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Abstract: The present Global Navigation Satellite System (GNSS) can provide at least double-
frequency observations, and especially the Galileo Navigation Satellite System (Galileo) can provide
five-frequency observations for all constellation satellites. In this contribution, precision point posi-
tioning (PPP) models with Galileo E1, E5a, E5b, E5 and E6 frequency observations are established,
including a dual-frequency (DF) ionospheric-free (IF) combination model, triple-frequency (TF) IF
combination model, quad-frequency (QF) IF combination model, four five-frequency (FF) IF com-
bination models and an FF uncombined (UC) model. The observation data of five stations for seven
days are selected from the multi-GNSS experiment (MGEX) network, forming four time-frequency
links ranging from 454.6 km to 5991.2 km. The positioning and time-frequency transfer performances
of Galileo multi-frequency PPP are compared and evaluated using GBM (which denotes precise
satellite orbit and clock bias products provided by Geo Forschung Zentrum (GFZ)), WUM (which
denotes precise satellite orbit and clock bias products provided by Wuhan University (WHU)) and
GRG (which denotes precise satellite orbit and clock bias products provided by the Centre National
d’Etudes Spatiales (CNES)) precise products. The results show that the performances of the DF,
TF, QF and FF PPP models are basically the same, the frequency stabilities of most links can reach
sub10−16 level at 120,000 s, and the average three-dimensional (3D) root mean square (RMS) of
position and average frequency stability (120,000 s) can reach 1.82 cm and 1.18 × 10−15, respectively.
The differences of 3D RMS among all models are within 0.17 cm, and the differences in frequency
stabilities (in 120,000 s) among all models are within 0.08 × 10−15. Using the GRG precise product,
the solution performance is slightly better than that of the GBM or WUM precise product, the average
3D RMS values obtained using the WUM and GRG precise products are 1.85 cm and 1.77 cm, re-
spectively, and the average frequency stabilities at 120,000 s can reach 1.13 × 10−15 and 1.06 × 10−15,
respectively.

Keywords: Galileo; five-frequency; PPP; positioning; time-frequency transfer

1. Introduction

In recent decades, Global Navigation Satellite System (GNSS) have made great
progress, including Global Positioning System (GPS) modernization by the USA, the
BeiDou Navigation Satellite System (BDS) developed by China, the Galileo Navigation
Satellite System (Galileo) constructed by the European Union (UN), the Global Navigation
Satellite System in Russia (GLONASS) restored by Russia, and the Quasi-Zenith Satellite
System (QZSS) implemented by Japan, which have realized interoperability and mul-
tifrequency signal support [1–5]. The Galileo system operated by the European Space
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Agency (ESA) supports all satellite broadcasts of E1 (1575.42 MHz), E5a (1176.45 MHz),
E5b (1207.14 MHz), E5 (1191.795 MHz) and E6 (1278.75 MHz) five-frequency signals
throughout the constellation to provide positioning, navigation, and timing (PNT) services
worldwide [6,7]. Galileo multifrequency signals have improved capacity redundancy and
reliability, have provided more opportunities in low-noise combination, cycle-slip detection,
and repair [8,9], ambiguity resolution [10], positioning [7,11], time-frequency transfer [12]
and other aspects, and have faced more challenges of inter frequency bias (IFB), which
represents significant development potential.

With the support of the precise ephemeris and clock products provided by IGS Anal-
ysis Centers (ACs), precise point positioning (PPP) technology has gradually become a
popular research topic due to its characteristics of high precision and flexible operation and
has been widely used in the field of geosciences and time-frequency transfer [13,14]. The
PPP technique has been adopted by the Bureau International des Poids et Mesures (BIPM)
and many other international laboratories for international atomic time (TAI) maintenance
applications since 2009 [15,16].

Many scholars have investigated the performance of Galileo multifrequency signals in
positioning, timing, and orbit determination. Duong et al. [17] proved the multifrequency
advantage of PPP ambiguity resolution (AR) and found that the four-frequency Galileo
combination of E1/E5a/E5b/E6 provides the lowest geometric and ambiguity variance.
Tu et al. [18] studied the performance of real-time kinematics (RTK) using Galileo four-
frequency observations, and the results showed that multiple frequencies were much better
than single-frequency, and the coordinates’ standard deviation (STD) was improved by
approximately 30%. Liu et al. [19] proposed the method of PPP uncombined (UC) AR by
using Galileo triple-frequency observations. Qin et al. [20] investigated Galileo precise
time transfer with the COM (which denotes precise satellite orbit and clock bias products
provided by Center for Orbit Determination in Europe (CODE)), WUM (which denotes
precise satellite orbit and clock bias products provided by Wuhan University (WHU)),
GRM (which denotes multi GNSS precise satellite orbit and clock bias products provided
by Centre National d’Etudes Spatiales (CNES)), SHA (which denotes precise satellite
orbit and clock bias products provided by Shanghai Astronomical Observatory (SHAO)),
and GBM (which denotes precise satellite orbit and clock bias products provided by Geo
Forschungs Zentrum (GFZ)) final products and CLK93 (which denotes real-time (RT)
precise satellite orbit and clock bias products provided by CNES) RT products. Li et al. [21]
proved the superiority of the Galileo five-frequency signal in PPP rapid ambiguity solutions
compared with dual-frequency and triple-frequency solutions. Zhang et al. [22] focused
on the Galileo quad-frequency PPP time and transfer performance with E1, E5a, E5b and
E5 observations. Liu et al. [23] used the phase bias product provided by CNES to test
triple-frequency GPS/Galileo RT PPP AR and proved that triple-frequency PPP AR can
improve the convergence time performance and positioning accuracy compared with
dual-frequency PPP AR. Kuang et al. [24] studied RT UC orbit determination using Galileo
triple-frequency observations and the characteristics of satellite inter frequency clock bias
(IFCB). Su and Jin [25] analyzed the receiver clock, tropospheric delay, receiver IFBs and
differential code bias (DCB) of combined and UC five-frequency PPP models and proved
the consistency of several models.

Jin and Su [26] presented and evaluated PPP models using the single-, dual-, triple-,
and quad-frequency BDS observations, and the results show that the multi-frequency
BDS observations will greatly improve the PPP performances. Ge et al. [27] proved that
quad-frequency BDS-3 or Galileo PPP models could be used to time transfer, the stability
and accuracy of quad-frequency and dual-frequency IF model are the same.

