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Abstract: Bamboo forests are widespread in subtropical areas and are well known for their rapid
growth and great carbon sequestration ability. To recognize the potential roles and functions of
bamboo forests in regional ecosystems, forest aboveground biomass (AGB)—which is closely related
to forest productivity, the forest carbon cycle, and, in particular, carbon sinks in forest ecosystems—is
calculated and applied as an indicator. Among the existing studies considering AGB estimation,
linear or nonlinear regression models are the most frequently used; however, these methods do not
take the influence of spatial heterogeneity into consideration. A geographically weighted regression
(GWR) model, as a spatial local model, can solve this problem to a certain extent. Based on Landsat 8
OLI images, we use the Random Forest (RF) method to screen six variables, including TM457, TM543,
B7, NDWI, NDVI, and W7B6VAR. Then, we build the GWR model to estimate the bamboo forest
AGB, and the results are compared with those of the cokriging (COK) and orthogonal least squares
(OLS) models. The results show the following: (1) The GWR model had high precision and strong
prediction ability. The prediction accuracy (R2) of the GWR model was 0.74, 9%, and 16% higher
than the COK and OLS models, respectively, while the error (RMSE) was 7% and 12% lower than
the errors of the COK and OLS models, respectively. (2) The bamboo forest AGB estimated by the
GWR model in Zhejiang Province had a relatively dense spatial distribution in the northwestern,
southwestern, and northeastern areas. This is in line with the actual bamboo forest AGB distribution
in Zhejiang Province, indicating the potential practical value of our study. (3) The optimal bandwidth
of the GWR model was 156 m. By calculating the variable parameters at different positions in the
bandwidth, close attention is given to the local variation law in the estimation of the results in order
to reduce the model error.

Keywords: bamboo forest; AGB; GWR; remote sensing estimation

1. Introduction

Aboveground biomass (AGB) is closely related to forest productivity, the forest carbon
cycle, and the natural environment in terrestrial ecosystems [1,2]. AGB is an important
indicator of the carbon sink function of forest ecosystems. AGB assessment is essential for
monitoring and assessing forest quality. Therefore, the accurate estimation of AGB is of
great significance when evaluating the role of forestry in climate change [2,3].

Forest AGB estimation research methods are diverse, including field surveys, biomass
expansion factors, and remote sensing [4–8]. Traditional ground survey methods obtain
the AGB by cutting down some trees and weighing them or building an allometric growth
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model. Although the AGB obtained by these methods is accurate, it is also time consuming,
laborious, and destructive [2,8].

Remote sensing earth observation technology has been widely included in AGB esti-
mation methods in order to simultaneously observe the dynamic changes in vegetation
distribution and growth across large areas and to record the spectral characteristics of
vegetation in the form of electromagnetic waves. Remote sensing has become an impor-
tant technique to accurately monitor the temporal and spatial dynamic changes in forest
AGB [7,9–14]. However, remote sensing data cannot directly reveal AGB and its changes.
It is necessary to process and transform the remote sensing data and combine them with
the ground survey data in order to quantitatively estimate forest AGB. Consequently, the
establishment of models between remote sensing information and ground survey data
to estimate the temporal and spatial evolution of AGB has become a hot topic in earth
science [2,9,11,15–20]. For instance, Du et al. [15] constructed a nonlinear partial least
squares regression model to estimate the AGB of bamboo forests in Anji County, Zhejiang
Province. Sasan et al. [11] combined ground survey data, Sentinel-2A data, and ALOS-2
data based on machine learning algorithms (including random forest, support vector re-
gression machine, and multilayer perceptron neural network) to estimate the forest AGB in
Iran. Li Y et al. [17] constructed a stepwise regression model to estimate the spatial and
temporal evolution of carbon storage in bamboo forests in Zhejiang Province from 1984
to 2014. Based on aboveground survey data and the assimilation products of the EnKF
MODIS leaf area index (LAI), Li X et al. [18] constructed a random forest model and stated
the spatiotemporal estimation of AGB for bamboo forests in Zhejiang Province.

