
remote sensing

Article

LiDAR Odometry and Mapping Based on Semantic
Information for Outdoor Environment

Shitong Du, Yifan Li, Xuyou Li * and Menghao Wu

����������
�������

Citation: Du, S.; Li, Y.; Li, X.; Wu, M.

LiDAR Odometry and Mapping

Based on Semantic Information for

Outdoor Environment. Remote Sens.

2021, 13, 2864. https://doi.org/

10.3390/rs13152864

Academic Editor: Erica Nocerino

Received: 16 June 2021

Accepted: 20 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
dushitong@hrbeu.edu.cn (S.D.); liyifan1996@hrbeu.edu.cn (Y.L.); wumenghao@hrbeu.edu.cn (M.W.)
* Correspondence: lixuyou@hrbeu.edu.cn

Abstract: Simultaneous Localization and Mapping (SLAM) in an unknown environment is a crucial
part for intelligent mobile robots to achieve high-level navigation and interaction tasks. As one of the
typical LiDAR-based SLAM algorithms, the Lidar Odometry and Mapping in Real-time (LOAM)
algorithm has shown impressive results. However, LOAM only uses low-level geometric features
without considering semantic information. Moreover, the lack of a dynamic object removal strategy
limits the algorithm to obtain higher accuracy. To this end, this paper extends the LOAM pipeline by
integrating semantic information into the original framework. Specifically, we first propose a two-
step dynamic objects filtering strategy. Point-wise semantic labels are then used to improve feature
extraction and searching for corresponding points. We evaluate the performance of the proposed
method in many challenging scenarios, including highway, country and urban from the KITTI dataset.
The results demonstrate that the proposed SLAM system outperforms the state-of-the-art SLAM
methods in terms of accuracy and robustness.

Keywords: SLAM; semantic information; dynamic objects; feature extraction; challenging scenarios

1. Introduction

Simultaneous Localization and Mapping (SLAM) technology is one of the key tech-
nologies for autonomous vehicles to perform navigation and interaction tasks. A typical
SLAM framework consists of the front-end and the back-end [1]. The goal of the front-end
is to estimate the transformation between adjacent frames, which includes preprocessing
step, data association and pose estimation. Once the front-end detects the loop-closure, a
global optimization framework, i.e, the back-end, is adopted, which aims to obtain global
consistency by reducing the historical accumulative error [2].

According to the sensor types, SLAM technology can be divided into three categories:
vision based [3,4], LiDAR-based SLAM methods [5] and a combination of both [6]. Visual
sensors can obtain rich environmental texture information. However, some inherent
shortcomings of the visual sensor eventually lead to errors in the pose estimation. For
example, the strong sensitivity on the illumination limits their applications and the scale
uncertainty of depth information from monocular cameras [7]. Although scaled depth
information can also be obtained from single images by current AI techniques, this has to
be solved by the software. In contrast, LiDAR can directly output more accurate depth
information. Moreover, SLAM suffers from errors due to the inaccurate depth information
provided directly by the stereo vision and RGB-Depth (RGB-D) camera [8]. The reason is
that the accuracy of 3D distance information is inversely proportional to the measuring
distance [9]. In contrast, LiDAR can work even at night [10]. Another advantage of
LiDAR sensors is their centimeter-level measurement accuracy and wide detection range.
For example, a typical 3D LiDAR, Velodyne HDL-64E, has a measurement accuracy and
range of ±2 cm and 120 m, respectively [11]. These advantages allow it to collect the
detailed surrounding environment information with long ranges [12]. Hence, LiDAR-
based SLAM methods have been extensively studied in the autonomous robot community.

Remote Sens. 2021, 13, 2864. https://doi.org/10.3390/rs13152864 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13152864
https://doi.org/10.3390/rs13152864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13152864
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13152864?type=check_update&version=2

Remote Sens. 2021, 13, 2864 2 of 21

1.1. Classification of SLAM Methods Based on Registration

Point-cloud registration, also called scan-matching, is the basis of LiDAR-based SLAM
technology. The goal of scan-matching is to calculate the transformation by minimizing a
distance function between the adjacent point cloud [13]. In terms of point cloud registration,
LiDAR-based SLAM methods are grouped into three distinct categories: points-based
methods, distributions-based methods and features-based methods [14]. Iterative Closest
Point (ICP) is perhaps the most widely used points-based method for solving the scan
matching [15]. In the ICP algorithm, the transformation between the adjacent point cloud
is iteratively calculated by minimizing a distance function. Multiple extensions of ICP
have been developed including: point-to-line [16], point-to-plane [17] and Generalized
ICP [18]. Borrmann et al. [19] presented a 6D SLAM framework where the front-end utilizes
a point-to-point ICP method to obtain the coarse pose estimation. Once a loop closure
is detected, a Graph SLAM for global optimization is employed to obtain the accurate
trajectory and map estimate. However, the deformation within the point cloud is neglected
due to the rigid assumption. To address this problem, Elseberg et al. [20] partitioned the
whole point cloud into sub-scans that can be treated rigidly by finely discretizing the time.
Furthermore, Lauterbach et al. [21] applied the above-method to the backpack mapping
system. Their algorithm improves the mapping accuracy but causes a large computational
burden. In [22], the linear interpolation is applied to compensate the deformation caused
by the LiDAR rotation. Furthermore, the transformation is then calculated by matching the
current point cloud with the 3D grid map using the point-to-surface method.