Previous studies focused more on Galileo dual-frequency (DF), triple-frequency (TF)
and quad-frequency (QF) precise positioning but less on five-frequency (FF) precise po-
sitioning and precise time-frequency transfer. The contribution of this work is that we
established multiple IF and UC PPP mathematical models with Galileo five frequency
observations, and provided the processing method and specific formula of IFB parameters
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in the multi-frequency PPP model. In addition, based on the evaluation the multipath
combination noise of Galileo multi-frequency observations, the convergence time and
positioning accuracy of DF, TF, QF and FF models were evaluated by using precision
products of different ACs, and the performance of time-frequency transfer of Galileo E1,
E5a, E5b, E5 and E6 multi frequency signals is compared and analyzed systematically
for the first time. In Section 2, five mathematical PPP models of the Galileo E1, E5a, E5b,
E5 and E6 frequency observations are established; observation types, combination coeffi-
cients, ionospheric coefficients and noise amplification coefficients of the Galileo DF, TF,
QF, and FF PPP models are also summarized and compared. Section 3 introduces the
experimental data and their processing strategy. In Section 4, we use the GBM, WUM and
GRG (which denote precise satellite orbit and clock bias products provided by the Centre
National d’Etudes Spatiales (CNES)) precise products to evaluate the positioning and the
time-frequency transfer performance results of the Galileo DF, TF, QF, and FF PPP models.
Finally, we summarize this work and draw some conclusions.

2. Methodology

In this section, starting from GNSS raw observations, the Galileo FF UC PPP model, the
single ionosphere-free (IF) PPP model among five frequency observations, two QF IF PPP
model among five frequency observations, three TF IF PPP model among five frequency
observations and four DF IF PPP model among five frequency observations are established,
respectively. Then, the observation types, combination coefficients, ionospheric coefficients
and noise amplification coefficients of the Galileo DF, TF, QF, and FF PPP models are
summarized and compared.

2.1. GNSS Observation Model

GNSS pseudo range and carrier phase observations can be expressed as [28]:{
Pi

r,j = ρi
r + cdtr − cdti + MFi

r ZWDr + γj Ii
r,1 + dr,j − di

j + ζ i
j

Li
r,j = ρi

r + cdtr − cdti + MFi
r ZWDr − γj Ii

r,1 + λj

(
Ni

j + br,j − bi
j

)
+ ξ i

j
(1)

where the P and L denote pseudo range and carrier phase observation values in meters,
respectively; superscript i denotes the i-th satellite of the GNSS system; subscripts r and j
denote the receiver and frequency identifiers, respectively; for convenience, the frequency
identifiers 1, 2, 3, 4 and 5 in the Galileo system represent E1, E5a, E5b, E5 and E6 frequencies,
respectively; λ is wavelength corresponding to frequency j; ρ represents the geometric
distance between the satellite and receiver; c represents the speed of light in a vacuum; dtr
and dts denote receiver and satellite clock offsets in seconds, respectively; MF denotes the
wet mapping function; ZWD is zenith troposphere wet delay (ZWD); I denotes the slant
ionospheric delay; γj denotes frequency dependent ionospheric delay amplification factors,
γj = λ2

j /λ2
1; N is carrier phase integer ambiguity; d denotes the receiver uncalibrated code

delay (UCD) in meters; b denotes uncalibrated phase delay (UPD) in cycles; and ζ and ξ
represent the pseudo orange and carrier phase observation noises, respectively.

Defining the notations:
αmn = ( fm)

2/
[
( fm)

2 − ( fn)
2
]

βmn = −( fn)
2/
[
( fm)

2 − ( fn)
2
]

DCBr,mn = dr,m − dr,n

(2)

where αmn and βmn are IF combination frequency factors (m, n = 1, 2, 3, 4, 5; m 6= n).

2.2. Five-Frequency UC PPP Model

In the five-frequency UC PPP model, the ionospheric delay is related to E1/E5a IF
combined with DCB and cannot be separated, and the IFB parameters are required to
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compensate for the inconsistency of receiver UCDs at the E5b, E5 and E6 frequencies.
Then, the Galileo five-frequency UC pseudo range and carrier phase observations can be
expressed as:

pi
r,j = µi

r · x + cd̃tr + MFi
r ZWDr + γj Ĩi

r,j + ζ i
j (j = 1, 2)

pi
r,j = µi

r · x + cd̃tr + MFi
r ZWDr + IFBUCj + γj Ĩi

r,1 + ζ i
j (j = 3, 4, 5)

li
r,j = µi

r · x + cd̃tr + MFi
r ZWDr − γj Ĩi

r,1 + λjÑi
j + ξ i

j (j = 1, 2, 3, 4, 5)
(3)

with
cd̃tr = cdtr + dr,IF12

Ĩi
r,1 = Ii

r,1 + DCBr,12/(1− γ2)

IFBUCj = dr,j − dr,IF12 − γjDCBr,12/
(
1− γj

)
(j = 3, 4, 5)

λjÑi
j = λj

(
Nj + br,j − bi

j

)
− di

IF12
− dr,IF12 + γjDCBr,12/

(
1− γj

)
(j = 1, 2, 3, 4, 5)

(4)
where p and l are pseudo range and carrier phase observed minus computed (OMC) values
in meters, respectively; subscript IF denotes ionospheric-free combination; DCBr,12 denotes
E1 and E5a DCB of the receiver side; IFBuc denotes UC IFBs; µ denotes the unit vector
of the component from the receiver to the satellites; x denotes the vector of the receiver
position increments; and hat “~” denotes the reparametrized estimate.