However, spatial heterogeneity and nonstationarity problems naturally exist in forest
AGB distribution [15]. Neither traditional regression models nor recently developed
machine learning methods, such as random forest and neural networks (NNs), consider
the influence of spatial heterogeneity on AGB in the construction of the AGB estimation
model. Once the model is constructed, uniform parameters are used to estimate AGB pixel
by pixel, ignoring the changes in model parameters in different spatial contexts. Therefore,
researchers have begun to pay attention to the temporal and spatial variations in AGB
estimation. For instance, He et al. [21] used COK and other spatial statistical methods to
estimate the AGB of the Jincang forest site in Jilin Province, where the estimation results
well reflected the spatial heterogeneity of AGB. Guo [22] used a geographically weighted
regression (GWR) model to estimate forest carbon storage in Xianju County of Taizhou
city. The results showed that the GWR model not only had high fitting accuracy but could
also provide rich spatial distribution information. Zhou et al. [23] used the GWR model to
estimate the AGB of a Pinus kesiya var. langbianensis forest in Puer city of Yunnan Province,
which effectively solved the problem related to the underestimation of high values and the
overestimation of low values associated with the traditional statistical regression model.
Izadi [24] constructed the GWR model to estimate the Zagros forest AGC using Landsat 8
data in Kohgiluyeh and Boyer-Ahmad. Then, Izadi [25] constructed the GWR and COK
models at the same time in order to estimate the Zagros forest AGB in Kohgiluyeh and
Boyer-Ahmad. The GWR model has been considered the most effective method to solve
the problem of spatial heterogeneity in the application of forestry and ecology [26–29].
Compared with the COK model, the GWR model uses a spatial local regression, which
includes the spatial position in the model fitting process by using a spatial weight function
and has obvious advantages in dealing with nonstationary data [30]. The estimation
results of the GWR model not only have a small model residual but can also be used to
analyze the spatial variation of the model parameters. Therefore, it can be seen that the
biggest advantage of the GWR model is that it gives different weights to the remote sensing
variables of each pixel in the bandwidth, thus improving the accuracy of the model. In
addition, the selection of variables is important for the GWR model. The permutation
method in the RF can analyze the importance of variables, having good robustness for
variables with high-dimensional and high-order correlation. The permutation method can
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also effectively avoid multicollinearity among variables. Therefore, RF has been widely
used for variable selection [2,17,20,31].

Bamboo forest is known as “the second forest in the world”. It has high carbon
sequestration capacity and strong carbon sink potential, and its role in global climate
change has been widely studied [15]. As Zhejiang Province is rich in bamboo resources, we
used Zhejiang Province as a study area. In this study, we combine Landsat 8 OLI imagery
and AGB survey data in Zhejiang Province and established a GWR model on the basis of
RF variable selection. We compared the estimation results of the GWR model with those
of the cokriging (COK) model and the traditional multiple linear regression model based
on orthogonal least squares (OLS). Then, we analyzed the differences and advantages of
the different models in estimating bamboo forest AGB. The research results will provide a
reference for the remote sensing estimation of AGB reflecting the spatial variation.

2. Materials and Methods
2.1. Study Area

Zhejiang Province is located on the southeast coast of China, in the south wing of
the Yangtze River Delta, at 27◦–31◦N latitude and 118◦–123◦E longitude (see Figure 1a).
The terrain of Zhejiang Province is high in the southwest and low in the northeast. The
southwest part of the province is mostly mountainous, with an average altitude of 800 m.
In the middle of Zhejiang Province, hills and basins cross each other, while the northeast is
mainly plains. Zhejiang Province is one of the provinces with the largest area of bamboo
forest in China. It is rich in bamboo resources and has a well-developed bamboo industry,
leading to the common understanding that “Zhejiang has the best bamboo in China”.
According to the results of the 9th National Forest Resources Inventory (2014–2018), the
bamboo forest in Zhejiang Province covers 847,600 hectares, accounting for 14% of the total
forest area of Zhejiang Province. Among them, moso bamboo forest accounts for 86.11%,
and lei bamboo forest accounts for 9.91%. The distribution of bamboo forests in the whole
province is shown in Figure 1b.

