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Abstract: Hyperspectral imagery has been widely used in precision agriculture due to its rich spectral
characteristics. With the rapid development of remote sensing technology, the airborne hyperspectral
imagery shows detailed spatial information and temporal flexibility, which open a new way to
accurate agricultural monitoring. To extract crop types from the airborne hyperspectral images, we
propose a fine classification method based on multi-feature fusion and deep learning. In this research,
the morphological profiles, GLCM texture and endmember abundance features are leveraged to
exploit the spatial information of the hyperspectral imagery. Then, the multiple spatial information
is fused with the original spectral information to generate classification result by using the deep
neural network with conditional random field (DNN+CRF) model. Specifically, the deep neural
network (DNN) is a deep recognition model which can extract depth features and mine the potential
information of data. As a discriminant model, conditional random field (CRF) considers both spatial
and contextual information to reduce the misclassification noises while keeping the object boundaries.
Moreover, three multiple feature fusion approaches, namely feature stacking, decision fusion and
probability fusion, are taken into account. In the experiments, two airborne hyperspectral remote
sensing datasets (Honghu dataset and Xiong’an dataset) are used. The experimental results show
that the classification performance of the proposed method is satisfactory, where the salt and pepper
noise is decreased, and the boundary of the ground object is preserved.

Keywords: hyperspectral imagery; crops fine classification; multi-feature fusion; deep neural network;
conditional random field

1. Introduction

Accurate and timely grasp of the information about the agricultural resources is ex-
tremely important for agricultural development. Obtaining the area and spatial distribution
of crops is an important way to obtain agricultural information [1,2]. Traditional methods
obtain crop classification results through field measurement, investigation and statistics,
which are time-consuming, labor-consuming and money-consuming [3,4]. Remote sensing
technology advances by leaps and bounds, and the resolution and timeliness of remote sens-
ing images have been improved, and hyperspectral remote sensing data have been widely
used [5,6]. Specifically, hyperspectral data play a great role in agricultural surveys [7–10],
and have been used for crop condition monitoring, agricultural yield estimation, pest
monitoring and so on. In agricultural survey, the fine classification of the hyperspectral
image provides the information of crops distribution [11–13]. Fine classification of crops
requires images with high spatial and spectral resolution [14]. In recent years, airborne
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hyperspectral technology has developed rapidly, the application of airborne hyperspectral
imagery can solve the above needs.

In order to obtain crop fine classification information, scholars have done numerous
studies [15,16]. Galva et al. used the hyperspectral data obtained on the EO-1 satellite and
established a discriminant model through step regression analysis to identify and classify
five sugarcane varieties in the southeastern region of Brazil, with a classification accuracy
of 87.5% [17]. Li Dan used hyperion data and adopted the linear spectral mixture model
and support vector machine (SVM) method to extract the litchi planting area in the north
of Guangzhou. The results showed that the linear spectral decomposition of mixed pixels
and SVM method can break the difficulty of extracting training samples and make full
use of the features of hyperion hyperspectral images. The extraction accuracy of litchi
is 85.3% [18]. Bhojaraja et al. used the spectral angle matching (SAM) method to extract
the area of areca in Karnataka, India on hyperion hyperspectral data, with an accuracy of
73.68% [19]. Airborne hyperspectral remote sensing images have higher spatial resolution
and spectral resolution. Therefore, airborne hyperspectral imaging technology has further
amplified its application in disaster monitoring, fine agriculture, forest pest monitoring
and prevention and other fields. Concurrently, good results also have been obtained in
the field of crop fine classification. F. Melgani compared two support vector machine
methods. The first was a linear SVM algorithm without kernel transformation, and the
second was a nonlinear SVM algorithm based on Gaussian kernel function. Using AVIRIS
data to identify and classify corn and other crops, the accuracy exceeds 80% [20]. Taking
AVIRIS data as the data source, Tarabalka et al. firstly used the support vector machine to
classify images based on pixels, and then used the Markov random field to make detailed
classification results by using spatial context information. Combining SVM and MRF, the
author classified soybeans and wheat, with an accuracy of 92% [21]. Wei et al. selected
Hanchuan and Honghu UAV datasets for experiments and extracted spatial features from
UAV hyperspectral images and fused them with spectral features. As a univariate potential
function of the Conditional Random Field, the accuracy of strawberry, cotton and Chinese
cabbage was over 98% [22]. Liu et al. gradually layered the experimental data (Beijing
Shunyi) to extract and mine crop information. Then, Liu chose different parameters and
extraction methods for each layer according to different goals [23]. The accuracy of wheat,
corn and other ground objects was above 95%. Yu et al. used the support vector machine
to obtain probability images of ground objects in the Salinas data set, and classified them
by the conditional random field model, with various accuracy of over 94% [24]. Li et al.
proposed two methods using spatial context support vector machines for crop classification.
One is based on MRFs, which used spatial features in the original space. Another method
used spatial features in the feature space, which is the nearest neighbor in the feature space.
Then, the overall classification accuracy of the 16 data sets is 95.5% [25].

