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Abstract: Due to differences in external imaging conditions, multispectral images taken at different
periods are subject to radiation differences, which severely affect the detection accuracy. To solve
this problem, a modified algorithm based on slow feature analysis is proposed for multispectral
image change detection. First, single-band slow feature analysis is performed to process bitemporal
multispectral images band by band. In this way, the differences between unchanged pixels in
each pair of single-band images can be sufficiently suppressed to obtain multiple feature-difference
images containing real change information. Then, the feature-difference images of each band are
fused into a grayscale distance image using the Euclidean distance. After Gaussian filtering of
the grayscale distance image, false detection points can be further reduced. Finally, the k-means
clustering method is performed on the filtered grayscale distance image to obtain the binary change
map. Experiments reveal that our proposed algorithm is less affected by radiation differences and
has obvious advantages in time complexity and detection accuracy.

Keywords: change detection; multispectral remote sensing image; slow feature analysis

1. Introduction

Remote sensing change detection is a technology that discovers the changes of ground
objects by analyzing remote sensing images taken in different periods [1]. This technology
has served in many fields including urban change analysis [2], environmental monitor-
ing [3], land management [4], and natural disaster monitoring [5]. Multispectral remote
sensing images are the most important data source in the field of optical remote sensing
change detection. Because multispectral remote sensing images have multiple receiving
bands from visible light to infrared, it is easy to detect targets that may not be detected
by single-channel remote sensing images. Compared with hyperspectral remote sensing
images containing a great deal of redundant information and noise, multispectral images
have higher application value because of their lower requirements for data preprocessing.
With the rapid development of satellite technology, the amount of remote sensing image
data is growing exponentially. This means that remote sensing image processing needs
faster processing speed and higher precision. Therefore, it is of great practical significance
to efficiently use the multiband information from multispectral images to quickly and
objectively reflect the changes of ground objects [6].

Generally, the discovery of change information is the most essential part of remote
sensing change detection [7]. To identify changes easily, some methods, including image
differences, image ratios, and change vector analysis (CVA) [8], aim to measure the gray
difference between bitemporal images. Other image transformation methods, such as the
Gram–Schmidt transformation [9], principal component analysis (PCA) [10], multivariate
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alteration detection (MAD) [11–13], and slow feature analysis (SFA) [14], map the input
image data into the appropriate feature space to more easily separate the changed and un-
changed pixels. Recently, some machine learning methods, such as neural networks [15,16]
and dictionary learning [17], have also been applied to change detection.

Although most current methods focus on improving change detection accuracy, the
results are often not satisfactory due to deviations. The most important deviation comes
from the differences in external imaging conditions, such as the atmospheric and radiation
conditions, solar angle, sensor calibration, and soil moisture. In these cases, even if the
ground object does not change, bitemporal multispectral images will have different spectral
values. That is, the difference between unchanged pixels in bitemporal images will not
be zero. In addition, this deviation also leads to the following common problems in
change detection: real changes and false changes are difficult to distinguish; subtle changes
are difficult to identify. Therefore, how to reduce the false changes caused by imaging
conditions and improve the detection accuracy of real changes is one of the most significant
research topics of change detection.

In traditional methods, image transformation algorithms such as PCA and GS hope to
improve the degree of separation between real changes and false changes by strengthening
the change information. However, due to the diversity of real change information, it is
difficult for these methods to find the most effective projection direction to achieve the
desired accuracy. Compared with a variety of changed features, unchanged features show
the same and relatively simple changing trend due to the existence of radiation differences.
Therefore, the degree of separation between real change and false change can be improved
by restraining the radiation difference of unchanged features. Based on this idea, a new
slow feature analysis algorithm for multispectral remote sensing images is proposed [18].
Its experimental results show its satisfactory performance in change detection, but the
disorder distribution of change information seriously affects the detection accuracy. On the
basis of the SFA algorithm, Wu et al. [19] further proposed iterative slow feature analysis
(ISFA). In this method, the chi-square distance and chi-square distribution are used to
determine the weight of pixels, aiming to make the unchanged pixels more important in
the calculation and the changed pixels less important in the calculation. Although the
experimental results show its obvious advantages and application potential, its accuracy
is still easily affected by the disorderly distribution of the change information, because
the feature bands with small eigenvalues do not necessarily have rich enough variation
information, but they have a large weight in the final chi-square distance. Therefore, the
detection accuracy of ISFA is even inferior to SFA in some cases. A subsequent study [20]
demonstrated the application of ISFA on stacking pixel- and object-level spectral features
rather than only on image fragments or pixels. However, it is an urgent problem to
automatically determine the optimal segmentation scale of object-level features for different
images. With the development of machine learning methods, neural network methods
have also been applied to change detection of multitemporal remote sensing images. In
the latest literature [21], a method of deep slow feature analysis (DSFA) for pixel-level
change detection is proposed. This method combines the deep neural network with SFA,
aiming at using the powerful nonlinear function approximation ability of the deep neural
network to better represent the original remote sensing data, and then deploying the SFA
module to suppress the spectral difference of unchanged pixels, so as to highlight the
change information. This algorithm adopts the strategy of randomly selecting unchanged
pixels from CVA predetection as training samples, which solves the problem that training
network models need a lot of prior marking data. However, the detection results are easily
affected by the CVA predetection accuracy and the quality of training samples.