Figure 1. (a) Location of the study area; (b) distribution and biomass of bamboo forests in Zhejiang
Province in 2014; (c) 2014 Landsat 8 false-color synthesis image of Zhejiang Province.
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2.2. Datasets and Processing
2.2.1. Landsat 8 OLI Satellite Data

For this study, we used Landsat 8 OLI image data of Zhejiang Province in 2014. The
spatial resolution was 30 m. According to the distribution of administrative divisions
in the study area, there were eight Landsat 8 images covering the whole province, with
row/column numbers of 118/039, 118/040, 118/041, 119/039, 119/040, 119/041, 120/039,
and 120/040. After comparison, the images with fewer clouds and better quality were
selected as research data, as shown in Table 1. To eliminate the impact of the atmosphere
on the remote sensing data, we carried out radiometric calibration [32] and FLAASH
atmospheric correction [33]. The images were geometrically corrected using ground control
points (GCPs) in ENVI 5.3 [34]. We used 50 GCPs per scene, and the mean RMSE was 3.8.
Finally, we obtained the final satellite images of the study area through splicing and
clipping, as shown in Figure 1c.

Table 1. Landsat 8 OLI image information of Zhejiang.

Data Identification Row/Column Number Date Cloudage

LC81180392014164LGN00 118,039 13 June 2014 10.03
LC81180402014164LGN00 118,040 13 June 2014 6.05
LC81180412014164LGN00 118,041 13 June 2014 7.94
LC81190392014203LGN00 119,039 22 July 2014 2.31
LC81190402014203LGN01 119,040 22 July 2014 3.09
LC81190412014203LGN00 119,041 22 July 2014 4.02
LC81200392014162LGN01 120,039 11 June 2014 1.03
LC81200402014162LGN01 120,040 11 June 2014 0.09

2.2.2. AGB Observed Data of Bamboo Forests

The AGB observed data of bamboo forests in the study area were obtained from
208 sample plots in the summer of 2014. The sample plot size was 30 m × 30 m. The survey
contents included the longitude and latitude of the sample plot center, diameter at breast
height (DBH), and age of individual bamboo. According to the reference [35], we used
Formula (1) to calculate the AGB of individual bamboo plants in the sample plot.

AGB(D, A) = 747.787D2.771
(

0.148A
0.028 + A

)5.555
+ 3.772 (1)

In the formula, D indicates DBH, and A indicates age. The total AGB of each plot was
obtained through the aggregation of AGB per individual bamboo stand.

The distribution of 208 samples in Zhejiang Province is shown in Figure 1b. The
208 samples were divided into two parts according to a ratio of 3:1; that is, 75% of the
sample plots (192) were used for modeling, and 25% of the sample plots (64) were used for
model accuracy verification.

2.3. Extraction of Variables

As shown in Table 2, the remote sensing variables in this study included the original
band, band combination, vegetation index, and gray-level co-occurrence matrices (GLCM).
The plot size was 30 m × 30 m, and the remote sensing image spatial resolution was 30 m.
We used a handheld GPS to obtain the longitude and latitude of the central point of each
sample plot and matched the longitude and latitude of the central point with a pixel of the
Landsat 8 OLI image. Thus, the 208 sample plots corresponded to 208 pixels.

Vegetation indices included the difference vegetation index (DVI), normalized differ-
ence vegetation index (NDVI), normalized difference water index (NDWI), ratio vegetation
index (RVI), and solid-adjusted vegetation index (SAVI) [36], while the GLCM textures
included mean, variance, homogeneity, contrast, dissimilarity, entropy, angular second
moment, and correlation of seven spectral features, as shown in Table 2. A GLCM texture is
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a kind of spatial distribution, in which the grayscale values of adjacent pixels obey a certain
statistical arrangement in a certain image region; however, if the texture window is too
small, it cannot contain a complete texture unit, which not only reduces the estimation
accuracy but also increases the amount of calculation required. Furthermore, if the texture
window is too large, it contains many types of texture units, which makes the statistical
results meaningless. Therefore, we set the GLCM texture window sizes to 3 × 3, 5 × 5,
7 × 7, 9 × 9, 11 × 11, and 13 × 13. There were 336 GLCM texture features in different
windows of seven bands. With seven original bands, five band combinations, and five
vegetation indices, there were 353 remote sensing variables in this study.

Table 2. The used variables and formulations of variables.