However, the airborne hyperspectral image shows richer spatial information. The
above methods are insufficient for mining hyperspectral spatial information, and it is
difficult to obtain good results [26,27]. Therefore, we propose a method for crops fine
classification in airborne hyperspectral imagery based on multi-feature fusion and deep
learning. First of all, three spatial features of hyperspectral images were extracted, namely
morphological profile, GLCM texture and endmember abundance features. The extracted
spatial features are fused with the original spectral information for the recognition of crop.
Mathematical morphology is a non-linear image processing theory. It is mainly used to
analyze the spatial relationship between pixels in an image by a structural element with
given size and shape. GLCM expresses the texture by calculating the joint conditional
probability density between the gray levels of pixels. The feature reflects the correlation
between the gray levels of any pixels in the image and the statistical properties of the
texture features. GLCM texture can mine the internal information of the image and exploit
the external structure and subtle properties of the image. There are mixed pixels in
hyperspectral remote sensing images. The same feature has different spectral and the same
spectral represents different features. Moreover, a deep neural network model is used.
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The DNN model has multiple hidden layers, and the hidden layers are fully connected.
In the experiment, the DNN model is used to learn the potential features of airborne
hyperspectral imagery. The internal information is excavated and the probability image is
obtained. Conditional random field is used as a classifier to remove noise and preserve
the boundary of ground features. As a discriminative model, the CRF model directly
models the posterior probability of the label field through a specific observation field. The
probability image is taken as the unary potential function of the conditional random field
model, thus reducing the salt and pepper noise.

This article will also explain the following: Section 2 explains the spatial features,
fusion methods and classification model. Then, Section 3 introduces the datasets and
analyzes the experimental results. Section 4 summarizes the whole article.

2. Materials and Methods

Figure 1 shows the flowchart of the proposed method for the fine classification of
crops in airborne hyperspectral remote sensing images using multi-feature fusion and deep
learning. The original hyperspectral image is reduced in dimensionality by using principal
component analysis (PCA), and the first four bands are selected as the base image. The
morphological features, texture information and endmember abundance features of the
image are extracted based on the base images to mine the spatial information. Subsequently,
the DNN-CRF is employed as the classification model to mining potential information and
obtaining the classification results.
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Figure 1. The whole procedure of our proposed method.

2.1. Multiple Feature Extraction

Hyperspectral images have abundant information. Different features can express
different details of hyperspectral images. Multi-feature fusion in hyperspectral images
is beneficial to solving the problem of insufficient single feature information. Naturally,
multi-features fusion has greatly promoted the accuracy of image classification.

2.1.1. Texture Features

Hyperspectral remote sensing images have profuse texture information. It is an
internal feature common to all object surfaces and represents important information about
the distribution of objects and neighborhood relations [28]. The Gray Level Co-Occurrence
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Matrix (GLCM) is often used to extract texture characteristics [29]. By calculating the
correlation between the gray levels of two pixels in a certain distance and a certain direction
in an image, it reflects the comprehensive information of the direction, interval, amplitude
of change and speed of the image [30].

Suppose f (x,y) is a two-dimensional digital image with a size of M*N and a gray level
of Ng, where #x is the number of elements in the set x and P P is a matrix of Ng× Ng. If
the distance between (x1, y1) and (x2, y2) is d and the angle is θ (0◦, 45◦, 90◦ and 135◦), the
GLCM of various pitches and angles is:

P
(
i, j, d, 0

◦)
= #

 (x1, y1), (x2, y2) ∈ M, N|(x1 − x2 = 0, |y1 − y2| = d),

f (x1, y1) = i, f (x2, y2) = j


P
(
i, j, d, 45

◦)
= #


(x1, y1), (x2, y2) ∈ M, N|(x1 − x2 = d, y1 − y2 = −d)

or(x1 − x2 = −d, y1 − y2 = d),

f (x1, y1) = i, f (x2, y2) = j


P
(
i, j, d, 90

◦)
= #

 (x1, y1), (x2, y2) ∈ M, N|(|x1 − x2| = d, y1 − y2 = 0),

f (x1, y1) = i, f (x2, y2) = j


P
(
i, j, d, 135

◦)
= #


(x1, y1), (x2, y2) ∈ M, N|(x1 − x2 = d, y1 − y2 = d)

or(x1 − x2 = −d, y1 − y2 = −d),

f (x1, y1) = i, f (x2, y2) = j



(1)

In this method, we use the six measurements, namely mean, homogeneity, contrast,
dissimilarity, entropy and second moment to depict the textural information of the image.
Specifically, the mean value represents the regularity of the image gray value, and the
uniformity of the local image gray level is represented by homogeneity [30]. The contrast
shows the sharpness and texture depth of an image, and dissimilarity shows the measure
of the degree of difference. Entropy expresses the complexity or unevenness of the image
texture, and the angular second moment indicates the uniform characteristics of the local
gray distribution of the image and the width of the texture.