At present, SFA has been proven to be a remote sensing change detection algorithm
with good stability [22]. However, the disordered distribution of change information in
multiple feature bands seriously affects the detection accuracy of this algorithm. In order
to avoid this problem, a novel multispectral change detection algorithm is proposed in this
paper. In the proposed algorithm, the idea of slow feature analysis is used to process the
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bitemporal multispectral image band by band. In this way, the radiation difference of each
band can be effectively suppressed, and rich change information exists in each band. Since
multispectral images can represent the features of ground objects in different bands, it is
possible to more efficiently eliminate the differences in background areas by integrating
the difference maps of different bands into a grayscale distance image. In this case, the
obtained grayscale distance image can provide sufficient descriptions for the real changed
areas.

Figure 1 shows a flow diagram of our proposed algorithm. Our algorithm is com-
posed of five steps. First, multiple single-band image pairs are extracted from bitemporal
multispectral images. In the second step, single-band slow feature analysis is performed
on each pair of single-band images to obtain the optimal feature-difference image of each
band. The third step is to fuse the feature-difference images of each band into a grayscale
distance image through the Euclidean distance. The fourth step is filtering. Since the noise
in multispectral images is mainly Gaussian noise, this paper chooses a Gaussian filter to
denoise the grayscale distance image. Finally, binary clustering analysis of the filtered
grayscale distance image is carried out using the k-means clustering method.
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Figure 1. Flow diagram of the algorithm.

The contributions of our work are as follows. First, the shortcomings of the SFA
algorithm are analyzed, and a new change detection algorithm is proposed. The idea of
minimizing the deviation of the unchanged region of each band is used to process bitem-
poral multispectral images band by band to effectively highlight the change information of
each band. Second, the proposed algorithm is simple in calculation and avoids the high
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time consumption caused by the huge computation of iterative calculation in our previous
study [23]. Last, a novel simulation dataset is presented to discuss the universality of the
change detection algorithm. The characteristic of the dataset is that the simulated changes
are more similar to the real ground changes on gray values.

The rest of this paper is organized as follows. Section 2 introduces related work. In
Section 3, SFA theory and our proposed algorithm are introduced. Section 4 discusses
the experimental results. The complexity and universality of our proposed algorithm are
discussed in Section 5. Finally, Section 6 provides a conclusion.

2. Related Work

Many methods of remote sensing image change detection have been proposed. De-
pending on whether prior knowledge is required, these methods can be divided into
supervised methods and unsupervised methods.

2.1. Supervised Methods

Supervised change detection methods are mainly developed from machine learning
methods, which include SVM-based methods [24], random forest-based methods [25], and
deep learning-based methods. With the development of deep learning methods, some
techniques, such as dictionary learning [17], convolutional neural networks (CNNs) [26],
and generative adversarial networks (GANs) [27], have been proven to be effective in
detecting changes. It is acknowledged that deep learning methods can automatically
extract abstract features of complex images, and it is more robust to noise and other
disturbances than other methods. However, due to the lack of training datasets, the
complexity of network structure, and the limitation of computation, the application of deep
learning to multispectral change detection is in the exploration stage.

2.2. Unsupervised Methods

Image algebra, the earliest unsupervised change detection algorithm, mainly includes
CVA and spectral angle mapping (SAM). CVA has received considerable attention because
it can contain rich change information and has the ability to extract different types of
changes. Some advanced unsupervised methods for detecting multiple changes [28–30] are
based on this method. However, this method is very sensitive to the radiation difference
caused by external imaging conditions. When the radiation difference between bitemporal
images is large, the change detection accuracy will be reduced.