Type Name Details References

Bands

Band 1 Coastal (B1) /
Band 2 Blue (B2) /

Band 3 Green (B3) /
Band 4 Red (B4) /
Band 5 NIR (B5) /

Band 6 SWIR 1 (B6) /
Band 7 SWIR 2 (B7) /

Band
Combinations

TM754 B7× B5/B4

[17]
TM563 B5× B6/B3
TM457 B4× B5/B7
TM432 B4× B3/B2.
TM543 B5× B4/B3

Vegetation
Indices

Difference Vegetation Index (DVI) B5− B4 [37]
Normalized Difference Vegetation Index (NDVI) (B5− B4)/(B5 + B4) [38]

Normalized Difference Water Index (NDWI) (B3− B5)/(B3 + B5) [39]
Ratio Vegetation Index (RVI) B5/B4 (Pearson, 1972)

Solid-Adjusted Vegetation Index (SAVI) 1.5× (B5− B4)/(B5 + B4 + 0.5) (Huete, 1988)

Gray-Level
Co-Occurrence

Matrices

Mean (MEA) MEA = ∑N−1
i,j=0 iPi,j

[40]

Variance (VAR) VAR = ∑N−1
i,j=0 Pi,j(1− µi)

Homogeneity (HOM) HOM = ∑N−1
i,j=0 i Pi,j

1+(i−j)2

Contrast (CON) CON = ∑N−1
i,j=0 iPi,j(i− j)

Dissimilarity (DIS) DIS = ∑N−1
i,j=0 iPi,j|i− j|

Entropy (ENT) ENT = ∑N−1
i,j=0 Pi,j ln Pi,j

Augular Second Moment (ASM) ASM = ∑N−1
i,j=0 iPi,j

2

Correlation (COR) COR = ∑N−1
i,j=0 i

∑N−1
i,j ijPi,j−µiµj

σi
2σj

2

Notes:
µi = ∑N−1

i=0 i ∑N−1
j=0 Pi,j

σi = ∑N−1
j=0 (i− µi)

2 ∑N−1
j=0 Pi,j

In addition, we used the permutation method in the RF model to screen the remote
sensing variables. The principle of the permutation method is to replace all variables xi with
random values that destroy the original correlation between xi and result Y. The importance
of variables is reflected by the value of %IncMSE: the higher the value of %IncMSE, the
higher the importance. At the same time, the RF model uses a Gini coefficient to minimize
the decrease of node purity in the RF. This method reduces the number of variables by
a nested cross-validation process and determines the optimal number of variables through
an error model [31]. An RF has three important parameters: the number of split variables
(mtry; i.e., the number of variables used for splitting, which is determined by random
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features on each tree node), the number of trees (ntree), and the minimum sample number
of terminal nodes (nodesize) [20].

2.4. GWR Model

The GWR model is an extension of the OLS regression model. It incorporates geo-
graphic information into the modeling and is a local parameter estimation method. It uses
the spatial relationship as a weight to add to the operation; that is, it constructs a spatial
weight matrix, according to the distance of the sample points and bandwidth, to derive the
distance attenuation function, then brings the spatial position of the sample points into the
attenuation function to obtain the weight value and, finally, obtain the estimated value of
the point through a regression equation [41].

The GWR model expression (Expression (2)) is as follows:

YGWR = β0(µi, vi) +
p

∑
k=1

βk(µi, vi)xik + εi(i = 1, 2, . . . , n) (2)

In the formula, (µi, vi) indicates the coordinates of the ith sample, βk(µi, vi) indicates
the regression parameters of the ith sample, β0(µi, vi) indicates the intercept of the ith

sample, and εi indicates the residual of the ith sample, which follows a normal distribution
N
(
0, σ2).

The regression parameters of GWR are different for each pixel inside the chosen
window. Generally, there are many methods that can be used to calculate the spatial
distance weight for different points, including the Bi-square method, Gaussian function
method, and other methods. In this study, the spatial weight function of the Gaussian
function was used for correlation calculation [22,42], as shown in Formulas (3) and (4):

β̂i = (X′WiX)−1X′WiY (3)

Wij = exp
(
−
(
dij/b

)2
)

(4)

In the formula, Wi is the diagonal matrix of spatial weights at point i, which represents
the spatial weights between the observed points and point i in the modeling; and b
indicates the bandwidth, which is a non-negative attenuation parameter used to express
the functional relationship between weight and distance.