2.1.2. Endmember Abundance Features

Affected by the mixing effect of sensors, atmospheric transmission, there are plenty of
mixed pixels in the hyperspectral imagery. For reducing the limitations of mixed pixels
on the classification process of hyperspectral images, endmember abundance features are
extracted [31]. Endmember is a kind of characteristic object with relatively fixed spectrum.
Sequential Maximum Angle Convex Cone (SMACC) is a method based on the convex
cone model, which uses constraint conditions to identify the endmember spectrum of the
image [32]. Firstly, the convex cone is determined by the pole and first endmember spectral.
Then, the next end member spectrum is generated by applying the oblique projection of
the constraint conditions. The addition of cones can generate a new endmember spectrum
until the specified endmember spectrum category is satisfied. In this paper, the SMACC
method often extracts endmember spectrum from image. The mathematical formula of the
SMACC method is:

H(c, i) =
N

∑
k

R(c, k) A(k, j) (2)

where H is the endmember spectrum; c is the band index and i is the pixel index; k is
the index from 1 to the largest end member; R is the matrix containing the endmember
spectrum; A is the abundance of the endmember j to the endmember k in each pixel degree
matrix.
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2.1.3. Morphological Profiles

Morphology is a theory based on mathematical morphology for mining the morpho-
logical profiles of target objects [33]. The basic operations of the morphological algorithm
include erosion, dilation, opening and closing [34]. The opening and closing are the
combined operation of erosion and dilation. The opening operation performs dilation
processing on an erosion image, which can remove the brighter structure in the image. In
contrast, the closing operation performs erosion processing on a Dilation image, which can
remove darker structures in the image.

Using the opening and closing of morphological reconstruction, the shape and struc-
ture can be preserved, and fine noise can be removed. The opening and closing operator
are proved to be effective in processing the spatial information for classification of hyper-
spectral images. Let γSE(I) be the morphological opening Structuring Elements (SE have
properties such as size and shape) of image I, and ϕSE(I) be the closed morphological. A
series of SEs of increasing size are defined as MPs:

MPλ =
{

MPλ
γ (I) = γλ(I)

}
, ∀λ ∈ [0, n]

MPϕ =
{

MPλ
ϕ (I) = ϕλ(I)

}
, ∀λ ∈ [0, n]

With γ0(I) = ϕ0(I) = I

(3)

In the formula, λ is the radius of SE of the commonly used disk. A grayscale image
can be used to generate MPs for open/close reconstruction. A set of SEs with gradually
increasing size is used to display the multi-scale information of the image.

2.2. Fusion Strategy
2.2.1. Decision Fusion

Decision fusion method is often used in the fusion of multi-features in the image
classification [35]. According to different mathematical foundations, the decision fusion is
roughly divided into four types: methods based on evidence theory, methods based on
probability, methods based on fuzzy logic and methods of voting and election strategies.
The basic idea of decision fusion strategy is: each voter evaluates and ranks different
candidates, and then calculates the number of votes of all voters. The candidate with the
largest number of votes wins the competition.

Decision fusion is a process that data reduction mapping from multiple inputs to
a smaller number of outputs [36]. Firstly, the three features extracted from the original
image are fused with the spectral information respectively. We can obtain the respective
classification results with different features. Then, the classification results of feature are
fused by decision fusion to obtain the final classification result. Decision fusion uses the
most frequently occurring category as the label of this pixel. Therefore, a classification
image can be given based on the classification results of multiple features.

Where Am is the number of votes calculated for candidate m, n is the number of
features. If candidate n has the largest number of votes, then candidate n can be the winner
after k classifier evaluations and be considered to be the best.

2.2.2. Probability Fusion

Probability fusion based on the probability output result of the classifier. The prob-
ability outputs with different features are calculated, on which the probability fusion is
performed. The main steps of probability fusion are as follows: firstly, we obtain the classifi-
cation probability image of each spatial feature and spectral feature through the classifier.
Then, probability images of multiple features are fused to obtain probability classification
images. The classification result is gain by probabilistic fusion of probability images.
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2.2.3. Stacking Fusion

Stacking fusion is classified by the combination of feature vectors. Stacking fusion
strategy steps are as follows: firstly, we combine the extracted spatial features with spectral
information to form the new feature that is used as input to the classifier. Specifically, the
image of classification is the result of fusion of spatial and spectral features. The step of
stacking fusion is the fusion of features before classification. Stacking fusion is represented as:

γ =
[

ϕT
specXspec, ϕT

spatXspat

]
(4)

where Xspec is the spectral feature. Xspat is the feature related to the extended the mor-
phological profiles, GLCM texture, and endmember abundance features. Then, there is
the feature fusion expression, where γ is the fusion feature and ϕ is the linear mapping
moment of the extracted feature.

