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In general, data acquired from high-altitude systems offer a broader spatial coverage 
but a low-resolution image. Nevertheless, some satellites sensors can provide high-
resolution images at the expense of a higher price, whereas an airborne sensor may furnish 
high-resolution spatial images. Moreover, aeroplanes benefit from more flexible use since 
they may be used to examine small geographical areas. The only issue is that they must 
fly in favourable weather conditions because turbulence may cause the instability of the 
aircraft. Airborne sensors acquire images with a temporal resolution in the order of 
minutes, differently from satellites that orbit around the Earth at regular intervals of days 
or hours, such as the Sentinel 2A and 2B that provides images every five days [1–3], 
making their use inappropriate for investigations in near-real-time [1,4].  

Table S1. Advantages and disadvantages between aircraft and satellite platforms. 

Platform Advantages Disadvantages References

Aircraft 

Relatively high spatial 
resolution 

High spectral resolution 
Changeable sensors 

They are highly flexible in 
terms of their configuration 
(spatial resolution, spectral 

range, number of bands, 
bandwidth, etc.) and the time 

of the survey. 
Coverage of smaller 

geographic areas due to 
lower image acquisition 

altitude 
Temporal resolution: 

minutes 

High operating costs  
Planning for aerial surveys, 
taking into account factors 

such as air traffic, solar 
conditions, weather 

Image processing is complex 
Low stability due to 

turbulence 

Satellite 

High stability. 
Good historical data 
Image processing is 

relatively easy  

High cost for high spatial 
resolution images. 

Low spectral resolution 
Atmospheric attenuation 
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Low-cost for low-resolution 
images 

Temporal resolution:  hours 
and days 

Adverse climatic conditions 
(e.g., clouds) or temporal 
changes can influence the 
interpretation of findings. 
May need to sort through 

many images to obtain 
helpful information. 

There is significant limitation 
when eliminating cloud 

cover is problematic. 

All of these applications produce georeferenced raster images containing various 
spectral bands defined by their wavelength and bandwidth. In general, the sensors record 
electromagnetic waves in the visible (VIS) (430–720 nm), medium (MIR) (1580–1750 nm) 
and near-infrared (NIR) (750–950 nm) light ranges. For example, various satellite and 
airborne sensors are used in evaluating the quality parameters of surface water, such as 
the analysis of chlorophyll, dissolved oxygen (DO), sea surface salinity, sea surface 
temperature, turbidity [5–11] and for monitoring the forms of pollution of water (plastic 
pollution, oil spill) [12–14] and soil [15], by measuring the amount of radiation at various 
wavelengths reflected from the surface of the water. However, the coverage of the 
electromagnetic spectrum of spaceborne sensors is limited in blue and middle infrared, as 
well as the thermal bands are not covered at the point that this may affect the accuracy of 
the estimation of water quality parameters [3]. Tables 2 and 3 show some satellite and 
airborne sensors and their configurations [3,5,10,16]. 

Table S2. Some sensor satellites and their configurations. 

Satellite sensor Number 
of bands 

 

Spectral range 
(nm) 

Spatial 
resolution 

(m) 

Swath width 
(km) 

Temporal 
Resolution 

(days) 
References 

Sentinel-2 
Multi-Spectral 
Imager (MSI) 

13 spectral 
bands, including 

3 bands for 
atmospheric 
corrections 

443 – 2190 
10 
20 
60 

290 5 [17]

NOAA 
WorldView-3 

8 MS in VNIR 
 1 Pan   

8 MS in SWIR 

400–1040, 
450–800, 

1195–2365 

1.24 
3.7 

0.31 
13.1 1– 4.5 [18]

Landsat 8 
OLI/TIRS 

9 OLI including 
1 Pan  
2 TIRS 

433–2190, 
500–680, 

10.600–12.510 

30 
15 
100 

185 16 [19]

Sentinel-3 
OLCI 21  400–1020 300 1200 4 [20] 

Terra MODIS 

2  
 5 
29 

620–876,  
459–2155, 405–

877  

250 
500 

1000 
2330 2 [21]
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Table S3. Some typical airborne hyperspectral imaging systems. 

Airborne 
sensor 

Number 
of bands 

Spatial 
resolution 

(m) 

Spectral 
range 
(nm) 

FOV (deg) IFOV (mrad) 
Imaging 

swath References 

Compact 
Airborne 

Spectrographi
c Imager 
(CASI) 

Up to 288 0.5–3 400–2500 40 
0.49/ 
0.698 

512 pixels per 
scanline 

[16,22] 

Airborne 
Visible 
Infrared 
Imaging 

Spectrometer 
(AVIRIS) 

224 17 400–2500 30 1
12 km and 614 

pixels 
per scanline 

[23] 

Airborne 
Prism 

Experiment 
(APEX) 

Up to 334 
VNIR  -199 

SWIR 
2–5 

380–970, 940–
2500 

28o 0.48 2.5–5 km [24]

HyMap 128 3–10 400–2500 60 2x2.5 512 pixels [25]
AISA - 

Airborne 
Imaging 

Spectrometer 

286 1 450 - 900 21 1 384 pixels per 
scanline 

[26] 
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