As the estimation of the GWR model parameters is related only to the sample data
within the bandwidth, the estimation of GWR model parameters and the accuracy of model
estimation depend largely on the choice of bandwidth. If the bandwidth is too large or too
small, the fitting accuracy will be affected. To obtain the best bandwidth, common methods
include cross-validation (CV), the Akaike information criterion (AIC), and the Bayesian
information criterion (BIC) [42]. The AIC is based on the concept of entropy and can obtain
high-precision model fitting results [43]. Before building the model, we used the AIC, BIC,
and CV to calculate the bandwidth. Compared with the other methods, the AIC was found
to be the most suitable for the remote sensing variables in this study, and the bandwidth
obtained by the AIC could yield the best accuracy. Therefore, in this study, the AIC was
used to optimize the bandwidth. Referring to Liu Chang’s study [44], the formula of the
AIC is shown in Equation (5):

AIC = −2 ln L
(
ϑ̂L, x

)
+ 2q (5)

where ϑ̂L is the maximum likelihood estimation of ϑ, and q is the number of unknown
parameters. In the bandwidth selection, the bandwidth at the minimum AIC value is the
optimal model bandwidth.

To test the performance of the AGB estimation of the GWR model, we also compared
the results of the proposed method with those of the COK and traditional OLS-based
multivariate linear regression models. COK is based on the theory of variogram and
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structural analysis. It uses two or more variables and takes the value to be estimated
as the main variable and the other variables as the covariates. It combines the spatial
correlation of the main variable with the interactive correlation between the main variable
and covariates and carries out the unbiased optimal estimation of the value of regionalized
variables in a limited area [21]. The structure ratio in the COK model represents the spatial
correlation degree of variables. If the structure ratio is more than 75%, the data have strong
spatial correlation; if the structure ratio is between 25% and 75%, the data have medium
spatial correlation; and, if the structure ratio is less than 25%, the data have weak spatial
correlation [45,46]. In this study, bamboo AGB was used as the main variable, and the
selected remote sensing variables were used as covariates to estimate bamboo AGB.

The OLS-based multiple linear regression model is a global model. It estimates the
population according to the sample regression function and uses n groups of observed
values to obtain the least square sum of residual errors between p independent and depen-
dent variables.

2.5. Accuracy Assessment

In this study, R2, root mean square error (RMSE) and normalized root mean square
error (NRMSE) were used to evaluate the accuracy of the model. A high R2 and low RMSE
and NRMSE indicate that a model has good performance [15]. The formulas are shown in
Equations (6) and (7):

RMSE =

√
1
n

n

∑
i=1

[Z∗(xi)− Z(xi)]
2 (6)

NRMSE =

√
1
n ∑n

i=1[Z∗(xi)− Z(xi)]
2

ymax − ymin
∗ 100% (7)

2.6. Experiment Design

The flowchart of steps is shown in Figure 2. The experiments were designed with five
parts: (1) remote sensing image data preprocessing using ENVI 5.3; (2) remote sensing
variables extraction; (3) using RF to screen the remote sensing variables; (4) GWR, COK, and
OLS model construction and validation; (5) AGB map production using the GWR model.
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Figure 2. Flowchart of steps used in our study for comparison of different algorithms and variables for bamboo forest
AGB estimation.

3. Results
3.1. Selected Variables

The results of parameter optimization based on the RF model are shown in Figure 3.
Figure 3a,b shows the influence of mtry and ntree, respectively, on the AGB simulation
results of the RF model. Figure 3a shows that, when mtry was 203, the error of the model
was the smallest. From Figure 3b, it can be seen that, when ntree reached approximately
2000, the model error tended to be stable. Therefore, in this study, the RF model parameter
mtry was set to 203, ntree was set to 2000, and nodesize was set to 5 (by default). On this
basis, the influence of the number of variables on the model error was further analyzed,
as shown in Figure 3c. Figure 3c shows that the model error decreased rapidly with an
increase in the number of variables. When the number of variables was more than six,
the error rate of the model gradually increased. Therefore, considering the optimized RF
model, when the number of variables was equal to six, the model error was the lowest.
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Figure 3. (a) Influence of mtry on model error (Mg ha−1); (b) influence of ntree on model error (Mg ha−1); (c) influence of
the number of variables on model error (Mg ha−1).