2.3. Image Classification
2.3.1. Deep Neural Networks

Deep Neural Network (DNN) has a strong learning ability, that has been often used
for image classification. DNN is used as the classification model to potential features of
images. The basic structure of DNN composed of several input layers, hidden layer and
output layer. After the input, a linear relationship is learned in hidden layers, and the
output result is obtained through the activation function.

The training of the deep neural network includes the forward propagation and back
propagation process. The forward propagation algorithm performs a series of linear
operations and activation operations with the input value vector by using multiple weight
coefficient matrices and bias vectors. Back propagation algorithm optimizes the selected
loss function to find the minimum value. A series of linear coefficient matrices and bias
vectors are updated. It mines deep features of target high-dimensional data by constructing
multiple hidden layers of neuron connections. The structure diagram of DNN is shown in
Figure 2.
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The forward propagation algorithm uses several weight coefficient matrices W and
bias vector b. After we input data, the result of the next layer was calculated based on the
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output of the previous layer. The output result is not limited to a single neuron. The output
layer can have multiple neurons. The forward propagation formula is:

al = σ
(

zl
)
= σ

(
W lal−1 + bl

)
(5)

where l is the number of input layers, W is the matrix of all hidden layers and output
layers. b is the offset vector, and the final output is al . Back propagation is the core of deep
learning. By defining a loss parameter, the gap between the probability output of the model
and the real sample is calculated. Here, cross entropy is selected as the loss parameter. The
back-propagation algorithm is the opposite process to the forward propagation algorithm.
It pushes backwards from the L layer to the first layer, revises W and b through repeated
iterations, and finally obtains W and b as the parameters that can be finally classified.

2.3.2. Conditional Random Field

Conditional Random Field (CRF) is a class of statistical modeling method often applied
in pattern recognition and machine learning and used for structured prediction. Whereas a
classifier predicts a label for a single sample without considering “neighboring” samples,
a CRF can take context into account. To do so, the prediction is modeled as a graphical
model, which implements dependencies between the predictions. What kind of graph is
used depends on the application.

CRF model, as a discriminative model, is extensively used for image classification
and target labeling. The Conditional Random Field model (CRF) uses a unified probability
framework to simulate the local neighborhood interaction between random variables. It
directly simulates the posterior probability of the label and obtains the corresponding
Gibbs energy. At the same time, the classification image can obtain the label image with the
maximized posterior probability through Bayesian Maximum Posterior Rule (MAP). The
CRF model directly simulates the posterior distribution of the label x, given the observation y.

The unary potential function uses the relationship between the label and the observed
image data to model. It calculates the single pixel with a specific category label through
the feature vector. The binary potential function simulates the spatial context information
between a pixel and its neighborhood by considering the field and the observation field.
This paper uses the results of DNN classification output to define the unary potential
function of the CRF model.

The calculation process of the conditional random field is as follows:

E(x|y) = ∑
i∈V

ψi(xi, y) + λ ∑
i∈V,j∈Ni

ψij(xi, xj, y) (6)

V is the set of all the pixels of the observed data; N is the number of pixels in the
observed data. Let ψi(xi, y) and ψij

(
xi, xj, y

)
are the unary potential function and the bi-

nary potential function E(x|y) respectively defined on the local area of the pixel i. The
adjustment parameter of the binary potential function is defined as a non-negative con-
stant, which is used to measure the influence of the unary potential function and the
binary potential function.

3. Experiments
3.1. Experiential Data
3.1.1. Honghu Dataset

Honghu City is under the jurisdiction of Jingzhou City of Hubei Province. It is located
in the central and southern part of Hubei Province, spanning between 113◦07′~114◦05′ east
longitude and 29◦39′~30◦12′ north latitude in Figure 3. There are 102 lakes in Honghu City,
and Honghu is known as the “Kidney of Hubei”.
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The first set of experimental data is the open-sourced high-resolution hyperspectral
dataset (Honghu dataset, Figure 4) obtained in Honghu City of Hubei Province using a
17-mm focal length Headwall Nano-Hyperspec imaging sensor equipped on a DJI Matrice
600 Pro UAV platform in November 2017.The dataset is provided by the Intelligent Data
Extraction and Remote Sensing Analysis Group (RSIDEA Group) of Wuhan University. The
original image is shown in Figure 4a, with a spatial resolution of 0.4 m, a size of 400 × 400
and 270 bands from 400 to 1000 nm. Table 1 shows the feature types and corresponding
pixel numbers of the Honghu data set.
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Table 1. Honghu dataset.