2.3. Single Five-Frequency IF Combination (FF1) PPP Model

Galileo five-frequency observations can be combined according to the geometry-free,
ionospheric-free and minimum noise principles with a single ionospheric combination
observation and can be expressed as:

e1 + e + 2e3 + e4 + e5 = 1
e1γ1 + eγ22 + e3γ3 + e4γ4 + e5γ5 = 0
e2

1 + e2
2 + e2

3 + e2
4 + e2

5 = min
(5)

The coefficients following the above criteria can be uniquely determined as [25]:
e1 =

(
γ2 + γ3 + γ4 + γ5 − γ2

2 − γ2
3 − γ2

4 − γ2
5
)
/e

e2 =
(
γ2 + γ2γ3 + γ2γ4 + γ2γ5 − 1− γ2

3 − γ2
4 − γ2

5
)
/e

e3 =
(
γ3 + γ2γ3 + γ3γ4 + γ3γ4 − 1− γ2

2 − γ2
4 − γ2

5
)
/e

e4 =
(
γ4 + γ2γ4 + γ3γ4 + γ4γ5 − 1− γ2

2 − γ2
3 − γ2

5
)
/e

e5 =
(
γ5 + γ2γ5 + γ3γ5 + γ4γ5 − 1− γ2

2 − γ2
3 − γ2

4
)
/e

(6)

with

e = −(γ2 − 1)2 − (γ3 − 1)2 − (γ4 − 1)2 − (γ5 − 1)2 − (γ3 − γ2)
2

− (γ4 − γ2)
2 − (γ5 − γ2)

2 − (γ4 − γ3)
2 − (γ5 − γ3)

2 − (γ5 − γ4)
2 (7)

where e1, e2, e3, e4 and e5 denote the five-frequency IF combination coefficients, e is the
coefficient in the denominator.

When the five pseudo range measurements are combined within a single equation,
the FF1 PPP observation equation can be expressed as:{

pi
r,IF12345

= µi
r · x + cd̃tr + MFi

r ZWDr + ζ i
IF12345

li
r,IF12345

= µi
r · x + cd̃tr + MFi

r ZWDr + λIF12345 Ñi
IF12345

+ ξ i
IF12345

(8)

with {
cd̃tr = cdtr + dr,IF12345

λIF12345 Ñi
IF12345

= λi
IF12345

(
Ni

IF12345
+ br,IF12345 − bi

IF12345

)
− di

IF12
− dr,IF12345

(9)
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where the receiver clock offset will absorb the UCD of E1/E5a/E5b/E5/E6 IF combination.

2.4. Two Quad-Frequency IF Combinations (FF2) PPP Model

In the FF2 PPP model, E1/E5a/E5b/E5 and E1/E5a/E5b/E6 observations were se-
lected to form two quad-frequency IF combinations. Similarly, additional IFB parameters
were required to maintain compatibility between the two quad-frequency IF combinations.
Hence, the two quad-frequency IF combination PPP models can be formulated as follows:

pi
r,IF1234

= µi
r · x + cd̃tr + MFi

r ZWDr + ζ i
IF1234

pi
r,IF123j

= µi
r · x + cd̃tr + MFi

r ZWDr + IFBIF123j + ζ i
IF123j

(j = 5)

li
r,IF123j

= µi
r · x + cd̃tr + MFi

r ZWDr + λIF123j Ñ
i
IF1234

+ ξ i
IF123j

(j = 4, 5)
(10)

with
cd̃tr = cdtr + dr,IF1234

IFBIF123j = dr,IF123j − dr,IF1234 (j = 5)

λIF123j Ñ
i
IF123j

= λIF123j

(
Ni

IF123j
+ br,IF123j − bi

IF123j

)
− di

IF12
− dr,IF1234 (j = 4, 5)

(11)

where IFBIF1235 denotes the IFB parameters between the E1/E5a/E5b/E6 and E1/E5a/E5b/E6
code IF combinations.

2.5. Three Triple-Frequency IF Combinations (FF3) PPP Model

The FF3 PPP model for the Galileo five-frequency was implemented by combining
the three triple-frequency IF observations, and we chose E1/E5a/E5b, E1/E5a/E5 and
E1/E5a/E6 observations for combination. In this case, we needed to add two estimated
IFB parameters, which can be expressed as:

pi
r,IF123

= µi
r · x + cd̃tr + MFi

r ZWDr + ζ i
IF123

pi
r,IF12j

= µi
r · x + cd̃tr + MFi

r ZWDr + IFBIF12j + ζ i
IFIF12j

(j = 4, 5)

li
r,IF12j

= µi
r · x + cd̃tr + MFi

r ZWDr + λIF12j Ñ
i
IF12j

+ ξ i
IF12j

(j = 3, 4, 5)

(12)

with
cd̃tr = cdtr + dr,IF123

IFBIF12j = dr,IF12j − dr,IF123 (j = 4, 5)

λIF12j Ñ
i
IF12j

= λIF12j

(
Ni

IF12j
+ br,IF12j − bi

IF12j

)
− di

IF12
− dr,IF12j (j = 3, 4, 5)

(13)

where IFBIF124 and IFBIF125 denote the IFB parameters between the E1/E5a/E5b, E1/E5a/E6
and E1/E5a/E5b code IF combinations.

2.6. Four Dual-Frequency IF Combinations (FF4) PPP Model

The FF4 PPP model consists of the observation equation implemented by combining
the four DF IF observations. Theoretically, any two Galileo E1, E5a, E5b, E5, and E6 signals
can form a dual-frequency ionospheric-free combination. However, considering the noise
amplification coefficients after combination, we chose E1/E5a, E1/E5b, E1/E5 and E1/E6
signals for combination. In addition, it was necessary to note that the clock difference of
each combination is not consistent. In this case, we needed to add estimated IFB parameters,
which can be expressed as:

pi
r,IF12

= µi
r · x + cd̃tr + MFi

r ZWDr + ζ i
IF12

pi
r,IF1j

= µi
r · x + cd̃tr + MFi

r ZWDr + IFBIF1j + ζ i
IF1j

(j = 3, 4, 5)

li
r,IF1j

= µi
r · x + cd̃tr + MFi

r ZWDr + λIF1j Ñ
i
IF1j

+ ξ i
IF1j

(j = 2, 3, 4, 5)
(14)
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with
cd̃tr = cdtr + dr,IF12

IFBIF1j =
(
dr,j − dr,1γj

)
/
(
1− γj

)
− dr,IF12 (j = 3, 4, 5)

λIF1j Ñ
i
IF1j

= λIF1j

(
Ni

r,IF1j
+ br,IF1j − bi

IF1j

)
− di

IF12
− dr,IF12 (j = 2, 3, 4, 5)

(15)

where IFBIF13, IFBIF14 and IFBIF15 denote the IFB parameters between the E1/E5b, E1/E5,
E1/E6 and E1/E5a code IF combinations.