The Normal Distributions Transform (NDT) [23] is a typical distribution-based method,
which transforms the point cloud into a set of Gaussian probability distributions instead of
directly calculating individual points. Specifically, the point cloud is divided into a set of
voxels that are represented by normal distributions. The spatial transformation is then com-
puted by iteratively searching for point-to-distribution or distribution-to-distribution [24]
correspondences and minimizing an error function. A standard SLAM framework is pre-
sented in [25]. In the front-end, NDT is applied to estimate the sensor trajectory. As for
the back-end, the ground plane constraint is introduced into the graph optimization to
correct the drifts. However, the algorithm assumes that the scenario has a flat ground
that may degrade in environments with uneven ground. The SLAM methods mentioned
above can obtain high-precision estimation, but it is time-consuming to employ graph
optimization to correct the accumulative errors. In addition to the above two methods,
feature-based methods are also widely used, which estimate poses by extracting some low-
level geometric features, such as lines, planes and intensity [26]. Similar to the vision-based
methods, some feature descriptors, such as Fast Point Feature Histograms (FPFH), are also
used to search for corresponding points [27]. However, they suffer from heavy errors in
challenging scenarios (the highway, for example) due to the lack of geometric features [28].

1.2. LOAM and Its Variants

To reduce the computational complexity while obtaining accurate results, Zhang et al. [29]
presented a typical SLAM solution called Lidar Odometry and Mapping in Real-time (LOAM)
to achieve low-drift and real-time pose and mapping estimation by performing point-to-line
and point-to-plane matching. The system includes two individual nodes, i.e., the odometry and
mapping nodes, where the former runs at high frequency, and the latter outputs precise pose
estimations at a lower frequency by matching the current point cloud with the map. LOAM
shows excellent performance in the autonomous robot localization and mapping. Inspired
by this, multiple extensions of LOAM have been presented to further improve performance.
In [30], the intensity information of LiDAR is incorporated into LOAM. Although this method
improves accuracy, the computational cost increased by double. Rufus et al. [31] proposed a
two-layer structure lidar odometry system. A Phase Only Correlation method is first applied
to calculate the approximate pose estimate, which is then used as an initialization of the point-
to-plane ICP to refine the matching. Their experimental results show that the method has
promising performance in a high-speed environment. Zhou et al. [32] proposed a real-time

Remote Sens. 2021, 13, 2864 3 of 21

LiDAR-based SLAM called S4-SLAM for complicated multi-scene environments. They follow a
similar framework to LOAM. In the odometry module, the initial iteration value provided by
the Super4PCS algorithm is fed into the standard ICP. To speed up the matching process of the
mapping module, NDT is used to compute the spatial transformation between key-frames and
the dynamic voxel grid-based local map. Unlike LOAM, a location-based loop detection and
the optimized pose graph are also included in this framework.

However, LOAM and the above variants also have some drawbacks, which limit
the accuracy of the algorithms. First, they rely on low-level geometric features solely,
which may fail in complex environments. Then, dynamic objects, such as pedestrians and
moving vehicles, are not removed in this system, which often occur in urban and highway
environments. Moreover, considering the smoothness of the local surface as the only
criterion for feature point extraction will inevitably lead to some errors. Moreover, they
do not integrate semantic information into the system to improve performance. Semantic
information is an enabling factor for autonomous vehicles to perform high-level tasks.
It ·provides a fine-grained understanding of the scene [33]. In general, semantic information
can be used as a priori to assist SLAM systems in three aspects:

• Moving objects removal. Dynamic objects, such as pedestrians and vehicles, in the
environment will lead to false corresponding points, which can cause large errors.
To this end, semantic information can be used to remove dynamic objects [34].

• Data association. Semantic information can be considered as additional constraints of
searching for corresponding points [34,35] and loop detection [36].

• Semantic mapping. The constructed semantic map helps to carry out further path
planning and obstacle avoidance tasks [37].