Type Pixel Type Pixel Type Pixel

roof 66 cabbage 309 celtuce 30
bare soil 354 tuber mustard 343 film-covered lettuce 217
cotton 42 brassica parachinensis 189 romaine lettuce 90
rape 1137 brassica chinensis 217 carrot 83

Chinese cabbage 323 small brassica chinensis 477 white radish 122
pakchoi cabbage 121 lactuca sativa 158 sprouting garlic 61

3.1.2. Xiong’an Dataset

Xiong’an New District is located in Baoding City, Hebei Province, China (Figure 5).
The planning scope covers Xiongxian, Rongcheng, Anxin and some surrounding areas in
Hebei Province. The Xiong’an New Area is located in the mid-latitude zone, with a warm
temperate monsoon continental climate.
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In October 2017, the Institute of Remote Sensing and Digital Earth of the Chinese
Academy of Sciences and the Shanghai Institute of Technical Physics of the Chinese
Academy of Sciences conducted an aerial hyperspectral remote sensing data acquisition
experiment in Xiong’an New District, Hebei Province (Xiong’an dataset, Figure 6). The
hyperspectral image data of Horseshoe Bay Village in Xiong’an New District was collected
by full spectrum multimode imaging spectrometer for high resolution special aviation
system, with a spatial resolution of 0.5 m, a size of 3750 × 1580 and 250 bands from 400 to
1000 nm. Table 2 shows the feature types and corresponding pixel numbers of the Xiong’an
data set.
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Table 2. Xiong’an dataset.

Type Pixel Type Pixel Type Pixel

rice 135,662 peach 19,686 koelreuteria paniculata 6992
water 49,695 corn 17,750 bare land 11,523

grassland 126,569 pear tree 308,285 rice stubble 58,149
acer compound 67,695 soybean 2146 locust 1684

willow 54,384 poplar 27322 sparse forest 449
sophora japonica 142,827 vegetable field 8745 house 8885

White wax 50,834 elm 4606

3.2. Experiment Description
3.2.1. Experimental Setup

In order to verify the effectively of this method, we compared the following seven
sets of experiments: the original spectral image, GLCM texture, morphological profiles,
endmember abundance features, decision fusion, probability fusion and stacking fusion.

The airborne hyperspectral image has rich spectral characteristics. For dimensionality
reduction, we use PCA to reduce the airborne hyperspectral image to the first eight bands.
Using the data after the PCA as the basic data source, texture features are extracted through
GLCM. Among them, we set the window size to 7 × 7. The direction is set to 0◦, 45◦, 90◦

and 135◦. The average of the results in the four directions is used to represent the GLCM
texture. The endmember spectral is extracted. RMS Error Tolerance is set to 0, so that
abundance images and spectra can be obtained. The morphological profiles are obtained
by morphological opening and closing reconstruction. The radius of the disk operator is
set to 1, 3, 5 and 7.

Deep neural network has five hidden layers, the number of neurons in each layer was
29. The learning rate is set to 0.00001. The number of iterations is 1800. The minibatch
size is set to 27. In order to avoid overfitting, this paper uses the dropout method to
randomly delete 30% of the neural nodes to reduce the network complexity and improve
the generalization ability of the model. Supported by a large number of experiments, the
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parameters of CRF, λ and θ are set to 1.6 and 3.0, respectively. The accuracy of each crop,
the overall accuracy (OA) and Kappa coefficient (Kappa) are used to verify the classification
results. Kappa coefficient is a measure of classification accuracy, which can be calculated
by:

Kappa =
Po − Pe

1− Pe
(7)

where Po is the sum of the number of samples of each class divided by the total number
of samples, that is, the overall classification accuracy. Suppose that the number of real
samples of each class is A1, A2, . . . , AC respectively, and the number of predicted samples
of each class is B1, B2, . . . , BC respectively, and the total number of samples is n, The
formula is as follows:

Pe =
n

∑
n=1

(
An ∗ Bn

n ∗ n

)
(8)