Image transformation methods can often obtain higher accuracy in change detection
than image algebra methods because the former methods project the original multispec-
tral image into the appropriate feature space to more easily separate the changed and
unchanged objects. Popular image transformation methods include PCA, MAD, and SFA.
The most commonly used method is PCA, which can effectively eliminate the redundant
information in multiband images and concentrate most of the change information. In addi-
tion, PCA can also be used as a feature extraction method to provide convenience for other
algorithms [10]. The MAD algorithm was proposed based on the idea of looking for the
most relevant feature of the image. Although this method has been widely studied because
of its obvious advantages and latent application value, it also has serious shortcomings; it
has difficulties concentrating the change information effectively. For this problem, Nielsen
also proposed the IRMAD algorithm [31] by combining the expectation–maximization
algorithm with MAD. Due to its good stability and excellent accurateness of identifica-
tion, the IR-MAD algorithm is regarded as one of the most advanced change detection
algorithms. Recently, the slow feature analysis theory has been applied to detect ground
changes using optical remote sensing images. This method is less limited by radiation
differences and has potential application value, so it has also been widely considered. Some
advanced algorithms, such as ISFA combined with Bayesian soft fusion for semantic scene
change detection [19], the kernel-SFA algorithm for multivariate detection [32], and the
SFA algorithm for automatic relative radiation correction [33], are all based on this method.
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It is worth mentioning that some hybrid methods, including the multimethod integra-
tion scheme [34], the multisource information fusion strategy [35], and the multifeature
combination method [36], are often used to improve the effect of difference images to
increase the accurateness of identification. The advantage of these methods is that they
synthesize the advantages of various methods or data to obtain better results. For a specific
application, it is very difficult to choose an appropriate hybrid scheme and coordinate
multisource data or multifeature to achieve the desired results. These problems may cause
the algorithms to be more complicated and less efficient.

3. Methodology
3.1. SFA Theory

SFA is an unsupervised algorithm for learning invariant features, which has been
applied to human action recognition [37], text recognition [38], and fault detection [39].
Mathematically, SFA theory can be described as an optimization problem; for a given
multidimensional input time signal x = [x1(t), . . . , xM(t)]T , it is expected to find a set of
functions [g1(s), . . . , gM(s)] to minimize the time difference of output signals
z(t) = [g1(x), . . . , gM(x) ]. Due to the fact that SFA was originally proposed for con-
tinuous signals, the time difference is usually expressed as the square of the first derivative
of output signals.

The optimization objective of SFA is expressed as Equation (1):

∆j = ∆
(
zj
)
= 〈 .

z2
j 〉t, j ∈ [1, . . . , M] (1)

The constraints are written as:
〈zj〉t = 0 (2)

〈zj
2〉t = 1 (3)

∀i < j : 〈zizj〉t = 0 (4)

The ∆ measures the speed of signal changes;
.
z is the first derivative of the output signal;

〈·〉t is the mean value in time. Equations (2)–(4) are zero-mean constraint, unit variance
constraint, and decorrelation constraint, respectively. The zero-mean constraint simplifies
the computation and improves the computation speed; the unit variance constraint avoids
constant solutions so that each output signal can carry a certain amount of information; the
decorrelation constraint ensures that the output signals are not correlated with each other.
After sorting, the first output signal is the slowest signal, the second one is the signal with
the second-slowest change, and so on.

Assuming that the signal transformation function is linear, then the output signal can
be expressed as Equation (5):

zj(x) = wT
j x (5)

And Equations (1)–(4) should be reformulated as Equations (6)–(9):

∆
(
zj
)
= 〈 .

z2
j 〉t =

〈
(wT

j
.
x)

2〉
t = wT

j 〈
.
x

.
xT〉twj = wT

j Awj (6)

〈zj〉t = 〈(wT
j x)〉t = 0 (7)

〈z2
j 〉t = 〈(wT

j x)(wT
j x)〉t = wT

j 〈xxT〉twj = wT
j Bwj = 1 (8)

〈zizj〉t = 〈(wT
i x)(wT

j x)〉t = wT
i 〈xxT〉twj = wT

i Bwj = 0 (9)

If Equation (8) is integrated into Equation (6), the optimization objective function can
be rewritten as:

∆
(
zj
)
=
〈 .
z2

j 〉t
〈z2

j 〉t
=

wT
j Awj

wT
j Bwj

(10)
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Then, the SFA problem can be solved by the generalized eigenvalue problem:

AW = BWΛ (11)

where A is the mathematical expectation of the covariance matrix of the first derivative
of the input time signal; B is the mathematical expectation of the covariance matrix of the
input signal; W represents the characteristic vector matrix, Λ = dig(λ1, λ2, · · · λM) is a
diagonal matrix of generalized eigenvalues, where λj = ∆zj.

However, there is no such time series structure in bitemporal remote sensing images.
To solve this problem, Wu et al. [18] reconstructed the SFA algorithm into the discrete case
by using finite difference instead of the first derivative and applied it to change detection.

Given two centralized and standardized vector x̂k =
[

x̂k
1, x̂k

2, · · · , x̂k
N

]
and

ŷk =
[
ŷk

1, ŷk
2, · · · , ŷk

N

]
, where x̂k and ŷk represent the two spectral vectors at the same

position in the bitemporal remote sensing images X and Y, k is the serial number of the
pixel, and N is the number of bands. Then, matrix A and matrix B can be rewritten as
Equations (12) and (13) for remote sensing change detection:

A =
1
P

P

∑
k=1

(x̂k − ŷk)(x̂k − ŷk)
T
= Σ∆ (12)

B =
1

2P

[
P

∑
k=1

(x̂k)(x̂k)
T
+

P

∑
k=1

(ŷk)(ŷk)
T
]
=

1
2
(Σx + Σy

)
(13)

where Σx and Σy are covariance matrices of remote sensing images X and Y, respectively.
Σ∆ represents the covariance matrix of the original difference image, and P is the number
of pixels in a single image.