1.3. Semantic-Assisted LiDAR SLAM Method

Due to the application potential of semantic information in the SLAM field, integrating
semantic information into SLAM has been gaining more and more popularity over the years.
Some researchers first exploit low-level geometric features to obtain semantic information,
which is further used as a priori of the SLAM algorithm. In [38], semantic labels are
introduced to improve point-to-point ICP. This method not only improves the accuracy but
also speeds up the convergence time, which is attributed to constraining the corresponding
points to the same semantic category. However, it only uses the gradient relationship
between points to the segment point cloud, which is designed for indoor scenes and
cannot satisfy the complex outdoor environment. An extension of LOAM (LeGO-LOAM) is
presented in [10]. This algorithm first segments the point cloud into ground points and non-
ground points by the scanning principle of LiDAR. Subsequently, edge points and planar
patches are extracted from non-ground points and the ground, respectively. After that, a
two-step L-M optimization is employed to obtain the accuracy trajectory. However, LeGO-
LOAM simply divides the point cloud into ground points and non-ground points without
considering point-wise semantic labels. Similar methods are also presented in [14,39].
Liu et al. [40] proposed a segmentation-based LiDAR SLAM method. Compared with
LeGO-LOAM, they presented a more refined point cloud segmentation method, which
includes ground, road-curb, edge and surface. However, they still use low-level geometric
information to segment the point cloud, and the algorithm requires a priori map for
matching, which limits its application. All the above algorithms use low-level semantic
segmentation methods that cannot obtain point-wise semantic labels. Hence, semantic
information has not been fully integrated into the SLAM system.

In recent years, deep learning technology has shown great potential in point cloud
semantic segmentation. Due to the irregular format of 3D point clouds, researchers initially
mainly used indirect methods, such as multi-view, 3D voxelization and projection, to
perform point cloud semantic segmentation [41]. In 2016, Qi et al. [42] pioneered a deep
semantic segmentation network (PointNet) that directly consumes point clouds. After that,
many excellent deep learning frameworks for semantic segmentation spring up, such as
Pointwise [43] and RandLA-Net [44]. On this basis, researchers take the semantic infor-

Remote Sens. 2021, 13, 2864 4 of 21

mation from these excellent deep learning networks as a priori to improve the accuracy
and robustness of the SLAM algorithm. Zaganidis et al. [28] used per-point semantic
labels generated by PointNet to partition the point cloud into disjoint segments. NDT
or Multichannel Generalized ICP (GICP) is then constructed for each segment separately.
However, this algorithm works poorly in highway environments. In [45], a surfel-based
mapping semantic SLAM approach called SuMa++ is presented. In their algorithm, the
point-wise semantic labels provided by the projection-based semantic segmentation net-
work (Rangenet++) [46] are used to constrain point cloud matching and remove dynamic
objects, respectively. Chen et al. [47] presented a semantic-based LiDAR SLAM for the esti-
mation of tree diameters. The pipeline utilizes a semantic segmentation network to segment
the forest environments into trees and ground points. After that, a point-to-cylinder and
point-to-plane distance functions based on tree features and ground features are employed
to estimate pose transforms in odometry and mapping modules, respectively. However,
this algorithm is mainly designed for forest inventory. Therefore, it cannot be applied to
urban environments that contain rich semantic information. Zhao et al. [34] constrained the
corresponding points to the same semantic label, which is similar to our work. However,
they still use curvature to extract edge and plane points without considering point-wise
semantic labels. Wang et al. [35] weighted the contribution of feature correspondences
by their semantic similarity distribution. However, this algorithm still uses curvature to
extract feature points instead of semantic information. Moreover, they do not consider
point-wise semantic labels.

Motivated by the discussions above, this paper proposes a novel semantic-assisted
LiDAR SLAM method (represented by “S-ALOAM”). Our goal is to develop a real-time
LiDAR SLAM method with high robustness and low drift. The key idea is to combine
point-wise semantic labels with LiDAR odometry and mapping (LOAM). The proposed
system includes four modules, namely, scan pre-processing module, feature extraction
module, LiDAR odometry module and LiDAR mapping module. It should be noted that
this paper does not propose and introduce a specific point cloud semantic segmentation
network. As mentioned above, many excellent deep learning networks are emerging for
point cloud semantic segmentation. They can output high-precision point-wise semantic
labels. Therefore, any point cloud semantic segmentation networks that can output point-
wise semantic labels are seamlessly compatible with our algorithms, such as PointNet
and RangeNet++ mentioned above. Meanwhile, the original LOAM algorithm uses IMU
to assist LiDAR. However, this paper mainly focuses on the SLAM algorithm based on
the LiDAR itself, and any additional sensors are not considered. Therefore, the following
experiments all adopt the LOAM algorithm without IMU, i.e., A-LOAM. A-LOAM is an
open-source implementation of LOAM [48]. The difference from LOAM is that it removes
the IMU and uses Eigen and a non-linear optimization library to simplify the code structure.
Due to the above changes, its accuracy is slightly inferior to the original LOAM. However,
this does not affect the effectiveness of the algorithm proposed in this paper. The primary
contributions are as follows:

• Point cloud with point-wise semantic labels is used to coarsely remove dynamic
objects and outliers. The proposed filtering method largely preserves the static parts
of all movable classes while removing dynamic objects and outliers.