3.2.2. Experimental Results

The classification results of Honghu are shown in Figure 7a is the classification result
of the original image. The result shows that there are still many misclassifications of
ground objects. The white radish and small brassica chinensis in the lower left corner
of the image are misrecognized. The carrot in the upper right corner of the image is
classified as tuber mustard. Figure 7b is the endmember abundance classification result.
The cabbage in the lower left corner was misclassification but recognized as film-covered
lettuce. Moreover, some brassica chinensis were mistakenly classified as rapeseed and
small brassica chinensis. Romaine lettuce in the middle was also mistakenly classified
as film-covered lettuce. The result of GLCM texture is shown in Figure 7c. In addition
to the misclassification of lactuca sativa and carrot, there are also some small Brassica
chinensis that are classified as pakchoi cabbage. The classification results of morphological
profiles are slightly improved in Figure 7d. However, the cabbage is still classified as
small green vegetables and film-covered lettuce. Part of the greens was also mistakenly
classified as small greens and rapeseed. The results of decision fusion, probability fusion
and stacking fusion are shown in Figure 7e–g. The classification results of the three fusion
strategies are satisfactory. Almost all categories are classified correctly, but there are still
misclassifications. For example, in the decision fusion result, some Chinese cabbage was
wrongly classified as bare land and rape, green cabbage was wrongly classified as small
green vegetables, and some small green vegetables were mixed with rape. In the result
of probabilistic fusion, various features can be better distinguished. Among them, the
precision of carrot, sprouting garlic, celtuce, etc. has been greatly improved.
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Table 3 is the classification accuracy of different features and fusion strategies of the
Honghu dataset. The OA of the original spectral is 91.05%, and the accuracy of celtuce,
romaine lettuce, and carrots is 0%. The overall accuracy of classification using endmember
abundance is 91.77%. Compared with the classification results of the original image, the
accuracy of part types of endmember abundance was improved, such as celtuce and carrot,
but pakchoi cabbage was misclassified. The OA of GLCM texture and morphological
profiles were 91.92% and 93.64%, respectively. The accuracy of some crops such as bare
soil, cotton, lettuce were improved. The accuracy of multi-features fusion more than 95%,
and the 18 categories in the classification result are basically consistent with the ground
truth. The probability fusion and stacking fusion classification results are generally better,
with OA reaching 96.89% and 98.7%, respectively. The accuracy of multi-feature fusion is
higher than that of single-feature classification, which shows that the fusion of multiple
features is helpful for the fine classification of crops.

Figure 8 shows the classification results of Xiongan. Figure 8a is the classification
result of the original image. Large-area classification results are better, but the accuracy
of small areas such as peach, vegetable field, and locust is only 0%. The classification
result of endmember abundance is shown in Figure 8b. The peach in the upper part is still
misclassified, and there are many small pixels in the upper right corner that have been
misclassified. Figure 8c is the result of the GLCM texture. Compared with the first two sets
of experiments, there was a great improvement in the maintenance of the ground object
boundary. The morphological profiles can well maintain the shape characteristics of the
image. The experimental results shown in Figure 8d clearly show that almost all categories
of different area sizes are displayed.



Remote Sens. 2021, 13, 2917 13 of 18

Table 3. The results of Honghu classification.

Types Training Samples Text Samples Original Image Endmember
Abundance GLCM Texture Morphological

Profiles Decision Fusion Probability
Fusion

Stacking
Fusion

Red roof 66 2138 99.50 100.00 100.00 100.00 99.53 99.53 99.67
Bare soil 354 11,456 99.38 99.67 99.03 99.68 98.91 99.52 99.53
Cotton 42 1382 98.75 98.77 96.74 99.13 98.91 99.28 99.93
Rape 1137 36,783 100.00 99.58 100.00 99.72 99.31 99.96 99.83

Chinese cabbage 323 10,472 99.73 99.69 99.64 99.67 98.42 99.68 99.27
Pakchoi cabbage 121 3934 99.73 0.00 99.75 0.00 74.91 99.75 95.32

Cabbage 309 9998 99.89 99.95 99.92 99.95 99.54 99.88 99.97
Tuber mustard 343 11,098 90.10 98.59 99.20 98.57 96.27 98.13 98.88

Brassica parachinensis 189 6114 88.72 96.34 88.39 96.65 93.62 88.17 96.24
Brassica chinensis 217 7036 99.86 75.99 99.62 75.68 88.03 99.05 97.29

Small brassica chinensis 477 15,451 93.58 94.34 93.12 94.16 95.92 92.63 98.33
Lactuca sativa 158 5114 79.33 92.65 78.29 92.71 92.45 95.44 96.05

Celtuce 30 973 0.00 0.00 87.67 86.84 89.00 94.71 97.43
Film-covered lettuce 217 7046 99.65 99.52 99.29 98.85 97.39 99.87 99.45

Romaine lettuce 90 2921 0.00 0.00 99.65 90.96 91.34 95.52 95.31
Carrot 83 2710 0.00 94.32 78.65 94.32 90.00 98.38 96.64

White radish 122 3960 86.74 83.43 64.49 83.43 90.73 83.66 97.85
Sprouting garlic 61 2005 86.74 90.57 95.46 90.52 89.83 97.56 97.71

OA 91.05% 91.77% 91.92 93.64 95.98 96.89 98.71
Kappa 0.909 0.906 0.908 0.927 0.954 0.964 0.985
Kappa 0.9099 0.9065 0.9083 0.9277 0.9545 0.9649 0.9854
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Figure 8e is the result of decision fusion, which improves the classification result of a
single feature. The advantages of fusion can be seen from the classification results. The up-
per white wax, Koelreuteria Paniculata and the upper right of the image all have complete
classification results. The classification results of probability fusion and stacking fusion
are shown in Figure 8f,g. As can be seen in the classification diagram, the misclassification
phenomenon in the upper middle and upper right is reduced. The classification results of
multi-features fusion have been significantly improved.