Based on the optimized model, the importance of variables was screened. Figure 4
shows the importance scores of the top 20 variables after 100 runs of the RF model. As
shown in Figure 4, the top six variables of the importance score were TM457, TM543, B7,
NDWI, NDVI, and W7B6VAR. Combined with the analysis in Figure 3c, the six variables
with the highest ranking in importance analysis were selected as the input variables for the
GWR model.

Figure 4. Importance of the top 20 variables (in terms of percentage increase of mean square error).
WiBjxxx indicates GLCM texture xxx based on band j with window size i × i. (e.g., W7B6VAR
indicates the sixth band’s variance with a window size of 7 × 7).

3.2. AGB Estimation Based on GWR

According to the GWR model, the bandwidth range in this study was 10–156 m.
Figure 5 shows the impact of bandwidth on the AIC. As shown in Figure 5, the AIC de-
creased with increasing bandwidth, and the AIC value was the lowest when the bandwidth
was 156 m. Therefore, the optimal bandwidth of the GWR model in this study was 156 m.
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Figure 5. Selection of optimal bandwidth for the GWR model.

Based on the optimal bandwidth and the six selected variables, a GWR model for
estimating the bamboo forest AGB in the study area was constructed. Figure 6 shows
the spatial distribution of the regression parameters of the six variables in the model.
Table 3 shows the descriptive statistics of the regression parameters. Figure 6 and Table 3
show that the parameters of different variables in the GWR model had obvious spatial
differences. The parameters of B7, TM457, NDVI, and NDWI were larger in northwestern
Zhejiang Province, while TM543 and W7B6VAR were larger in southern Zhejiang. This
is the advantage of the GWR model; that is, considering the variation in the parameters
across different spatial positions.

Figure 6. Spatial distribution of model coefficients for different variables in the GWR model.
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Table 3. Descriptive statistics of the local regression parameters of the GWR model.

Variables Min Max Mean StdDev

Intercept 29.887076 36.211161 32.830443 1.933700
TM457 −0.006452 −0.005701 −0.006129 0.000224
TM543 −0.000883 −0.000303 −0.000564 0.000188

B7 0.002119 0.004565 0.003407 0.000633
NDWI 12.2544 19.2605 16.537775 2.102416
NDVI 6.13575 10.815 8.027686 1.299880

W7B6VAR −0.535064 0.396925 −0.078334 0.282045

Figure 7a,b shows the fitting accuracy and verification accuracy analyses, respectively
based on the GWR model. As shown in Figure 7, the fitting accuracy and validation
accuracy (R2) of the GWR model were 0.73 and 0.74, respectively; the RMSE values were
both 4.4 Mg ha−1; and the NRMSE values were 12.8% and 13.8%, respectively. This
indicates that the GWR model constructed in this study can achieve the high-precision
estimation of the bamboo forest AGB.

Figure 7. Comparison between observed and predicted AGB by the GWR model with (a) training samples and (b) test-
ing samples.

3.3. AGB Spatial Estimation of Bamboo Forest

Due to the high accuracy and low error of the GWR model, spatial estimation of the
bamboo forest AGB in the study area was carried out based on the GWR model, as shown
in Figure 8a. Figure 8a shows that most bamboo AGB in the study area was between 10
and 28 Mg ha−1, and the bamboo AGB in the northwest, southwest, and northeast was
relatively dense.

To analyze the spatial distribution of bamboo AGB in the GWR model, we further
compared the statistical histograms of the actual and estimated AGB, as shown in Figure 8b.
From Figure 8b, it can be seen that the maximum proportion of bamboo AGB in Zhejiang
was between 10 and 18 Mg ha−1, accounting for 31.17%, and the minimum proportion of
bamboo AGB was between 0 and 10 Mg ha−1, accounting for 5.17% in the GWR model.
The proportion of GWR results in 18–22 Mg ha−1, 22–28 Mg ha−1, and 28–40 Mg ha−1

were 20.13%, 24.98%, and 18.55%, respectively. The proportions were basically the same in
18–40 Mg ha−1; however, the proportion in the 0–10 Mg ha−1 region was underestimated,
while the proportion in the 10–18 Mg ha−1 region was overestimated.
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Figure 8. (a) The GWR model inversion of AGB in Zhejiang Province in 2014 and (b) percentage of spatial variation of AGB
observed in sample plots and the percentage of spatial variation of the bamboo forest AGB estimated by the GWR models.