• We use point-wise semantic labels instead of the smoothness of the local surface to
extract edge and plane features. Semantic labels are first used to establish candidate
feature points. Then, some down-sampling and culling strategies are presented to
select feature points from these candidate feature points.

• In the LiDAR odometry and mapping module, we constrain the corresponding points
of frame-to-frame or frame-to-map to the same semantic label. Besides, a second
dynamic objects filtering strategy is also presented in the mapping module.

• To verify the proposed solution, extensive experiments have been carried out in
several scenarios, including the urban, the country and highway, based on the se-
manticKITTI dataset [33]. Experimental results show that the proposed methods can

Remote Sens. 2021, 13, 2864 5 of 21

achieve high-precision positioning and mapping results compared with the state-of-
the-art SLAM methods.

The remainder of the paper is structured as follows: In Section 2, the proposed
methodology is described in detail. Experimental results are then shown in Section 3,
which is followed by a discussion in Section 4. Finally, the paper ends with a conclusion in
Section 5.

2. Materials and Methods

An overview of our S-ALOAM is shown in Figure 1. The system takes the 3D LiDAR
data as inputs and outputs 6 DOF pose estimation and a feature map. The overall system
contains four sequential modules. The first, scan pre-processing, utilizes point-wise semantic
labels generated by a semantic segmentation network to coarsely remove the dynamic
objects and outliers. The remaining segmented point cloud is then input to the feature
extraction module, where we extract edge and planar features by semantic labels instead of
the smoothness of the local surface. Then, LiDAR odometry estimates the transformation
between the consecutive point cloud by combining semantic constraints with geometric
features. Meanwhile, this part compensates for any point cloud deformation caused by the
LiDAR rotation and vehicle movement. Furthermore, these features are fed into LiDAR
mapping, which obtains the accurate pose and feature map estimation by enabling a frame-
to-map framework. Moreover, a second dynamic objects filtering strategy is also presented
in this step. The details of each module are introduced in the following sections.

Figure 1. An overview of the proposed LiDAR localization and mapping system.

2.1. Scan Pre-Processing

The scan pre-processing module consists of point-wise semantic label acquisition and
dynamic objects removal. Since we aim to integrate semantic information into the LiDAR
SLAM framework, all those semantic segmentation methods that can output point-wise
semantic labels can be applied to our system. For example, all semantic segmentation
algorithms ranked on the SemanticKITTI benchmark [33] can be integrated into our system.
Therefore, in this section, we do not propose a special semantic segmentation method but
use a pre-labeled dataset, i.e., SemanticKITTI, to verify the proposed method. The details of
the SemanticKITTI dataset will be given in Section 3. By point-wise semantic labels, point

Remote Sens. 2021, 13, 2864 6 of 21

cloud can be divided into non-overlapping sub-point clouds with rich semantic attributes,
such as pedestrians and cars.

Dynamic objects, such as pedestrians and moving vehicles, will cause wrong associa-
tions. A simple solution is to filter out all movable semantic classes, including all vehicles
and persons. However, the approach also removes many static objects, such as parked
vehicles, which are valuable features for the data association and pose estimation. To this
end, we propose a two-step dynamic object removal strategy. In this part, only the first
step, the filtering method, is presented, and the second step, the removal strategy, will
be shown in the mapping module. Specifically, the coarse filtering method achieves the
goal by removing the objects with a larger probability of movement in the environment,
which include persons, bicyclists, motorcyclists and railcars. Meanwhile, this step also filters
out the points labeled as outliers and unlabeled. Overall, the proposed filtering method
largely preserves the static part of all movable classes while removing dynamic objects and
noise points.

2.2. Feature Extraction

LOAM and its variants extract edge and planar features by calculating the smoothness
of the local surface. To evenly extract features in the environment, they divide a scan line
into six equal subregions. Two edge features and four planar features are extracted from
each subregion. The method that only relies on the local smoothness cannot guarantee
accurate feature extraction. Moreover, one drawback of point-wise extraction is that some
subregions without obvious features are forcibly assigned the same number of feature
points as other subregions. In this part, we completely improve the feature extraction
method of LOAM by considering semantic information.

Different from LOAM, the proposed method works in the point cluster with the same
semantic label line-by-line according to the chronological order. Let Pl

(k,i) be the ith point

of the kth point cloud Pk acquired during the sweep k, Pl
(k,i) ∈ Pk. Note that the superscript

l indicates the semantic label of point P(k,i). Point Pl
(k,i) is selected as an edge point only if

one of the following three cases is satisfied.
1. The edge feature can be selected from the same semantic category by:

‖Pl
(k,i) − Pl

(k,i+1)‖ > th (1)

Then, Pl
(k,i) is an edge point if (e.g., Pl

(k,i) in Figure 2a):

‖Pl
(k,i)‖ < ‖P

l
(k,i+1)‖ (2)

Otherwise, if:

‖Pl
(k,i)‖ > ‖P

l
(k,i+1)‖ (3)

Pl
(k,i+1) is selected as an edge point, where Pl

(k,i+1) is the nearest measurement point of

Pl
(k,i) in scanning order, and they have the same semantic label l, which indicates these two

points belong to the same category in the real environment. th denotes a threshold, and
‖ · ‖ represents the Euclidean distance. As shown in Figure 2a, we select the convex points
with respect to the center of the LiDAR in the same semantic category as edge points. These
points often occur in the real environment (e.g., the intersection of two walls).