The classification accuracy of different features is shown in Table 4. In the classifica-
tion results of the original spectral, the classification accuracy of sparse forest, peach, and
soybean is 0%, and all of them are mistaken for pear tree. The accuracy of acer compound
and corn is less than 60%, and the OA is 85.46%. In the classification results using end-
member abundance, it can be seen that the classification accuracy of most crops has been
improved, but the classification accuracy of peach, soybean, and locust is still 0. According
to the classification results of GLCM texture, the classification accuracy of peach trees has
increased by 3.17%, the classification accuracy of maple leaves has reached 91.28%, and
the OA has reached 90.85%. In the classification results of morphological profiles, the
classification accuracy of peach has increased by more than 60%, the classification accuracy
of rice is the highest at 98.83%, and the OA is 94.08%. The last three groups are the results
of decision fusion, probability fusion and staking fusion. Among them, the OA of decision
fusion is 94.34%, and the Kappa coefficient is 0.915. Except for vegetable field and sparse
forest, the classification accuracy of all crops is above 50%. The OA of probability fusion is
95.74% and Kappa coefficient is 0.928. Only the classification accuracy of vegetable plots is
below 60%, and there are seven types of crop categories above 95%. In the classification
accuracy of stacking fusion, there are 12 categories that reach more than 99%, including
rice, water and willow. The OA is 99.71%, and the overall accuracy is satisfying.
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Table 4. The results of Xiong’an classification.

Types Training
Samples

Text
Samples

Original
Image

Endmember
Abundance

GLCM
Texture

Morphological
Profiles

Decision
Fusion

Probability
Fusion

Stacking
Fusion

Rice 135,662 316,544 98.40 98.21 98.28 74.58 98.60 98.83 99.95
Waters 49,695 115,955 92.46 93.74 93.87 94.19 97.16 96.61 99.72

Grassland 126,569 295,329 91.13 90.63 90.73 88.52 91.83 93.42 99.69
Acer

compound 67,695 157,954 53.11 88.56 91.28 87.40 91.53 95.08 99.86
Willow 54,384 126,897 81.02 78.85 84.23 77.66 93.26 93.39 99.98
Sophora
japonica 142,827 333,263 86.21 83.81 85.73 85.36 90.62 94.61 99.95

White wax 50,834 118,612 80.32 73.32 82.74 94.06 97.18 97.27 99.76
Peach 19,686 45,934 0.00 0.00 3.17 10.71 52.76 64.27 98.72
Corn 17,750 41,417 58.75 39.34 52.14 70.76 82.43 81.22 99.07

Pear tree 308,285 719,331 97.98 97.68 97.21 96.56 96.52 97.60 99.81
Soybean 2146 5007 0.00 0.00 12.36 53.55 54.61 35.97 98.24
Poplar 27,322 63,752 68.62 60.39 70.49 71.60 77.16 80.56 98.66

Vegetable
field 8745 20,405 0.00 0.00 0.00 36.48 37.38 24.61 97.02

Elm 4606 10,748 88.49 74.78 85.64 83.41 86.95 90.69 98.68
Koelreuteria
Paniculata 6992 16,314 95.69 95.65 94.84 95.42 99.35 98.62 99.91

Bare land 11,523 26,887 96.49 96.07 96.37 96.41 97.62 97.24 99.64
Rice

stubble 58,149 135,682 96.95 96.90 96.86 97.50 98.99 98.71 99.97
Locust 1684 3929 0.00 0.00 0.00 17.29 64.89 0.00 98.07
Sparse
forest 449 1048 0.00 0.00 0.00 0.83 50.31 0.00 88.84

House 8885 20,732 88.46 90.99 90.08 92.48 94.38 94.14 98.69
OA 88.86 87.46 88.85 89.17 89.34 92.74 99.71

KAPPA 0.836 0.846 0.863 0.885 0.888 0.910 0.995

3.3. Discussion
3.3.1. Effect of Sample Size

In order to verify the effect of the sample size of this method on the results, 3%, 5%,
10% of testing sample were used as the training samples. The experimental results of
different algorithms using different training samples are shown in the Table 3.