2.7. Comparison of Galileo Five Frequency PPP Models

Table 1 summarizes the types of observation values, combination coefficients, iono-
spheric delay coefficients and noise amplification coefficients of the dual-frequency, triple-
frequency, quad-frequency, and five-frequency PPP models. Among them, the FF2, FF3
and FF4 PPP models are composed of DF, TF and QF IF combinations, and additional IFB
parameters need to be estimated to maintain consistency among different equations. The
noise amplification factor of FF1 is smaller than that of other IF combinations. After the
filter converges and the ionosphere and ambiguity parameters are separated, the FF1, FF2,
FF3, FF4 and UC PPP models are equivalent.

Table 1. Summarization of Galileo DF, TF, QF and FF PPP models.

Models Observed Type E1 E5a E5b E5 E6 Ion Noise

DF E1/E5a 2.261 −1.261 / / / / 2.588
TF E1/E5a/E5b 2.315 −0.836 −0.479 / / / 2.507
QF E1/E5a/E5b/E5 2.317 −0.606 −0.274 −0.437 / / 2.450
FF1 E1/E5a/E5b/E5/E6 2.217 −0.680 −0.351 −0.512 0.326 / 2.423

FF2
E1/E5a/E5b/E5 2.317 −0.606 −0.274 −0.437 / / 2.450
E1/E5a/E5b/E6 2.255 −0.904 −0.545 0.193 / / 2.497

FF3
E1/E5a/E5b 2.315 −0.836 −0.479 / / / 2.507
E1/E5a/E5 2.293 0.734 −0.559 / / / 2.471
E1/E5a/E6 2.269 −1.244 −0.024 / / / 2.588

FF4

E1/E5a 2.261 −1.261 / / / / 2.588
E1/E5b 2.422 / −1.422 / / / 2.809
E1/E5 2.338 / / −1.338 / / 2.694
E1/E6 2.931 / / / −1.931 / 3.510

UC

E1 1.000 / / / / 1.000 1.000
E5a / 1.000 / / / 1.793 1.000
E5b / / 1.000 / / 1.703 1.000
E5 / / / 1.000 / 1.747 1.000
E6 / / / / 1.000 1.518 1.000

2.8. Date Selection and Processing Strategies

Five stations that can receive the Galileo E1/E5a/E5b/E5/E6 signal observations
over a period of 190–196 days in 2020 were selected from the international GNSS service
(IGS) multi-GNSS experiment (MGEX) network. In order to ensure the reliability of time-
frequency transfer, the stations of UTC (Coordinated Universal Time) laboratories were
preferred in our research. The sampling interval of the observations was 30 s. These
stations were all equipped with high-precision atomic clocks. With the BRUX station as
the reference station, four time-frequency links ranging from 454.6 km to 5591.2 km were
established. Figure 1 shows the distribution of the selected MGEX stations, the information
of which is listed in Table 2.
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Figure 1. Geographic distribution of the selected stations.

Table 2. List of selected MGEX stations.

Stations Receiver Antenna Clock Country Distance

BRUX SEPT POLARX5TR JAVRINGANT_DM UTC (ORB) Belgium /
CEBR SEPT POLARX5TR SEPCHOKE_B3E6 H-MASER Spain 1331.6 km
PTBB SEPT POLARX5TR LEIAR25.R4 UTC (PTB) Germany 454.6 km

ROAG SEPT POLARX5TR LEIAR25.R4 UTC (ROA) Spain 1796.3 km
USN7 SEPT POLARX5TR TPSCR.G5 UTC (USNO) America 5991.2 km

The code and phase observation noises were set to 0.3 m and 3.0 mm, respectively,
and elevation-dependent weighting for the observations was applied. Since the receiver
phase center offset (PCO) and phase center variation (PCV) corrections for Galileo were not
available, we used the GPS signal corrections for Galileo signals. Such a strategy has been
used effectively by various authors [29,30]. In addition, for the E5b, E5, and E6 observables,
receiver PCO and PCV corrections for the GPS L2 frequency were used. Since different
observations were used in the same satellite clock estimation, there were IFCBs in the
E5b, E5 and E6 observations [31]. Relevant research shows that the consistency of Galileo
multifrequency time-dependent UCDs can be ensured; thus, IFCBs in the Galileo system
can be neglected [30]. The detailed processing strategies are summarized in Table 3.

Table 3. Detailed processing strategies.

Items Strategies

Solutions DF/TF/QF/FF1/FF2/FF2/FF3/FF4/UC PPP models
Observations E1/E5a/E5b/E5/E6 observations

Elevation cutoff 7◦

Orbits and clock GBM, WUM and GRG precise products

Satellite DCB
CAS BSX products [32], E1I : −β12 · DCB12, E5a : α12 · DCB12,

E5b:α12 · DCB12 − DCB23, E5:α12 · DCB12 − DCB24,
E6:α12 · DCB12 − DCB25

Earth rotation Corrected [33]
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Table 3. Cont.

Items Strategies

Relativistic effect Corrected [34]
Phase windup effect Corrected [35]

Tide effect Corrected [36]
PCO/PCV IGS14.atx

Station coordinates Estimated as constants
Receiver clock Estimated as white noises (104 m2/s)

Ionospheric delay
UC: Estimated as random walk process

DF/TF/QF/FF1/FF2/FF3/FF4: Eliminated
first-order by IF combinations

Tropospheric delay
Dry component: GPT add Saastamoinen model [37,38]

Wet component: Estimated as random walk part (10−8 m2/s),
GMF mapping function [39]

Ambiguities Estimated as constant, float solution

3. Results

First, we evaluated the number of visible satellites, time dilution of precision (TDOP)
and multipath noises of BRUX, CEBR, PTBB, ROAG and USN7 stations with Galileo
satellites. Then, the positioning performances and time-frequency transfer stabilities of
four models (DF, TF, QF and FF1) composed of dual-frequency, triple-frequency, quad-
frequency, and five-frequency observations were compared by PPP solution; the positioning
accuracies, IFB parameters and time-frequency transfer stabilities of the five-frequency
observation models (FF1, FF2, FF2, FF3, FF4 and UC) were also evaluated. Finally, we used
different AC precise products to compare and evaluate the performances of different PPP
models. It should be noted that the positioning performance was assessed with respect
to the coordinates from the IGS SNX file, and the principle of convergence was that the
three-dimensional (3D) bias of twenty successive epochs is better than 10.0 cm; in addition,
the 3D root mean square (RMS) values after convergence were counted. The modified
Allan deviation (MADEV) was used as the stability index of time-frequency transfer.