4. Discussion

To illustrate the advantages of the GWR model in the bamboo forest AGB estimation,
we further constructed a COK model and an OLS-based multiple linear regression model.

For the estimation of COK, the bamboo forest AGB was used as the main variable, and
the selected remote sensing variables were used as covariates. Then, out of the spherical
model, exponential model, Gaussian model, J-Bessel model, and other variograms, J-Bessel
was selected as the theoretical variogram (Table 4) based on the factors of high R2 and small
residual. Finally, the bamboo forest AGB was estimated by the COK method. Figure 9a,b
shows the fitting accuracy and verification accuracy analyses based on the COK model.
As shown in Figure 9, the fitting accuracy and validation accuracy (R2) of the COK model
were 0.67 and 0.68, respectively; the RMSE values were 4.83 Mg ha−1 and 4.77 Mg ha−1,
respectively; and the NRMSE values were 14.3% and 15.2%, respectively.

Table 4. Optimal variance function model and parameters fitted by the COK model.

Model R2 Residual SS Nugget Still Structural Ratio Range

Spherical 0.6711 3384.70 0.0312 1.1789 0.9735 7978.455
Exponential 0.6759 3460.67 0.0102 1.1569 0.9911 8989.212

Gaussian 0.5689 3734.11 0.0012 1.1905 0.9869 8373.171
Rational

Quadratic 0.6771 3371.19 0.0011 1.1092 0.999 7983.505

Hole Effect 0.6809 3551.67 0.0221 1.018 0.9782 7983.505
K-Bessel 0.6807 3291.64 0.0083 1.0811 0.9998 39,449.225
J-Bessel 0.6826 3275.97 0.0217 1.0926 0.98 10,357.08

Based on OLS, the multiple linear regression model constructed by TM457, TM543,
B7, NDWI, NDVI, and W7B6VAR is shown in Formula (8):

AGB = 31.8192 + 0.002843× B7− 0.005629× TM457− 0.000362× TM543
+11.5184×NDVI + 19.4396×NDWI− 0.2196×W7B6VAR

(8)

Figure 10a,b shows the fitting accuracy and verification accuracy analyses based on
the OLS model. As shown in Figure 10, the fitting accuracy and validation accuracy (R2) of
the OLS model were 0.65 and 0.66, respectively; the RMSE values were 5.06 Mg ha−1 and
5.13 Mg ha−1, respectively; and the NRMSE values were 14.5% and 15.5%, respectively.
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Figure 9. Comparison of observed and predicted AGB by the COK model with (a) training samples and (b) testing samples.

Figure 10. Comparison of observed and predicted AGB by the OLS model with (a) training samples and (b) testing samples.

The results indicate that the GWR model had the highest precision and strongest
prediction ability, followed by the COK model, while the OLS model had the lowest
precision. The prediction accuracy (R2) of the GWR model was 0.74, approximately 9% and
16% higher than the prediction accuracies of the COK and OLS models, respectively. The
RMSE of the GWR model was only 4.4 Mg ha−1, approximately 7% and 12% lower than
those of the COK and OLS models, respectively. The NRMSE of the GWR model was 13.8%,
approximately 9% and 11% lower than those of the COK and OLS models, respectively.
The GWR model had the highest accuracy, while the OLS model had the lowest accuracy.
This may have been due to the following reasons.
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First, the OLS model is a nonspatial regression model, while the GWR and COK
models are both spatial models. According to Table 4, the structure ratios of various COK
models were above 0.97; therefore, the bamboo forest AGB has strong spatial autocorre-
lation (i.e., the spatial distribution of AGB is nonrandom [47]). However, the OLS model
is a completely stochastic model, and the spatial relationship of AGB is not considered
in the estimation. Therefore, the GWR and COK models were found to be more suitable
for spatial estimation of AGB, which was consistent with the research results of relevant
scholars [48].

Second, although the GWR and OLS models are regression models, once the remote
sensing information model based on OLS is constructed, the unified parameters are used
to estimate the AGB pixel-by-pixel (Formula 4), ignoring the changes in model parameters
in different spatial positions. The GWR model adds spatial relations (as weights) to the
regression operation and calculates weights using a distance attenuation function, such
that each of the remote sensing variables has different parameters in each pixel, as shown
in Figure 6. This effectively reduces the spatial estimation error and ensures the accuracy
of the results of AGB estimation.