From Table 5, we can see that as the number of samples increases, the classification
accuracy of the image also increases. Table 4 shows the classification results of different
samples in Honghu. The training sample result of 10% of the original image has reached
98.71%. The results of Xiong’an are shown in Table 3, with the highest accuracy of 99.94%.
The accuracy of different fusion strategies is also increasing. The classification accuracy
of more than 3% of the training samples of the original image is more than 90%. There-
fore, it can be seen that the number of training samples also plays a great role in image
classification.

Table 5. The results of different sample size classification (%).

Honghu Xiong’an

Sample size 3% 5% 10% 3% 5% 10%
Original image 91.05 91.85 92.32 88.86 90.78 91.71
Decision Fusion 95.98 96.39 96.87 89.34 91.67 93.26

Probability Fusion 96.89 97.22 97.51 92.74 93.26 94.92
Stacking Fusion 98.71 99.09 99.42 99.71 99.78 99.94

3.3.2. Effect of Classifier

In order to verify the effect of the classifier on the results, we chose different classifiers
for experiments. Here, we choose the method based on SVM classifier and DNN classifier.
At the same time, we still use three fusion strategies combined with different classification
classifier.

The sample size is 3% of the original image. In addition, the results of different
classifier are in Table 4. In Table 4, the classification accuracy of the DNN classifier is
the highest, followed by the SVM classifier. Through deep learning to mine the potential
information of the image and build a deep network classifier, combined with the conditional
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random field, the classification accuracy of the image by DNN classifier has increased
by about 10%. The inherent information of airborne hyperspectral images is difficult to
mine close to ordinary classifiers. The combination of multi-features and deep learning can
mine deep information. This proves that the DNN classifier is suitable for airborne image
classification. The experimental results are in Table 6.

Table 6. The results of different classifier classification.

Data Accuracy Decision Fusion Probability Fusion Stacking Fusion

SVM DNN SVM DNN SVM DNN

Honghu OA 89.06% 95.98% 91.95% 96.89% 95.11% 98.71%
Kappa 0.875 0.908 0.908 0.954 0.946 0.985

Xiong’an OA 87.52% 89.34% 90.28% 92.74% 95.15% 99.71%
Kappa 0.845 0.915 0.903 0.928 0.929 0.995

3.3.3. Effect of CRF

At the same time, we also discussed the effect of conditional random fields on the
classification results. One group of experimental methods with CRF, and the other group
without CRF. Firstly, the fusion image is input into the DNN model to obtain the probability
image, and the accuracy of the probability image is evaluated accurately to obtain the
classification result of the DNN method. The other is the method proposed in this paper.
Multi-feature fusion data input into the model with CRF to obtain the classification results
and evaluated the accuracy. The accuracy results of the comparison method are shown
in Table 7. From the table, we can see that the accuracy of the model with CRF is about
5% higher than that of the model without CRF. Therefore, we can conclude that the deep
classification model can improve the accuracy in the process of crops fine classification. The
use of conditional random fields can improve the accuracy of fine classification of crops.

Table 7. The results of different model classification.

Data Accuracy Decision Fusion Probability Fusion Stacking Fusion

Without CRF With CRF Without CRF With CRF Without CRF With CRF

Honghu OA 89.89% 95.98% 92.76% 96.89% 94.91% 98.71%
Kappa 0.884 0.908 0.910 0.954 0.942 0.985

Xiong’an OA 88.72% 89.34% 91.03% 92.74% 91.56% 99.71%
Kappa 0.852 0.915 0.865 0.928 0.866 0.995

4. Discussion

In this paper, we proposed a method for crops fine classification in airborne hyper-
spectral image based on multi-feature fusion and deep learning. We extracted GLCM
texture, morphological profiles, and endmember abundance features from airborne hyper-
spectral imagery. To fuse the spatial and spectral information of the image, decision fusion,
probability fusion and stacking fusion are used. At the same time, the classification model
consists of deep neural networks and conditional random fields are employed. The deep
learning model can mine the deep information of the image. The CRF keeps the boundaries
of the ground features intact while reducing noise. We conducted experiments on the
Honghu dataset and the Xiong’an dataset. The results proved that the DNN-CRF method
proposed in this paper helps to improve the accuracy of crops classification. Specifically,
the classification accuracy of multi-feature fusion is higher than that of single feature. The
experimental results proved that multi-feature fusion can help improve the classification ac-
curacy. The larger the number of training samples, the higher the accuracy can be obtained.
Additionally, the classification accuracy of DNN is higher than that of SVM, as DNN mined
the deep features of the image for crops fine classification. Moreover, the accuracy of the
experiment with CRF is higher than the accuracy of classification without CRF. It can be
seen that CRF has the effect of improving the accuracy of crop classification. In the future
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work, we will consider more other types of neural networks, such as CNNs, as well as the
integration of UAV and aerial images, to meet the needs of larger scale fine classification
of crops, trying our best to apply our research results to the field of agriculture faster and
better.
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