)− 2π
λ (sin θ1 − sin θ2)(∆yT,1 − ∆yT,M)

+ 2π
λ (cos θ1 − cos θ2)(∆xR,n+1 − ∆xR,n)− 2π

λ (cos θ1 − cos θ2)(∆xR,n+1 − ∆xR,n)
when RE is switching

(24)

(24) is utilized to extract the element position errors by the cancellation between differ-
ent targets in the same channel and build an equation set to estimate the 2D element
position errors.
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It was assumed that two prominent targets located at θ1 and θ2 are a group, and
s12 = sin θ1 − sin θ2, c12 = cos θ1 − cos θ2.

∆xT = [∆xT,1, . . . , ∆xT,M]T

∆yT = [∆yT,1, . . . , ∆yT,M]T

∆xR = [∆xR,1, . . . , ∆xR,N ]
T

∆yR = [∆yR,1, . . . , ∆yR,N ]
T

(25)

From this, a linear equation set can be obtained as follows:

∆Φ12=H12∆pTR (26)

where

H12 = 2π
λ



0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

−c12 c12 · · · 0

...
...

. . .
...

0 · · · −c12 c12

−s12 s12 · · · 0

...
...

. . .
...

0 · · · −s12 s12

−c12 c12 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

−s12 s12 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

c12 0 · · · −c12

−c12 c12 · · · 0

...
...

. . .
...

0 · · · −c12 c12

s12 0 · · · −s12

−s12 s12 · · · 0

...
...

. . .
...

0 · · · −s12 s12

...
...

...
...

0 · · · −c12 c12

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

0 · · · −s12 s12

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

c12 0 · · · −c12

−c12 c12 · · · 0

...
...

. . .
...

0 · · · −c12 c12

s12 0 · · · −s12

−s12 s12 · · · 0

...
...

. . .
...

0 · · · −s12 s12



∈ R(MN−1)×(2M+2N)

∆pTR =
[

∆xT
R ∆yT

R ∆xT
T ∆yT

T

]T
∈ R(2M+2N)×1

(27)

According to (23), any two prominent targets can construct MN − 1 observation
equations. Thus, at least three targets are needed to estimate the element position errors.
With K prominent targets, a new equation set can be obtained as

∆Φ = H∆pTR
∆Φ12
∆Φ23

...
∆Φ(K−1)K

 =


H12
H23

...
H(K−1)K

∆pTR
(28)

Genetic algorithm can be used to solve this problem [25].

min
∆pTR

max
(
D
{

H(k−1)k∆pTR − ∆Φ(k−1)k

}∣∣∣k∈(1,K−1)

)
s.t. |∆pTR| < d

(29)

where d is the error upper-bound. Matrix L is denoted to be equal to H∆pTR − ∆Φ , and its
kth column vector is H(k−1)k∆pTR − ∆Φ(k−1)k. D{} is the function utilized to calculate the
second-order norm between any two column vectors of the matrix L. The phase residual
with the GA is defined as

ϕres(i) =
1
2
(max(L(i, :)) + min(L(i, :))) (30)

where L(i, :) is the ith row vector of the matrix L.
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Above all, the amplitude and delay errors in (4) can be calibrated by (22) and (23). The
exact element positions are estimated by (29). After, the channel peak phases of a single
target can be calibrated toward the ideal value, and the spatial phase residuals are small
enough. Finally, the whole scene can be imaged by the BP algorithm after the inter-channel
and element position error calibration.

4. Simulation and Experiment
4.1. Simulation Analysis

To verify the correctness of the proposed method, a simulation is performed. With the
system parameters shown in Table 1, a FMCW (frequency modulated continuous wave)
MIMO radar array with 16 TEs and 32 REs is used, as shown in Figure 4. Inter-channel
errors and element position errors are added on the echo signal, where the amplitude,
phase and element position errors are AT,m, AR,n ∼ U(0.25, 1), φT,m, φR,n ∼ U(−π, π)
and ∆xT,m, ∆yT,m, ∆xR,n, ∆yR,n ∼ U(−3 mm, 3 mm), respectively. U denotes the normal
distribution. Four ideal targets T1 to T4 are utilized, and Table 2 shows their coordinates.
The echo signals are with a SNR of −5 dB before pulse compression.

Table 1. System parameters for MIMO radar simulation.

Parameter Value Parameter Value

Central Freq. 16.2 GHz TEs Num. 16
Pulse Width 0.5 ms REs Num. 32
Bandwidth 1 GHz TEs interval 9.3 mm
Sample rate 100 MHz 1 REs interval 74.4 mm

1 Dechirp processing is used for FMCW signal.
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Table 2. Prominent target positions in simulation.

Index Range/m Azimuth/deg

T1 2990 −30
T2 3000 0
T3 3010 30
T4 3020 15

With the BP algorithm, the echo signals are processed. Without error compensation,
the focus performance of T4 is relatively bad, as shown in Figure 5a. A compensation
method based on one single prominent target proposed in [19] is utilized to estimate the
inter-channel amplitude and phase errors, as shown in Figure 5b. Two-dimensional profiles
of T4 are shown in Figure 6. It can be noted that although the single-point calibration
method can improve the overall imaging performance, the level of side-lobe is not good
enough, which is mainly caused by the element position error.
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With the proposed method, the inter-channel errors and the element position errors
are estimated. Figure 7a shows the estimated and actual element position errors. It is
obvious that the proposed method can accurately estimate the element position error. After
compensating the array errors, T4 is refocused and shown in Figure 7b. Figure 8 shows its
two-dimensional profiles along the range and azimuth directions. The image performance,
especially azimuth side-lobe performance, has been well improved after compensating the
element position errors, which validates the effectiveness of the proposed method.
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4.2. Experiment Analysis

As shown in Figure 9, a MIMO imaging radar is used in this experiment, whose array
consists of two transmitting sub-arrays each with eight TEs (marked by two red boxes) and
a receiving array with 32 REs (marked by a white box).
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Figure 9. MIMO system utilized in the experiment.