Finally, as mentioned above, GWR and COK are both spatial models and, thus, have
some advantages in AGB estimation. However, the COK model calculates the spatial
autocorrelation scale based on a variogram (i.e., a range) and conducts spatial estimation
within a limited range. The estimation accuracy of the model is closely related to the
distribution of the sampling points. Generally, the closer to a sampling point, the smaller
the estimation error of the model. However, the farther from a sampling point or in an area
without sampling, the higher the estimation error of the model. The GWR model calculates
the variable parameters of each point in the bandwidth based on existing sample data and
the sample data within the bandwidth. The estimation results pay more attention to the
local variation law, thus reducing the model error [48]. This may be the reason why the
GWR model was better than the COK model, to some extent.

Bandwidth is key in the construction of the GWR model. Figure 11 shows the effect
of bandwidth on model accuracy. As shown in Figure 11, when the bandwidth was very
small, the training accuracy of the model was very high, but the prediction accuracy was
very low. For instance, if the bandwidth was 10 m, the training accuracy (R2) was as high as
0.99, while the verification accuracy was only 0.1778. This is because the smaller bandwidth
reduces the weight of the estimation points outside the bandwidth, which increases the
model error. In this study, the AIC was used to calculate the optimal bandwidth of the
GWR model, which was 156 m, thus ensuring the accuracy of AGB estimation.

Figure 11. Influence of bandwidth selection on accuracy.
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In this study, the RF model was used to select six variables from 353 variables, includ-
ing the original band, band combination, vegetation index, and GLCM texture features,
to participate in the construction of the GWR model. Among them, the information of B5
variables accounted for 66.7% of the total variables, followed by the variable information
based on B4 (with 50%). Figure 12 shows the correlation between the six selected variables
and the bamboo forest AGB. Figure 12 shows that the six variables, especially TM457,
TM543, and NDWI, had a significant correlation with the bamboo forest AGB. Therefore,
the selection of remote sensing variables based on an RF model provided an important
guarantee, enabling GWR to accurately estimate the bamboo forest AGB.

Figure 12. Correlation between selected variables and bamboo forest AGB.

Figure 13 further analyzes the correlations of the top 20 variables of importance.
From Figure 13, we can see that the weak correlations between variables indicate that the
variables screened out by the RF can solve the multicollinearity problem in traditional
statistical regression models to a great extent, thus laying an important foundation for the
construction of the GWR and other models.
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Figure 13. Autocorrelation of the top 20 variables.

5. Conclusions

Based on Landsat 8 OLI imagery and AGB survey data of bamboo forests in Zhejiang
Province, we established a GWR model to estimate the bamboo forest AGB in Zhejiang
Province and compared the estimation results with COK and traditional OLS-based multi-
ple linear regression models. The results showed that TM457, TM543, B7, NDWI, NDVI,
and W7B6VAR greatly contributed to AGB estimation. The GWR model based on these
variables had high precision and strong prediction ability, followed by the COK model,
while the OLS model had the lowest precision. Among them, the prediction accuracy (R2)
of the GWR model was 0.74, which was 9% and 16% higher than the prediction accuracies
of the COK and OLS models, respectively. The error (RMSE) of the GWR model was 7%
and 12% lower than the errors of the COK and OLS models, respectively, and its NRMSE
was 9% and 11% lower than those of the COK and OLS models, respectively. The optimal
bandwidth of the GWR model was 156 m. The parameters of different variables in the GWR
model had obvious spatial differences. The parameters B7, TM457, NDVI, and NDWI were
larger in northwestern Zhejiang Province, while the parameters TM543 and W7B6VAR
were larger in southern Zhejiang Province. This is the advantage of the GWR model,
considering the change in parameters at different spatial positions. Based on the GWR
model, most of the bamboo forest AGB in Zhejiang Province ranged from 10 to 32 Mg ha−1,
mainly distributed in the northwest, southwest, and northeast parts of the province. This
is in line with the actual bamboo forest AGB distribution in Zhejiang Province, indicating
the potential practical value of our study.
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