3.1. Number of Visible Satellites, TDOP and Multipath Combination Noise Analysis

Until July 2020, the Galileo system had twenty-four valid satellites in orbit, including
four in-orbit validation (IOV) satellites and twenty fully operational capability (FOC)
satellites. The distribution of the average number of visible satellites and average position
dilution of precision (PDOP) values for the GPS and Galileo constellations with a cutoff
elevation of 5.0 degrees with a 1◦ × 1◦ grid on days of year (DOYs) 190 to 196 in 2020 are
shown in Figure 2.

As shown in Figure 2, the number of visible satellites and the PDOP value of the GPS
and Galileo constellations are symmetrically distributed with the equator, which shows
a strong correlation with the dimension, and the positioning performance is better near
the equator; the average number of visible satellites of Galileo ranges from 7.0 to 10.0, and
the average PDOP value of Galileo ranges from 1.6 to 2.1. By comparison, the average
number of visible satellites of Galileo is slightly less than that of GPS, and the PDOP value
of Galileo is slightly larger than that of GPS.

Figure 3 presents the number of visible satellites and TDOP values of the five stations.
When the cutoff satellite elevation is 7 degrees, the average numbers of visible satellites at
stations BRUX, CEBR, PTBB, ROAG and USN7 are 7.08, 6.6, 7.05, 6.68 and 8.85, respectively.
Among them, the number of visible satellites with gross error removed at some moments
of CEBR and USN7 stations are less than 4.0, which cannot be a PPP solution. It can be
observed from the right figure that the TDOP values of the five stations all have some noise
phenomenon, which will affect the accuracy of the time-frequency transfer of this epoch.
The average TDOPs of the BRUX, CEBR, PTBB, ROAG and USN7 stations are 1.12, 1.29,
1.14, 1.26 and 1.26, respectively.
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As shown in Figure 4, the multipath combination noise of each frequency is within
± 2.0 m, among which the multipath combination noise of the E1 frequency is the largest
and that of the E5 frequency is the smallest. When the cutoff elevation is 7 degrees, the
BRUX station E1, E5a, E6, E5 and E5b multipath combination noise RMS values are 0.224 m,
0.166 m, 0.190 m, 0.116 m and 0.198 m, respectively; the CEBR station E1, E5a, E6, E5 and
E5b multipath combination noise RMS values are 0.319 m, 0.305 m, 0.350 m, 0.144 m and
0.312 m, respectively; the PTBB station E1, E5a, E6, E5 and E5b multipath combination
noise RMS values are 0.311 m, 0.209 m, 0.243 m, 0.161 m and 0.247 m, respectively; the
ROAG station E1, E5a, E6, E5 and E5b multipath combination noise RMS value are 0.166 m,
0.126 m 0.148 m, 0.083 m, and 0.149 m, respectively; and the USN7 station E1, E5a, E6, E5
and E5b multipath combination noise RMS values are 0.378 m, 0.307 m, 0.355 m, 0.130 m
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and 0.331 m, respectively. It is obvious that the multipath combination noise of the CEBR
station and USN7 station is the largest and that of the ROAG station is the smallest.
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3.2. Performance of the DF, TF, QF and FF1 PPP Models

As shown in Figure 5, the positioning RMS values and convergence times of the DF,
TF, QF and FF1 PPP models are close to each other. With the increasing of the frequency,
the positioning performance has no obvious improvement, and some stations have even
weakened. Among them, the PPP performance of station USN7 is obviously weaker than
that of the other stations, especially the E and N components, which have large changes
in the TF PPP model. The convergence times of the BRUX, CEBR and ROAG stations are
less than 15.0 min, and those of the PTBB and USN7 stations are approximately 25.0 min.
According to the statistics, the average 3D RMS values of the DF, TF, QF and FF1 PPP
models are 1.88 cm, 1.95 cm, 1.85 cm, and 1.78 cm, respectively; the average convergence
times are 16.6 min, 16.6 min, 16.7 min and 17.3 min, respectively.

The clock offset sequences of the DF, TF, QF and FF1 PPP models are shown in Figure 6.
Due to the influence of IFB parameters, the clock offsets of the various PPP models show
a certain deviation, and the deviations of the TF and QF models are minimal. The RMS
deviations between the TF, QF, FF1 and DF PPP models of the BRUX-CEBR link are 0.30 ns,
0.06 ns and 1.46 ns, respectively; the RMS deviations between the TF, QF, FF1 and DF
PPP models of the BRUX-PTBB link are 0.89 ns, 0.93 ns and 0.26 ns, respectively; the RMS
deviations between the TF, QF, FF1 and DF PPP models of the BRUX-ROAG link are 1.66 ns,
1.50 ns and 0.21 ns, respectively; and the RMS deviations between the TF, QF, FF1 and DF
PPP models of the BRUX-USN7 link are 0.49 ns, 0.50 ns and 0.99 ns, respectively.

As shown in Table 4, the average values among the four time-frequency links in each
model are completely consistent, and the RMS values have only slight deviations, which
indicates that the multifrequency stability is not significantly improved compared with the
dual-frequency stability. The RMS value of the inter-epoch difference of the BRUX-CEBR
link is approximately 10.5 ps, and those of the other three time-frequency links are less
than 8.2 ps, which indicates that the frequency stability of the BRUX-CEBR link is worse.
In addition, it is noted that the hydrogen atomic clock attached to the BRUX-CEBR link has
obvious clock drift, which is related to the performance of the CEBR station atomic clock.
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(d) BRUX-USN7 time-frequency link.
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Table 4. Clock offset epoch difference results of average (AVG) and root mean square (RMS) at four
time-frequency links for the DF, TF, QF and FF1 PPP models on DOYs 190 to 196 in 2020 (ps).