The key parameters of the MIMO radar are shown in Table 3, and the experimental
scene is a rocky slope as shown in Figure 10. Three transponders are utilized as the
prominent points which are marked with circles, respectively recorded as T1, T2, and T3.

Table 3. System parameters.

Parameter Value Parameter Value

Central Freq. 16.2 GHz TEs Num. 16
Pulse Width 2 ms REs Num. 32
Bandwidth 400 MHz TEs interval 9.3 mm
Sample rate 12.5 MHz REs interval 74.4 mm

Figure 11a shows the radar image without error compensation. Taking T3 as the
reference target, the single point method (SPM) in [19] is utilized to compensate the inter-
channel amplitude and phase errors, as shown in Figure 11b. With T1, T2 and T3 as
the prominent targets, the proposed multi-point calibration method (MPM) is utilized to
compensate both the element position and inter-channel errors, as shown in Figure 11c.
Lastly, a self-calibration method, i.e., minimum-entropy autofocus (MEA) [26], is utilized,
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as shown in Figure 11d. It can be noted that the imaging performances have all been
improved with the three calibration methods above.
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To quantitively evaluate the imaging performances, T2 and T3 are utilized. Two active
calibration methods, i.e., SPM and MPM, are firstly compared, as shown in Figure 12. For
T3, the imaging performances of its range and azimuth profiles are almost the same with
both methods. SPM method performs even better since it can calibrate T3 into an ideal
point target. However, the SPM method cannot simultaneously compensate T2 and T3
because of the spatial variation of the element position error. For T2, with the MPM, its
PSLR (peak sidelobe ratio) decreases from −11.33 dB to −12.99 dB, and the symmetry of
side-lobes also increase.

In addition, it should be noted that the azimuths of T2 and T3 are slightly different of
about 0.1◦ with both methods. The target location estimation with the SPM only depends on
the channel’s range information of a single target, while the MPM method utilizes all three
targets, and increases the angle estimation accuracy with phase information. Theoretically,
the MPM method could provide a more robust estimation performance.

The profiles of T2 with the MEA method is shown in Figure 13. Since the MEA method
aims at improving the overall image performance rather than compensating based on one
or multiple specific targets, the radar image can be significantly improved for Figure 11d
contrast with Figure 11a. However, the profile of some specific targets, especially strong
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point targets, are sacrificed during the MEA iteration, which causes an azimuth envelope
distortion in Figure 13.
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5. Discussion

GB-MIMO’s imaging performance is severely affected by array errors. The conven-
tional methods, such as SPM and MEA in Section 4, cannot achieve good estimation in
both wide-coverage and high-precision. Aiming at estimating both inter-channel errors
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and element position errors, an improved calibration method based on multi-prominent
targets has been proposed.

The proposed method separates the inter-channel and element positions error with
at least three prominent targets. The simulation in Figure 7 shows that the estimation
accuracy of the element position could reach 0.5 mm level. The target’s azimuth profile
performance in Figure 8, including PSLR and side-lobe symmetry, has been much improved
from Figure 6.

Utilizing different calibration methods, four radar images of a rocky slope are shown
in Figure 11. The comparison is summarized in Table 4. The results show that all the
calibration methods have increased the image quality. The MPM could achieve the best
azimuth PSLR and the smallest image entropy, which reach −12.99 dB and 11.77, respec-
tively. The SPM can achieve an ideal PSLR for T3 at −13.2 dB, but the PSLR and side-lobe
symmetry for T2 are worse than those with the MPM method. With the MEA method,
the azimuth profile of the prominent target is distorted, but it can effectively decrease the
image entropy from the original level of 13.13 to 11.95, and can be operated in any situation
without any reference target.

Table 4. Comparison of different calibration methods.

SPM MPM MEA

Azimuth PSLR −11.33 dB −12.99 dB −11.80 dB
Image Entropy 11.80 11.77 11.95 (Ori. 13.13)

Calibration Time 20 s 10 min >5 h
Pros. Easy & Fast Spatial-variant Elimination Without Reference

6. Conclusions

This paper proposed a method of estimating and compensating the array errors based
on multiple prominent targets. Firstly, target positions are robustly estimated. Secondly, the
amplitude and delay errors are estimated based on ECLS. Finally, in order to compensate
the spatial-varying phase error, the element position errors are extracted and estimated
based on the channel-cancelation and GA, respectively.

Both simulated and experimental datasets have validated the correctness and effec-
tiveness of the proposed calibration method based on multiple prominent targets. The
estimation accuracy of the element positions can reach millimeter level. Besides, the image
calibrated by the proposed method achieves the best PSLR at −12.99 dB and the smallest
image entropy at 11.77 compared with two conventional methods.
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