2. The edge feature can be selected from the boundary of different semantic categories.
Figure 2b intuitively describes the case. Pl

(k,i) and Pm
(k,i+1) are two consecutive points that

belong to two different semantic categories l and m, respectively. Point Pl
(k,i) can be treated

as the edge point only if:

‖Pl
(k,i)‖ < ‖P

m
(k,i+1)‖ (4)

Remote Sens. 2021, 13, 2864 7 of 21

Otherwise, Pm
(k,i+1) can be labeled as the edge point. In this case, those boundary

points that are closer to the center of the LiDAR between different semantic categories are
selected as edge points, such as point Pl

(k,i) in Figure 2b.
3. The edge feature extraction in the cylinder-like structures. The edge points are

generated when the LiDAR scans the cylinder-like structures (see Figure 2c). To maintain
the real-time performance and the invariance of feature points, we extract edge points by
downsampling the points of the cylinder-like structure. Specifically, if the number of points
on the scan line where the cylinder-like object is located is less than six, the midpoint of
these points is selected as the final edge point.

(a) The same semantic class (b) Different semantic class (c) Poles or trunks

Figure 2. Three different cases where the edge points are extracted. The dotted blue line segments
represent the laser beam of the same scan line. The green shapes denote objects in the real environ-
ment. Furthermore, the yellow shape in (b) is an object, which occludes the green object behind.
(a) Points in the same semantic category. (b) Points on the boundary of different semantic categories.
(c) Points on cylinder objects, e.g., poles and trunks.

Otherwise, we use these points to fit a circle by least squares. Then, the center of the
fitted circle is considered as the edge point on the current scan line. This is based on the
recognition that these points of the cylinder-like structure on a scan line can form a circle.
Next, we will introduce how to use least squares to fit a circle. As shown in Figure 2c,
let (Pl

(k,a), · · · , Pl
(k,b)) be the points of the cylinder-like structure l on the current scan line

((b− a) > 6). Now, we use these points to fit a circle. The equation of the circle is often
defined as follows:

(x− xc)
2 + (y− yc)

2 = R2 (5)

where (xc, yc) represent the center of the circle, and R denotes the radius of the circle. The
goal of the least-squares-based fitting method is to minimize the following equation:

f =
b

∑
i=a

(
√
(xl

i − xl
c)

2 + (yl
i − yl

c)
2 − R)2 (6)

where (xl
i , yl

i), i = (a, · · · , b) are coordinates of Pl
(k,i) from the cylinder-like structure

(labeled semantic classes l) on the current scan line. However, Equation (6) only has the
numerical solution that needs to be calculated iteratively. To obtain the analytical solution
that also meets the real-time requirements, we simplify it slightly as follows:

f̂ =
b

∑
i=a

((xl
i − xl

c)
2 + (yl

i − yl
c)

2 − R2)2 (7)

Let g(x, y) = (x− xl
c)

2 + (y− yl
c)

2 − R2. Equation (7) can be expressed as:

Remote Sens. 2021, 13, 2864 8 of 21

f̂ =
b

∑
i=a

g(xl
i , yl

i)
2 (8)

By now, Equation (8) can be solved by partial derivatives. Specific calculation details
are not given in this paper. In summary, edge features are extracted by the above strategies.
In contrast, it is easier to extract planar features. In our system, all points of semantic
classes with plane attributes, such as road, sidewalk, traffic-sign and cars, are considered as
planar features. Of course, those edge points that satisfy the above conditions are excluded.

After feature extraction, The sets of edge features Ek and plane features Hk of the
current time k are obtained. Here, we also obtain the edge features Ek and plane features
Hk by downsampling Ek and Hk, respectively. Thus, we have Ek ⊂ Ek and Hk ⊂ Hk.
Specifically, the edge points Ek are selected by uniformly-sampling Ek, while plane features
Hk are selected by taking the center point of the point cluster with plane attributes on each
scan line.

The proposed method follows a similar framework in LOAM, i.e., the line-by-line
extraction and piecewise extraction in scanning order. However, we completely consider
the semantic information instead of the local smoothness for feature selection criteria. In
addition, LOAM forcibly divides each scan line into six uniform segments, which may
break the coherence of feature extraction. By contrast, our segmentation extraction is
completely based on semantic categories, which is more consistent with the distribution of
feature points in the real environment.

2.3. LiDAR Odometry

This module includes deformation correction and LiDAR odometry. To clearly de-
scribe this section, we start with the deformation correction module, which is followed by
the LiDAR odometry module.