Taking Equations (12) and (13) into Equation (11), the eigenvector matrix W can be
obtained, and the feature-difference matrix SFA is expressed as:

SFA = WX−WY (14)

Figure 2 shows six feature-difference images obtained by the SFA algorithm using
the Taizhou dataset [21]. These images are sorted according to the λj value from low
to high. The lower the ranking, the smaller the feature variance of a feature-difference
image. That is, (a) is the feature-difference image with the smallest variance, and (f) is
the feature-difference image with the largest variance. In the output results, very dark
or bright areas are named marked areas, which represent the areas with a high absolute
value of the feature difference. Theoretically, the higher the λj value of a feature difference
image is, the more change information it contains. It can be seen from Figure 2a–d that
each image contains a certain marked area, but the amount of change information from (a)
to (d) does not increase in sequence. Specifically, the marked areas in (b) are closest to the
reference change image of the Taizhou dataset, followed by (a) and (d), and finally (c). The
changed and unchanged areas of (e) and (f) are not effectively separated. Therefore, visual
interpretation shows that SFA theory is difficult to effectively and orderly concentrate the
change information to a few feature bands, and the λ value cannot be used as a standard to
measure the amount of change information.

In order to confirm this subjective opinion, the experiment in Table 1 is carried out. For
each feature band combination in the experiment, Euclidean distance is used to generate
a grayscale distance image, and then k-means binary clustering analysis is performed.
Table 1 shows that the combination of feature bands 1, 2, and 4 with clearly marked areas
performs best on PCC and kappa, while the combination of feature bands 1–6 has the
worst detection results. Based on the subjective evaluation and objective indexes, it can
be inferred that a large amount of useless information contained in feature bands 5 and
6 has a negative impact on the detection accuracy, and the change information contained
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in feature band 4 is more abundant than that in feature band 3. It means that the change
information contained in each feature band cannot be measured only by the λj value, and
the SFA algorithm has the shortcoming of disordered distribution of change information.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

marked areas performs best on PCC and kappa, while the combination of feature bands 
1–6 has the worst detection results. Based on the subjective evaluation and objective in-
dexes, it can be inferred that a large amount of useless information contained in feature 
bands 5 and 6 has a negative impact on the detection accuracy, and the change information 
contained in feature band 4 is more abundant than that in feature band 3. It means that 
the change information contained in each feature band cannot be measured only by the 𝜆௝ value, and the SFA algorithm has the shortcoming of disordered distribution of change 
information. 

  
(a) (b)  (c) 

  
(d) (e) (f) 

Figure 2. Feature-difference images obtained by the SFA algorithm. Panels (a–f) correspond to fea-
ture bands (a–f). 

Table 1. Performance indexes of different band combinations. 

Multiband 
Selection FN FP OE PCC KAPPA 

Bands 1–6 567 2117 2684 0.8745 0.6524 
Bands 1–4 523 424 947 0.9557 0.8592 

Bands 1,2,3 511 676 1187 0.9445 0.8275 
Bands 1,2,4 550 357 907 0.9576 0.8639 
Bands 2,3,4 770 475 1245 0.9418 0.8115 

3.2. Proposed Method 
The purpose of the SFA algorithm is to minimize radiation differences in the un-

changed areas to highlight the real changes. However, the shortcoming of the disordered 
distribution of change information will seriously affect detection accuracy. In order to 
avoid this problem and further improve the accuracy of change detection, a single-band 
slow feature analysis method is proposed in this section. 

The single-band slow feature analysis algorithm is introduced as follows. First, mul-
tiple single-band images are extracted from multispectral images in order of wavelength. 
Second, the optimal projection vector of a single-band image is found by minimizing the 
variance of the feature-difference image of the band. Third, the optimal feature-difference 

Figure 2. Feature-difference images obtained by the SFA algorithm. Panels (a–f) correspond to
feature bands 1–6.

Table 1. Performance indexes of different band combinations.

Multiband
Selection FN FP OE PCC KAPPA

Bands 1–6 567 2117 2684 0.8745 0.6524
Bands 1–4 523 424 947 0.9557 0.8592

Bands 1,2,3 511 676 1187 0.9445 0.8275
Bands 1,2,4 550 357 907 0.9576 0.8639
Bands 2,3,4 770 475 1245 0.9418 0.8115

3.2. Proposed Method

The purpose of the SFA algorithm is to minimize radiation differences in the un-
changed areas to highlight the real changes. However, the shortcoming of the disordered
distribution of change information will seriously affect detection accuracy. In order to
avoid this problem and further improve the accuracy of change detection, a single-band
slow feature analysis method is proposed in this section.