Items Links DF TF QF FF1

AVG

BRUX-CEBR 7.38 7.38 7.38 7.38
BRUX-PTBB 0.01 0.01 0.01 0.01

BRUX-ROAG 0.08 0.08 0.08 0.08
BRUX-USN7 −0.01 −0.01 −0.01 −0.01

RMS

BRUX-CEBR 10.54 10.44 10.50 10.49
BRUX-PTBB 7.02 6.88 6.97 6.87

BRUX-ROAG 7.22 7.09 7.17 7.14
BRUX-USN7 7.98 7.88 8.02 8.14

Figure 7 presents a comparison of the frequency stabilities for the DF, TF, QF and FF1
PPP models, which are generally identical for different solutions at the four time-frequency
links. The frequency stability of the BRUX-PTBB link reaches the 10−16 level in 60,000 s and
5.31 × 10−16 in 120,000 s, the BRUX-USN7 link reaches 9.25 × 10−16 in 120,000 s, and those
of the other two links are also close to the 10−16 level in 120,000 s. The average frequency
stabilities at 120,000 s for the four time-frequency links surpass 1.23 × 10−15 for the DF
PPP model, 1.15 × 10−15 for the TF PPP model, 1.23 × 10−15 for the QF PPP model and
1.23 × 10−15 for the FF1 PPP model.
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3.3. Performance of the FF1, FF2, FF3, FF4 and UC PPP Models

Figure 8 presents the positioning performances of the FF1, FF2, FF3, FF4 and UC PPP
models. The positioning performances of several Galileo five-frequency PPP models are
basically the same, but USN7 station E and U component RMS values by UC PPP are
slightly worse. According to the statistics, the average 3D RMS values of the DF, TF, QF
and FF1 PPP models are 1.78 cm, 1.85 cm, 1.82 cm, 1.74 cm, and 1.73 cm, respectively; and
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the average convergence times are 17.3 min, 16.6 min, 16.6 min, 17.3 min, and 17.4 min,
respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 7. MADEV at four time-frequency links for the DF, TF, QF and FF1 PPP solutions on DOYs 
190 to 196 in 2020. (a) BRUX-CEBR time-frequency link; (b) BRUX-PTBB time-frequency link; (c) 
BRUX-ROAG time-frequency link; and (d) BRUX-USN7 time-frequency link. 

3.3. Performance of the FF1, FF2, FF3, FF4 and UC PPP Models 
Figure 8 presents the positioning performances of the FF1, FF2, FF3, FF4 and UC PPP 

models. The positioning performances of several Galileo five-frequency PPP models are 
basically the same, but USN7 station E and U component RMS values by UC PPP are 
slightly worse. According to the statistics, the average 3D RMS values of the DF, TF, QF 
and FF1 PPP models are 1.78 cm, 1.85 cm, 1.82 cm, 1.74 cm, and 1.73 cm, respectively; and 
the average convergence times are 17.3 min, 16.6 min, 16.6 min, 17.3 min, and 17.4 min, 
respectively. 

 
Figure 8. Positioning performance of the BRUX, CEBR, PTBB, ROAG and USN7 stations by the FF1, 
FF2, FF3, FF4 and UC PPP solutions on DOYs 190 to 196 in 2020. (a) E Component RMS value; (b) 
N component RMS value; (c) U component RMS value; and (d) convergence time. 

M
A

D
EV

M
A

D
EV

M
A

D
EV

M
A

D
EV

(a)

BRUX CEBR PTBB ROAG USN7
Stations

0

0.5

1

1.5

E 
C

om
po

ne
nt

 (c
m

) 

(b)

BRUX CEBR PTBB ROAG USN7
Stations

0

0.2

0.4

0.6

0.8

1

N
 C

om
po

ne
nt

 (c
m

) 

FF1 FF2 FF3 FF4 UC

(c)

BRUX CEBR PTBB ROAG USN7
Stations

0

1

2

3

U
 C

om
po

ne
nt

 (c
m

) (d)

BRUX CEBR PTBB ROAG USN7
Stations

0

10

20

30

C
on

ve
rg

en
ce

 ti
m

e (
m

in
)

Figure 8. Positioning performance of the BRUX, CEBR, PTBB, ROAG and USN7 stations by the FF1, FF2, FF3, FF4 and UC
PPP solutions on DOYs 190 to 196 in 2020. (a) E Component RMS value; (b) N component RMS value; (c) U component
RMS value; and (d) convergence time.

Figure 9 presents the clock offsets of five-frequency PPP models, and each clock offset
sequence has the same trend, which proves the correctness of the algorithm. In addition,
there are some deviations among the clock offsets, among which the FF1 and FF2 PPP
models and the FF4 and UC PPP models have minimum deviations. Based on the clock
offset of the FF1 model, the RMS values of FF2, FF3, FF4 and UC compared with FF1
in the BRUX-CEBR link are 1.56 ns, 1.86 ns, 1.49 ns and 1.44 ns, respectively; the RMS
values of the FF2, FF3, FF4 and UC PPP models compared with the FF1 PPP model in the
BRUX-PTBB link are 1.17 ns, 1.15 ns, 0.25 ns and 0.25 ns, respectively; the RMS values of
FF2, FF3, FF4 and UC compared with FF1 in the BRUX-ROAG link are 1.71 ns, 1.87 ns,
1.49 ns and 0.23 ns, respectively; and the RMS values of FF2, FF3, FF4 and UC compared
with FF1 in the BRUX-ROAG link are 1.51 ns, 1.01 ns and 1.01 ns, respectively.

As shown in Table 5, the average RMS values of the BRUX-CEBR, BRUX-PTBB, BRUX-
ROAG and BRUX-USN7 time-frequency links are 10.48 ps, 6.90 ps, 7.11 ps and 8.09 ps,
respectively; and the average RMS values of the FF1, FF2, FF3, FF4 and UC models are
8.16 ps, 8.16 ps, 8.17 ps, 8.08 ps and 8.16 ps, respectively. It is worth noting that although in
the UC model, one needs to estimate the ionospheric delay since the receiver clock bias is
easily affected by the unmodeled ionospheric delay, the AVG and RMS of the UC model
are still close to those of the IF PPP models.

Figure 10 presents comparisons of the MADEVs for the FF1, FF2, FF3, FF4 and UC PPP
models. The MADEVs of the PPP models with different five-frequency combinations are
basically the same. The average frequency stabilities at 120,000 s for four time-frequency
links surpassed 1.23 × 10−15 for the FF1 PPP model, 1.22 × 10−15 for the FF2 PPP model,
1.20 × 10−15 for the FF3 PPP model and 1.24 × 10−15 for the UC PPP model.
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Table 5. Clock offset epoch difference results at four time-frequency links for the FF1, FF2, FF3, FF4
and UC PPP models on DOYs 190 to 196 in 2020 (ps).