2.3.1. Deformation Correction

Mobile vehicles equipped with LiDAR acquire the point cloud by rotating the laser
beam while moving forward. Obviously, vehicle movements during the point cloud
acquisition will deform the point cloud. To address this, some methods need to be used to
compensate for the deformation. In this part, we adopt the same method as LOAM, namely
linear interpolation, which models the motion within the point cloud as the constant
angular and linear velocity motion.

Denote tk the end time of the current point cloud Pk. Furthermore, tk−1 is the starting
time of the current point cloud Pk or the end time of the previous point cloud Pk−1. Thus,
Tk

k−1 represents the relative motion transform of the vehicle between [tk−1, tk]. Given a
laser point P(k,i), P(k,i) ∈ Pk, let t(k,i) ∈ [tk−1, tk] be its timestamp. Consequently, the relative
pose transform T(k,i) between [tk−1, t(k,i)] can be computed as:

T(k,i) =
t(k,i) − tk−1

tscan
Tk

k−1 (9)

where tscan represents the scanning period of a point cloud. Thus, non-deformable point
clouds Ēk and H̄k are obtained by projecting Ek and Hk to the end of the sweep k, i.e., tk,
by:

Ps
(k,i) = R(k,i)P(k,i) + D(k,i) (10)

P̄(k,i) = Rk
k−1(P

s
(k,i) −Dk

k−1) (11)

where P(k,i) is a feature point of Ek or Hk. Furthermore, R(k,i) and D(k,i) are rotation matrix
and translation vector of T(k,i), respectively. Rk

k−1 and Dk
k−1 denote the rotation matrix

and translation vector of Tk
k−1, which represents the relative motion transform between

[tk−1, tk]. P̄(k,i) is the corresponding non-deformable feature in feature point set Ēk−1 and

Remote Sens. 2021, 13, 2864 9 of 21

H̄k−1. We first project P(k,i) to the initial moment of the current point cloud tk−1. Therefore,
Ps
(k,i) is obtained. Then, Ps

(k,i) is transformed to the end of the sweep k by Tk
k−1.

2.3.2. LiDAR Odometry

The basic algorithm of this part is consistent with LOAM, but semantic constraints are
introduced when searching for corresponding points. Therefore, in order to clearly describe
how semantic information assists the corresponding point search, we re-discuss this part.
The purpose of the LiDAR odometry module is to estimate the LiDAR transformation
between two consecutive point clouds by minimizing point-to-edge and point-to-plane
distance functions. To find corresponding points between current point cloud Pk and the
previous point cloud Pk−1, Ek andHk are projected to the beginning of the sweep k, i.e., Ẽk
and H̃k. The mathematical operation is given as follows:

P̃(k,i) = R(k,i)P(k,i) + D(k,i) (12)

where R(k,i) and D(k,i) are rotation matrix and translation vector of T(k,i), respectively. P(k,i)
is a feature point of Ek or Hk. Furthermore, P̃(k,i) is the corresponding feature in feature
point set Ẽk or H̃k.

For each feature in Ẽk and H̃k, we start to search for the closest neighbor point in Ēk−1
and H̄k−1. The point-to-edge scan matching is performed by minimizing the distance of
each edge line in Ēk−1 to the edge point in Ẽk. Furthermore, the edge line is represented by
two edge points on adjacent scan lines. The point to edge line distance is defined as:

dE =
|(Ẽ l

(k,i) − Ēl
(k−1,j))× (Ẽ l

(k,i) − Ēl
(k−1,q))|

|(Ēl
(k−1,j) − Ēl

(k−1,q))|
(13)

where Ēl
(k−1,j) and Ēl

(k−1,q) are points of Ēk−1 from the previous point cloud. Furthermore,

Ẽ l
(k,i) is an edge feature in Ẽk from the current point cloud. The superscript l indicates the

semantic label of the point.
Furthermore, the point-to-plane scan matching is performed by minimizing the dis-

tance of each planar patch in H̄k−1 to the planar point in H̃k. Furthermore, the planar patch
is formed by three planar features on adjacent scan lines. The point-to-plane distance is
then computed as:

dH =

∣∣∣(H̃m
(k,i) − H̄m

(k−1,j))((H̄
m
(k−1,j) − H̄m

(k−1,q))× (H̄m
(k−1,j) − H̄m

(k−1,r)))
∣∣∣

|(H̄m
(k−1,j) − H̄m

(k−1,q))× (H̄m
(k−1,j) − H̄m

(k−1,r))|
(14)

where points H̄m
(k−1,j), H̄

m
(k−1,q) and H̄m

(k−1,r) form the corresponding planar patch. The
superscript m indicates the semantic label of the point.