The single-band slow feature analysis algorithm is introduced as follows. First, multi-
ple single-band images are extracted from multispectral images in order of wavelength.
Second, the optimal projection vector of a single-band image is found by minimizing the
variance of the feature-difference image of the band. Third, the optimal feature-difference
images of each band are obtained. In this way, each optimal feature-difference image con-
tains abundant change information. Finally, after the fusion of several feature-difference
images, Gaussian filtering is used to obtain the final grayscale distance image. The detailed
implementation steps show the following.

First, multiple single-band image pairs are extracted from bitemporal multispectral
images. Specifically, multiple single-band images x1, x2, . . . xN are extracted from mul-
tispectral image X, and multiple single-band images y1, y2, . . . , yN are extracted from
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multispectral image Y. The i-band image pairs are denoted xi and yi. By performing
zero-centering on each single-band image, the effect of radiation differences can be initially
reduced. The processed i-band image pairs are represented as x̂i =

[
x̂1

i , · · · , x̂P
i
]

and
ŷi =

[
ŷ1

i , · · · , ŷP
i
]
, where P represents the total number of pixels in a single-band image.

Second, the ith projection vector is found by minimizing the variance of the feature-
difference image of the i-band, and then, the optimal feature-difference image of the i-band
is obtained.

The primary objective of the optimization is expressed as Equation (15):

∆i =
1
P

P

∑
k=1

(
wi x̂k

i − wi ŷk
i

)2
= wT

i Aiwi (15)

The constraints are written as:

1
2P

[
P

∑
k=1

wi x̂k
i +

P

∑
k=1

wi ŷk
i

]
= 0 (16)

1
2P

[
P

∑
k=1

(
wi x̂k

i

)2
+

P

∑
k=1

(
wi ŷk

i

)2
]
= wT

i Biwi = 1 (17)

where Ai and Bi are as shown in Equations (18) and (19):

Ai =
1
P

P

∑
k=1

(x̂k
i − ŷk

i )(x̂k
i − ŷk

i )
T
= Σ∆i (18)

Bi =
1

2P

[
P

∑
k=1

x̂k
i (x̂k

i )
T
+

P

∑
k=1

ŷk
i

(
ŷk

i

)T
]
=

1
2
(
Σxi + Σyi

)
(19)

where Σ∆i is the variance matrix of the i-band difference image, and Σxi and Σyi are the
variance matrices of each temporal i-band image.

When Equation (17) is integrated into Equation (15), the objective function can be
rewritten as:

∆i =
wT

i Aiwi

wT
i Biwi

(20)

With Equations (18) and (19), a new optimization objective can be further obtained:

∆i =
wT

i Σ∆wi

wT
i

[
1
2
(
Σx + Σy

)]
wi

(21)

Since Equation (21) aims to obtain the optimal projection vector wi, it can be calculated
through Equation (22):

Σ∆wi =
1
2
(
Σxi + Σyi

)
wiΛi (22)

where Λi = ∆i, Λi is the variance of the feature-difference image of the i-band.
The optimal feature-difference image matrix of the i-band is expressed as:

SFAi = wi x̂i − wi ŷi (23)

Third, the SFA grayscale distance matrix is calculated. Repeating the previous steps,
the optimal feature-difference image matrix of each band is obtained. After adjusting the
difference matrix SFAi into a column vector, the difference matrix SFA is expressed as:

SFA = (SFA1, SFA2, . . . SFAN) (24)
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D = (
N

∑
K=1

(SFAk)
2)1/2 (25)

Then, the difference matrix SFA is converted into the grayscale distance image matrix
D by Equation (25) (the Euclidean distance formula), and the changed intensity of pixels in
each band is unified.

Finally, the grayscale distance image is processed by a Gaussian filter to further
eliminate false changes.

In order to measure the impact of the Gaussian filter on the performance of the
proposed algorithm, the experiments in Table 2 are carried out by using the Taizhou
dataset. In this experiment, the standard deviation of Gaussian filters is set to 1. The results
show that Gaussian filtering can effectively reduce FN and FP, and improve the accuracy
of change detection. The precision of the 7 × 7 filter window is the highest. For the sake of
simplicity, the Gaussian filter with a 7 × 7 window is used in the following experiments.

Table 2. Performance indexes of Gaussian filter with different window sizes.

Gaussian Filter FN FP OE PCC KAPPA

Without filter 633 57 690 0.9677 0.8928
3 × 3 525 47 572 0.9733 0.9119
5 × 5 501 51 552 0.9742 0.9152
7 × 7 494 51 545 0.9745 0.9164

4. Experiments

To verify the advantages of our proposed algorithm, some popular pixel-level methods,
such as CVA [8], PCA [10], MAD [12], IR-MAD [31], SBIW [23], SFA [18], ISFA [19], and
DSFA [21], were selected for comparison. Specifically, the convergence thresholds of
IRMAD, SBIW, and ISFA were all set to 10−6; the DSFA algorithm selected in experiments
has two hidden layers, each with 128 nodes. To ensure the comparability of results, the
Gaussian filter was used for the grayscale distance image generated by each algorithm, and
the k-means clustering algorithm was used in all the above methods to obtain the binary
change map. It should be noted that the DSFA algorithm was implemented by Python,
and other algorithms were implemented by MATLAB. The following experiments were
performed on an Intel Corei5 1.6 GHz CPU equipped with 8 GB RAM.