Item Links FF1 FF2 FF3 FF4 UC

AVG

BRUX-CEBR 7.38 7.38 7.40 7.38 7.38
BRUX-PTBB 0.01 0.01 0.01 −0.01 0.01

BRUX-ROAG 0.08 0.08 0.08 0.08 0.08
BRUX-USN7 −0.01 −0.01 −0.01 −0.01 −0.01

RMS

BRUX-CEBR 10.49 10.51 10.53 10.40 10.46
BRUX-PTBB 6.87 6.92 6.95 6.84 6.92

BRUX-ROAG 7.14 7.15 7.16 7.09 7.03
BRUX-USN7 8.14 8.04 8.04 8.00 8.23

As shown in Figure 11, the IFB sequences are basically stable, and the IFB values
of the FF4 model are the largest. The average RMS values of IFBIF13, IFBIF14, and IFBIF15
in the FF4 PPP model are 7.8 ns, 4.1 ns, and 9.9 ns, respectively; and the average STD
values are 0.04 ns, 0.03 ns, and 0.15 ns, respectively. The average RMS values of IFBUC3,
IFBUC4, and IFBUC5 in the UC PPP model are 5.49 ns, 3.09 ns, and 5.15 ns, respectively, and
the corresponding average STD values are 0.03 ns, 0.02 ns, and 0.04 ns, respectively. As
mentioned, the IFBIF15 STD value of the FF4 PPP model is the largest, leading to the receiver
clock bias, and IFBIF15 cannot be accurately separated, which will affect the time-frequency
transfer performance.
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Figure 11. IFB sequences at five stations for the FF2, FF3, FF4 and UC PPP models on DOYs 190 to 196 in 2020. (a) BRUX
station; (b) CEBR station; (c) PTBB station; (d) ROAG station; and (e) USN7 station.
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3.4. PPP Performance by Using Different AC Products

To further evaluate the performance of Galileo’s five-frequency PPP model, the WUM
and GRG precise ephemeris and clock products are used for experiments. It should be
noted that the GRG clock product has absorbed the UPD of the satellite side, and the
GBM and WUM clock products have absorbed the UCD of the satellite side, with some
differences. The average convergence times and average 3D RMS values at five stations of
the DF, TF, QF, FF1, FF2, FF3, FF4 and UC PPP models are shown in Figure 12.
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Figure 12. Average 3D RMS values and average convergence times by using the GBM, WUM and GRG precise product PPP
solutions on DOYs 190 to 196 in 2020. (a) 3D RMS value; (b) convergence time.

The convergence times of the WUM product are significantly longer than those of the
GBM and GRG products, and the average convergence time of the GRG product is the
shortest. Compared with the dual-frequency PPP model, the multifrequency PPP model
does not significantly improve the convergence speed. The average convergence times
using the GBM, WUM and GRG products are 16.8 min, 22.2 min, and 15.7 min, respectively.
Compared with the results using the GRM and WUM products, the average convergence
speed obtained using the GRG product is increased by 6.8% and 29.1%, respectively. The
average 3D RMS values obtained using the GBM, WUM and GRG products are 1.82 cm,
1.85 cm, and 1.77 cm, respectively. Compared with the results using the GRM and WUM
products, the positioning accuracy achieved using the GRG product is improved by 2.7%
and 4.3%, respectively.

Limited by space, Figure 13 only shows the clock offsets of the FF1 PPP model by
using the GBM, WUM and GRG precise products. The clock offsets of the BRUX-CEBR,
BRUX-PTBB and BRUX-ROAG time-frequency links are completely consistent, and there
is only a small constant deviation term. Although the BRUX-USN7 clock offset trend
is consistent, the deviation is slightly larger, which may be related to the quality of the
observations of USN7. According to statistics, the deviations of the BRUX-CEBR link
using GBM products compared with WUM and GRG products are 0.02 ns and 0.03 ns,
respectively; the deviations of the BRUX-PTBB link using GBM products compared with
WUM and GRG products are all 0.01 ns; the deviations of the BRUX-ROAG link using
GBM products compared with WUM and GRG products are all 0.03 ns; and the deviations
of the BRUX-USN7 link using GBM product compared with WUM and GRG products are
0.08 ns and 0.09 ns, respectively.
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Table 6 shows the RMS values of the epoch difference by using WUM and GRG
precision products for the PPP solution. The average RMS values of the BRUX-CEBR,
BRUX-PTBB, BRUX-ROAG and BRUX-USN7 time-frequency links with the WUM product
are 10.54 ps, 7.01 ps, 7.14 ps, and 8.24 ps, respectively, while those of the BRUX-CEBR,
BRUX-PTBB, BRUX-ROAG and BRUX-USN7 time-frequency links with the GRG product
are 10.57 ps, 7.02 ps, 7.22 ps, and 8.18 ps, respectively, which is consistent with the solution
results obtained using the precise GBM product.

Table 6. Clock offset epoch difference RMS at four time-frequency links by the WUM and GRG
product PPP solutions on DOYs 190 to 196 in 2020 (ps).

Products Links DF TF QF FF1 FF2 FF3 FF4 UC

WUM

BRUX-CEBR 10.62 10.59 10.55 10.49 10.49 10.52 10.52 10.55
BRUX-PTBB 7.1 7.02 7.04 6.96 7.02 7.02 6.95 6.98

BRUX-ROAG 7.27 7.11 7.16 7.12 7.16 7.16 7.04 7.13
BRUX-USN7 8.08 9.02 8.05 8.15 8.11 8.08 8.34 8.06

GRG

BRUX-CEBR 10.65 10.53 10.54 10.51 10.55 10.51 10.76 10.52
BRUX-PTBB 7.08 7.01 7.00 6.92 6.99 6.91 7.31 6.96

BRUX-ROAG 7.30 7.24 7.21 7.17 7.20 7.16 7.27 7.19
BRUX-USN7 8.07 8.11 8.00 8.12 8.04 8.11 8.92 8.03

As shown in Figure 14, the frequency stabilities of the BRUX-CEBR, BRUX-PTBB and
BRUX-USN7 links can reach the 10−16 level, and the frequency stability of the BRUX-USN7
link using the GRG product is the most significantly improved compared to those using
WUM and GRG products, which may be related to the observation quality of USN7 and the
absorption of satellite UPD by GRG clock products. The average frequency stabilities over
four links using GBM, WUM and GRG products in 120,000 s are 1.18 × 10−15, 1.13 × 10−15