Combining Equations (9)–(14), a nonlinear function based on the point to the edge
line distance is calculated as follows:

fE (E(k,i), Tk
k−1) = dE (15)

Furthermore, a nonlinear function based on the point to planar distance is calculated
as follows:

fH(H(k,i), Tk
k−1) = dH (16)

Substitute each feature point of Ek andHk into Equations (15) and (16), and the final
nonlinear function to be optimized is defined as:

Remote Sens. 2021, 13, 2864 10 of 21

f(Tk
k−1) =

(
dE
dH

)
= d (17)

where dE and dH consist of the corresponding distance function of each feature point in
Ek and Hk, respectively. The goal of LiDAR odometry is to calculate Tk

k−1 by iteratively
minimizing d towards zero.

Tk
k−1 ← Tk

k−1 − (JTJ + λdiag(JTJ))−1JTd (18)

where J = ∂f/∂Tk
k−1. Furthermore, λ is a factor of the nonlinear optimization algorithm

such as the Levenberg–Marquardt method.
Assume the LiDAR coordinate system {L} coincides with the world coordinate system

{W} at the initial time t0. TW
k can be calculated by accumulating the relative motion Tk

k−1
of all previous adjacent locations up to the current location k.

Compared to LOAM, we introduce semantic constraints in Equations (13) and (14),
namely, the correspondences are only found in feature points with the same semantic label
from Ēk−1 and H̄k−1. For example, in Equation (13), Ẽ l

(k,i) has the same semantic label l as

points Ēl
(k−1,j) and Ēl

(k−1,q). Searching for the correspondences between the same semantic
classes are more likely to find the correct correspondences. Furthermore, this can greatly
improve the efficiency and accuracy of scan matching.

2.4. Lidar Mapping

After the LiDAR odometry algorithm, non-deformable point clouds Ēk and H̄k are
obtained, and simultaneously LiDAR odometry also output TW

k , which indicates the pose
of the current point cloud Pk in the world coordinate system {W}. Let QEk−1 and QHk−1 be
the edge features and planar features on the map, respectively, accumulated until time
k − 1. The LiDAR mapping module matches features in {Ēk, H̄k} to the global map to
optimize the pose estimation.

The pseudocode of the LiDAR mapping is presented in Algorithm 1. The pose TW
k

generated by the LiDAR odometry module is set as the initial guess (line 1). Parameter
itermax indicates the maximum number of iterations (line 2). To find corresponding points
between the current point cloud Pk and the global map accumulated until time k − 1,
Ēk and H̄k are projected to the world coordinate system {W} (line 4 and line 12). The
mathematical operation is given as follows:

Pw
(k,i) = Rw

k P̄(k,i) + Dw
k (19)

where Rw
k and Dw

k are rotation matrix and translation vector of TW
k , respectively. P̄(k,i) is a

feature point of Ēk or H̄k. Lines 6–7 and lines 14–15 are implemented by computing the
covariance matrix, eigenvalues and eigenvectors. Readers can refer to [29] for the detailed
description. After this process, we can compute the point-to-line distance (lines 7–8) and
the point-to-planar distance (lines 15–16) by Equation (13) and Equation (14), respectively.
Compared to the LiDAR mapping module in LOAM, we introduce semantic constraints,
namely, these five nearest points found in QEk−1 or QHk−1 have the same semantic label
as P̄(k,i) in Ēk or H̄k. Then, T̃W

k is updated (lines 22–27) based on Equation (18) as in
Section 2.3.2.

As mentioned earlier, a second step dynamic objects filtering strategy is also presented
in this section. This method was first proposed in [49]. Specifically, after all residual blocks
are added, we first calculate T̃W

k by one iteration (line 19). T̃W
k is then used to recompute all

residuals in Equation (17) (line 20), and feature points with the first 10% largest residuals
are removed (line 21). After this step, the full iterative update is finally performed. The
above dynamic objects filtering method is proposed based on the assumption that the
dynamic points can lead to large distance errors in point cloud matching.

Remote Sens. 2021, 13, 2864 11 of 21

Algorithm 1 LiDAR Mapping.

Input: Ēk and H̄k from the Pk, the point cloud map QEk−1 and QHk−1, accumulated until the
last point cloud. TW

k from the LiDAR odometry.
Output: The optimized pose T̃W

k .
1: Initialization: T̃W

k ← TW
k

2: for i = 0; i < itermax; i ++ do
3: for P̄(k,i) ∈ Ēk do
4: Compute Pw

(k,i) via Equation (19)

5: Find 5 nearest points of Pw
(k,i) in QEk−1

6: if these five nearest points are indeed in a line then
7: Compute point to line distance which is similar to Equation (13)
8: and add the residual dE which is similar to (17);
9: end if

10: end for
11: for P̄(k,i) ∈ H̄k do
12: Compute Pw

(k,i) via Equation (19)