Experiments were carried out on three bitemporal remote sensing image datasets.
These datasets include two common multispectral change detection datasets and one
simulation dataset. The first dataset is the Taizhou dataset [40]. Two multispectral images
were obtained on 17 March 2000, and 6 February 2003, respectively. The second dataset
was before and after the fire in Bastrop County, Texas in 2011 [41]. The two datasets were
obtained by Landsat7 and Landsat 5 satellites, respectively. Six bands (bands 1–5 and 7)
with a spatial resolution of 30 m were selected for the experiment. The third dataset was a
self-made simulation dataset, detailed in Section 4.3.

The advantages and disadvantages of these algorithms were analyzed from two
aspects of objective and subjective. The objective indexes included false negative (FN), false
positive (FP), overall error (OE), percentage correct classification (PCC), kappa coefficient
(KC), and time complexity. FN is the number of samples that are erroneously labeled as
unchanged. FP represents the number of samples that are erroneously labeled as changed.
OE indicates the sum of FN and FP; the closer OE, FP, and FN are to 0, the better the change
detection performance. PCC is the proportion of correctly labeled samples in all samples.
Kappa coefficient is a parameter that can accurately measure the classification accuracy;
the closer its value is to 1, the more accurate the classification. Time complexity is a very
important indicator, which measures the computational efficiency of an algorithm. To
further reduce experimental errors, the time complexity in this paper refers to the average
running time of an algorithm. The average running time is the average of 10 runs.
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4.1. Experimental Dataset I

The first dataset comprises bitemporal multispectral remote sensing data from Taizhou
City, Jiangsu Province. Two multispectral images were obtained on 17 March 2000, and 6
February 2003, respectively. The two images in Figure 3 are pseudo-color composite images
of multispectral data of Taizhou, and each image contains 400 × 400 pixels. To objectively
evaluate the proposed change detection algorithm, 21,390 test samples (13.4% of the image)
provided by the dataset were used for quantitative analysis. The test samples include 4227
changed samples and 17,163 unchanged samples, as shown in Figure 4.
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Figure 4. Test sample: (a) changed sample; (b) unchanged sample.

Binary change images obtained by eight comparison methods and the proposed
method are shown in Figure 5. It is obvious that panels (a), (b), (c) and (f) have a large
number of broken and small change areas, which indicates that the performances of CVA,
DPCA, MAD, and SFA are not ideal for multispectral image change detection. Referring to
the reference change sample, panel (h) seems to lose part of the change information. For
panels (d), (e), (g) and (i), though there are some change points in the unsampled area,
these points may represent the real changed pixels of the unsampled area. Therefore, it is
impossible to visually judge which method has better performance.
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In order to fairly evaluate the comparison methods and our proposed method,
Tables 3 and 4 show the objective evaluations of each algorithm with and without the
Gaussian filter, respectively. According to Tables 3 and 4, the detection performance of
CVA is the worst, and the performances of MAD and SFA are also not ideal. The PCC and
kappa performance of IR-MAD, ISFA, and SBIW are effectively improved through iterative
weighting, but the time cost of these algorithms increases significantly. Without using a
Gaussian filter, the OE of our proposed algorithm is the lowest, and the kappa coefficient of
our proposed algorithm is higher than SFA, ISFA, and DSFA. Table 3 shows that the kappa
of our proposed algorithm is 24.04% higher than that of SFA, 0.15% higher than that of ISFA,
and 11.62% higher than that of DSFA. After Gaussian filtering for the grayscale distance
image, the accuracy of most algorithms was improved to a certain extent, which proves
that this filtering strategy can effectively improve the performance of change detection.
Although the kappa of our algorithm was slightly lower than that of ISFA after adding
the filter, our algorithm has more advantages in time cost. In summary, our proposed
algorithm has obvious advantages in both kappa value and time cost, which indicates that
our proposed algorithm is an effectively improved algorithm.
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Table 3. Performance indexes of different change detection algorithms without filtering.

Method FN FP OE PCC KAPPA Time (s)

CVA 2841 4384 7225 0.6622 0.0637 0.23
DPCA 244 1722 1966 0.9081 0.7439 0.28
MAD 507 2272 2779 0.8701 0.646 0.39

IRMAD 563 960 1523 0.9288 0.7832 3.51
SBIW 971 10 981 0.9541 0.8418 6.4
SFA 567 2117 2684 0.8745 0.6524 0.43
ISFA 678 16 694 0.9676 0.8913 1.635
DSFA 1328 9 1337 0.9375 0.7766 59.4

Proposed Method 633 57 690 0.9677 0.8928 0.29

Table 4. Performance indexes of different change detection algorithms with filtering.