and 1.06 × 10−15, respectively. Using WUM products, the average frequency stabilities
of the DF, TF, QF, FF1, FF2, FF3, FF4 and UC PPP models are 1.12 × 10−15, 1.13 × 10−15,
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1.13 × 10−15, 1.15 × 10−15, 1.12 × 10−15, 1.11 × 10−15, 1.13 × 10−15, and 1.15 × 10−15,
respectively, while using GRG products, the corresponding average frequency stabilities
are 1.05 × 10−15, 1.07 × 10−15, 1.05 × 10−15, 1.06 × 10−15, 1.05 × 10−15, 1.03 × 10−15,
1.05 × 10−15 and 1.10× 10−15, respectively. All these results demonstrate that the frequency
stability using the GRG product is better than those using WUM and GBM products at
120,000 s. It can also be found that compared with the DF model, the multifrequency
model’s frequency stabilities are not significantly improved, which may be limited by
the additional estimation of IFB parameters and the accuracy of multifrequency DCB
products [40].
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Figure 14. MADEV of the PPP solution by using GBM, WUM and GRG precision products at 120,000 s. (a) BRUX-CEBR
time-frequency link; (b) BRUX-PTBB time-frequency link; (c) BRUX-ROAG time-frequency link; and (d) BRUX-USN7
time-frequency link.

To deeply analyze the frequency transfer stability of the BRUX-USN7 link, Figure 15
shows the frequency stability of the BRUX-USN7 link by using different ACs precision
products. The frequency stability obtained using the GBM, WUM and GRG products before
30,000 s is completely consistent, but the frequency stability achieved using GRG products
between 30,000 s and 120,000 s is significantly improved compared with using the GBM
and WUM products. Compared with GBM and WUM, the stability obtained using GRG
products is increased by 33.83% and 40.62% on average, respectively, and with the increase
in time, the improvement range of stability gradually increases, which indicates that using
GRG products has certain advantages over using GBM and WUM products in long-term
frequency stability.

4. Discussion

With GNSS interoperability and support for multiple signal frequencies, the era of
multi frequency and multi system PNT services has come. Compared with the traditional
DF model, the multi frequency combination will be able to look for smaller noise coefficients,
improve the reliability of the system, and help to achieve fast fixed ambiguity. At the same
time, it will also face the challenge of IFB and IFCB processing in multi frequency signals.
This research is a new exploration of Galileo five frequency signal PPP models, which
systematically realizes the comparison and evaluation of Galileo TF, DT, FF, and DF models
in terms of precision positioning and time-frequency transfer performance. Although the
noise amplification factor of some multi frequency combination models decreases, the
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estimated IFB parameters are increased with the increase in the component observation
equation. The precise separation of IFBs from clock bias and ambiguity parameters, the
setting of multi frequency observation noise and the accuracy of multi frequency DCB
products also affect the performance of five frequency PPP models. With the improvement
of multi frequency DCB products, combined with the advantages of multi-frequency signals
in redundancy, low noise, and long wavelength, it is reasonable to consider that Galileo
five frequency signal will be more widely used in the future. In subsequent research, we
will determine the noise of multi frequency observations and explore the performance of
multi frequency signal in terms of ambiguity resolution.
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It should be noted that in order to meet the performance of time-frequency transfer,
we need to select the stations that support the Galileo five-frequency observation signals
and are connected the external high-precision hydrogen atomic clocks. After eliminating
stations with poor data quality and choosing the preferred stations of UTC laboratories,
there are only a few proper suitable stations in the MGEX network. At the same time,
scientists are more concerned about the index of the daily stability, which can basically
reflect the best performance of the atomic clocks. The time-frequency links selected in this
study are very representative, and the length of the observations can meet the requirements
of short-term stability and long-term stability. In addition, our study evaluates the perfor-
mance of positing and time-frequency transfer of double-, triple-, quad- and five-frequency
PPP models, focusing on the comparison of results among different PPP models. Increasing
the length of observations has no obvious practical significance and has little effect; the
observations selected in our study can fully support our conclusions. The application of
Galileo multi-frequency PPP solutions during different ionospheric active periods requires
further investigation.

5. Conclusions

In this contribution, the mathematical PPP model of Galileo five-frequency observa-
tions is established; observation types, combination coefficients, ionospheric coefficients,
and noise amplification coefficients from the DF to FF PPP models are also compared.
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Ranging from 464.6 km to 5991.2 km in four time-frequency links, there are seven-day
observations from stations BRUX, CEBR, PTBB, ROAG and USN7 of the MGEX network.
GBM, WUM and GRG precision orbits and clock products are used to evaluate the posi-
tioning performance and time-frequency transfer stability of the Galileo DF, TF, QF and FF
PPP models.

Compared with the DF observation combination, although the multifrequency ob-
servation combination reduces noise and increases the redundancy and reliability of the
observation equation, the positioning and time-frequency transfer performance are not
significantly improved. The average 3D RMS values of the DF, TF, QF and FF1 PPP models
are 1.88 cm, 1.95 cm, 1.85 cm, and 1.78 cm, respectively; and the average frequency stabili-
ties of 120,000 s are 1.23 × 10−15, 1.15 × 10−15, 1.23 × 10−15, and 1.23 × 10−15, respectively.
The differences in 3D RMS among the DF, TF, QF and FF1 PPP models are within 0.17 cm,
and the differences in frequency stabilities are within 0.08 × 10−15. The performances of
FF1, FF2, FF3, FF4 and UC PPP are also consistent with each other, the differences in 3D
RMS values among the FF1, FF2, FF3, FF4 and UC PPP models are within 0.12 cm, and the
differences in the frequency stabilities are within 0.02 × 10−15.

When using WUM and GRG precise products, the differences among the DF, TF, QF
and FF PPP models in both positioning and time-frequency transfer performances are quite
small, which is consistent with the results obtained using GBM products. The average
convergence time obtained using the WUM product is the longest (22.2 min) and that
which was achieved using the GRG product is the shortest (15.7 min). Using the GBM,
WUM and GRG products, the average 3D RMS values are 1.82 cm, 1.85 cm, and 1.77 cm,
respectively, and the average frequency stabilities at 120,000 s are better than 1.18 × 10−15,
1.13 × 10−15 and 1.06 × 10−15, respectively. These results show that the PPP performance
using the GRG product is slightly better than that of GBM and WUM products, especially
in terms of the long-term frequency stability of the BRUX-UNS7 link.
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