Method FN FP OE PCC KAPPA Time (s)

CVA 2979 4548 7527 0.6481 0.0265 0.37
DPCA 209 1136 1345 0.9371 0.8169 0.32
MAD 528 667 1195 0.9441 0.826 0.62

IRMAD 1183 76 1259 0.9411 0.7941 4.25
SBIW 762 4 766 0.9642 0.8789 6.75
SFA 668 1022 1690 0.921 0.7585 0.63
ISFA 511 14 525 0.9755 0.919 1.84
DSFA 1119 2 1121 0.9476 0.8165 60.2

Proposed Method 494 51 545 0.9745 0.9164 0.47

4.2. Experimental Dataset II

The second dataset is the Texas fire dataset. Figure 6a is the pseudo-color composite
before the Texas fire, and Figure 6b is the pseudo-color composite after the fire. The image
size is 1534 × 808. In panels (a) and (b), the red parts indicate the safe areas, and the black
parts indicate the burning or burned areas. The difference between these pre-event and
post-event pairs is only due to the burning of the forest. The reference map (c) is marked as
changed and unchanged at the pixel level, in which the white parts (10.64% of the image)
represent the changed areas caused by wildfire.
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As can be seen from Table 5 and Figure 7, MAD and ISFA have a large number of
false change points, which means that their inhibition effect on the radiation difference
of background area is not ideal. The FN of DPCA and SFA are much higher than other
algorithms, which means that these two algorithms have poor performance in detecting
changes. Although the performance of our proposed algorithm on FN and FP is not the best,
its overall performance is relatively balanced. Its OE is the lowest among all algorithms,
and the PCC and kappa are the highest among all algorithms, which are 0.9750 and 0.8690,
respectively. Compared with SBIW, our proposed algorithm has a great advantage in time
consumption. Considering the precision and time complexity, our algorithm has excellent
change detection performance.

Table 5. Performance indexes of different change detection algorithms.

Method FN FP OE PCC KAPPA Time (s)

CVA 35,849 11,354 47,203 0.9619 0.7819 0.23
DPCA 57,017 7382 64,399 0.9480 0.6724 0.34
MAD 31,468 50,613 82,081 0.9338 0.6726 0.84

IRMAD 29,902 7170 37,072 0.9700 0.8298 7.3
SBIW 6279 26,887 33,166 0.9732 0.8683 25.81
SFA 65,911 11,021 76,932 0.9379 0.6003 1.04
ISFA 5724 146,255 151,979 0.8774 0.5611 22.89
DSFA 26,740 14,328 41,068 0.9669 0.8182 163

Proposed Method 14,882 16,122 31,004 0.9750 0.8690 0.51

4.3. Experimental Dataset III

In this section, we adopt an artificial simulation dataset as dataset III. Compared
with a real multispectral image dataset, an artificial simulation dataset provides a simpler
and easier way to obtain the reference change map to analyze the experimental results
objectively. In the artificial simulation dataset, the first image and the second image are
usually multispectral images taken on different days in the same year and month. The
artificial change areas are added to the second image to simulate real changes. The specific
procedures are as follows: First, the vegetation pixel block with a certain size is obtained
from the first band image and spliced into a specific shape of region M1; second, a region,
N1, in the first band image of the second phase is replaced by region M1 to simulate
a changing region (the shape and size of the region M1 and N1 are the same, but they
contain different ground feature information); finally, the above steps are repeated for the
remaining bands. Specifically, a vegetation pixel block is intercepted from the i-band image
and spliced into the region Mi. The position of the captured pixel block corresponds to
the previous operation, and the size of Mi is consistent with that of M1. Then, the region
Ni in the i-band image of the second phase is replaced by the region Mi, and the position
of the replaced area is the same as for the first band image. In this way, the simulated
changes are more consistent with the real ground changes on the gray value. In addition,
this simulation method can conveniently obtain an accurate reference map to objectively
analyze the detection results and test the effectiveness of the algorithm.

Dataset III includes two multispectral images taken from Bayingoleng, Xinjiang, China.
The first multispectral image and the second multispectral image were taken by Landsat
5 on 13 September and 29 September 2007, respectively. Both images have seven bands,
and six visible bands (bands 1–5 and band 7) were selected for the experiment. In the latter
image, the artificial change region was added to obtain the second-stage multispectral
image to be detected. Figure 8a shows a pseudo-color display of the first multispectral
image. Figure 8b shows a pseudo-color display of the second-stage multispectral image,
and the red area in this figure is the simulated change area. The binary reference map is
shown in Figure 8c.
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Figure 8. (a) Pseudo-color display of the first multispectral image in the Bayingoleng simulated
dataset. (b) Pseudo-color display of the second-stage multispectral image in the Bayingoleng simu-
lated dataset. The red parts are the added change areas. (c) The binary reference map.

As shown in Figure 9 and Table 6, for CVA, MAD, and SFA, the FPs of these three
algorithms are obviously high. Although IRMAD, ISFA, and DSFA have fewer FPs, these
improvements are achieved at the cost of time. The experimental results of DPCA show
that it has good performance in time complexity, but the overall error needs to be further
reduced. The SBIW algorithm and our proposed algorithm have the highest detection
precision and kappa coefficient. This is because these two methods fully utilize multiband
information to detect the changed area in more detail. However, in terms of time complexity,
our proposed algorithm outperforms the SBIW algorithm. Considering the time complexity
and accuracy, our proposed algorithm is better than other reference algorithms.
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Table 6. Performance indexes of different change detection algorithms.

Method FN FP OE PCC KAPPA Time (s)

CVA 0 27,798 27,798 0.82626 0.0765 0.31
DPCA 13 7 20 0.9998 0.9928 0.33
MAD 0 4641 4641 0.9710 0.3688 0.55

IRMAD 5 266 271 0.9983 0.9111 2.56
SBIW 0 1 1 0.9999 0.9996 1.36
SFA 7 359 366 0.9977 0.8834 0.55
ISFA 7 266 273 0.9983 0.9104 1.42
DSFA 0 14 14 0.9999 0.995 50.89

Proposed Method 0 1 1 0.9999 0.9996 0.53

5. Discussion

From all the aforementioned experiments, we can see that our proposed algorithm can
well suppress the background and noise information in multispectral images, and achieve
good performance in change detection accuracy. However, the results also show that our
algorithm is not good enough to keep the edge information with weak change intensity.
As shown in Figure 5i, the road detected by our method is discontinuous. In addition, our
proposed method only uses the spectral feature for change detection, so that false change
points may appear in the water area (as shown in Figure 7i).

To further verify the universality of our algorithm, 50 groups of artificially generated
simulation datasets are created by using the method proposed in Section 4.3. Compared
with marking the changed area based on personal experience, it is convenient to make
the change reference map for objective analysis by manually adding some change areas.
Therefore, using simulation data set for change detection can effectively evaluate the
advantages and disadvantages of our algorithm and reference algorithm. Due to the
limitation of the paper, the average change detection results can be found in Table 7.

Table 7. Performance indexes of different change detection algorithms.

Method FN FP OE PCC KAPPA Time (s)

CVA 34 20,845 20,879 0.9138 0.7409 0.46
DPCA 102 2600 2702 0.9891 0.9385 0.41
MAD 388 6344 6732 0.9706 0.7414 0.63

IRMAD 812 5952 6764 0.9708 0.6531 2.78
SBIW 40 8 48 0.9998 0.9894 2.2
SFA 550 5947 6477 0.9720 0.7344 0.68
ISFA 241 139 380 0.9983 0.9089 2.62
DSFA 280 904 1184 0.995 0.8941 70.04

Proposed Method 48 4 52 0.9997 0.9886 0.72

Table 7 shows that the total number of error pixels of the proposed algorithm is 52,
which is the second lowest among all algorithms, and compared with other algorithms, it
has apparent advantages over the PCC values and kappa coefficient. Specifically, the PCC
of our proposed algorithm is 2.77% higher than that of SFA, and the kappa coefficient is
25.42%, 7.97%, and 9.45% higher than that of SFA, ISFA, and DSFA, respectively. Compared
with SBIW, the proposed algorithm avoids the high time consumption caused by the large
amount of iterative computation in previous work. While maintaining the same excellent
detection accuracy, the detection time is greatly shortened. The advantages and universality
of the proposed algorithm are fully verified by these experiments with 50 datasets.

6. Conclusions

The purpose of this research is to decrease the false changes caused by radiation
differences, improve the accurateness of change detection, and reduce the consumption
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of the detection time. In this paper, a multispectral image change detection algorithm
based on single-band slow feature analysis is proposed. Firstly, the proposed single-band
slow feature analysis algorithm is used to process the bitemporal multispectral images to
obtain multiple optimal feature-difference images. In this way, the radiation differences
of unchanged regions of each band in the bitemporal multispectral images are effectively
suppressed, and the change information of each band is further highlighted. Next, the
Euclidean distance formula is used to fuse multiple optimal feature-difference images
into a grayscale distance image by equal weight. In order to reduce the negative impact
of the noise in the difference image on the change detection results, a Gaussian filter is
used to the generated grayscale distance image. Finally, the k-means algorithm is used to
mark the changed region and unchanged region. Experiments show that our algorithm
has obvious advantages over the reference algorithms in terms of time complexity and
detection accuracy. The future work is to explore algorithms to further reduce the impact
of noise on change detection.
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