13: Find 5 nearest points of Pw
(k,i) in QHk−1

14: if these five nearest points are indeed a plane then
15: Compute point to planar distance which is similar to Equation (14)
16: and add the residual dH which is similar to (17);
17: end if
18: end for
19: Perform pose optimization with 1 iteration based on Equation (18).
20: recompute dE and dH in Equation (17),
21: then remove 10% of the biggest residuals
22: for a maximal number of iterations do
23: Perform pose optimization based on Equation (18)
24: if the nonlinear optimization converges then
25: break;
26: end if
27: end for
28: end for

3. Results
3.1. Experimental Platform and Evaluation Method

In this paper, we do not propose a semantic segmentation algorithm but evaluate
the proposed algorithm on SemanticKITTI, which is a point-wise annotated point cloud
dataset based on the KITTI Vision Benchmark. Since semantic segmentation is not the
focus of this paper, we aim to explore the application of the prior semantic information
in the LiDAR SLAM framework. Hence, the proposed method is not limited to a specific
semantic segmentation method. Therefore, all those semantic segmentation methods that
can output point-wise semantic labels can be applied to our system.

SemanticKITTI provides accurate point-wise annotation with 34 semantic classes for
22 sequences of LiDAR data on the KITTI Vision Benchmark [50]. Furthermore, point
clouds from sequences 00 to 10 are training sets with the available labels, and the remaining
sequences are used as the test set. Figure 3 is a visual inspection from a single scan with
semantic annotations in SemanticKITTI. As shown in Figure 3, objects with the same
semantic attribute are displayed in the same color, e.g., pink represents the ground, and
yellow indicate the vehicle.

The LiDAR data in the KITTI Vision Benchmark is recorded with a Velodyne HDL-64E
laser scanner at a rate of 10 Hz. It provides 22 sequences of point cloud data, which contain
11 training data sets with ground truth and 11 test data sets without ground truth. These
sequences include multiple environments ranging from the busy city to highway traffic.
The ground truth is provided by a high accuracy GPS/INS navigation system. We test

Remote Sens. 2021, 13, 2864 12 of 21

our approach on the desktop computer with an i7-7700 3.60 GHz CPU. All algorithms are
implemented in C++ and executed on Ubuntu 16.04.

Figure 3. A single scan with semantic annotations in SemanticKITTI. Different colors represent
different semantic attributes.

Table 1 shows the KITTI sequences used in our experiment. To verify the robustness
of the algorithm, we selected 6 typical sequences of 11 sequences. The reason of selecting
these six sequences is they cover all the situations that our algorithm might encounter
in reality. First, in terms of scenarios, these sequences cover a variety of environments,
including urban (00,07), highway (01), country (04) and their fusion (02, 08). Then, as for
the trajectory length, the longest path reaches 5067 m (02), while the shortest mileage is
only 394 m (04). Moreover, the vehicle speed of the vehicle in sequence 01 reaches 85 km/h
(01). Moreover, some of these sequences have loops (00,02,07,08), while others have no
loops (01,04). In short, the six sequences selected above can fully verify the performance of
the proposed algorithm.

Table 1. The KITTI sequences used in our experiment.

Sequences Number of Scans Distance (m) Environment

00 4541 3714 Urban
01 1101 2453 Highway
02 4661 5067 Urban + Country
04 271 394 Country
07 1101 694 Urban
08 4071 3223 Urban + Country

The proposed algorithm is evaluated by computing the absolute errors in [51] and rela-
tive errors in [50], respectively. The absolute metric includes the absolute root-mean-square
error (RMSE) in respect to the translation and rotation over all point clouds, respectively.
To compare our approach against the state-of-the-art SLAM methods, the relative errors are
computed by averaging relative translation and rotation errors using different trajectory
distances. Next, we will evaluate the proposed algorithm from three aspects, i.e., dynamic
object removal, feature extraction and pose estimation.

3.2. Dynamic Object Removal

Moving objects in the point cloud will cause large errors when matching. Here, we
propose a simple but effective method to coarsely remove dynamic objects and outliers.
According to semantic labels provided by SemanticKITTI, we remove points labeled as
person, bicyclist, motorcyclist, railcars, outliers and unlabeled. Figure 4a shows a point cloud
where dynamic objects and outliers are displayed in pink (marked by red rectangle and
arrows). After our method, these points are completely culled (see Figure 4b). Compared

Remote Sens. 2021, 13, 2864 13 of 21

with the naive method, which filters out all movable semantic classes, including all vehicles
and persons, our method effectively removes objects with a larger probability of movement
in the environment, such as person, bicyclist, motorcyclist and railcars, while keeping features
from static objects, e.g., parked vehicles. These static objects are valuable features for the
data association and pose estimation. Meanwhile, this step also removes the points labeled
as outliers (red arrow in Figure 4a). However, moving vehicles are not considered in this
step. They will be solved in the LiDAR mapping module.

(a) The original point cloud (b) Point cloud after processing

Figure 4. Removing dynamic objects and outliers in the point cloud, which is from a certain point
cloud of sequence 00. (a) Point cloud with dynamic objects. The pink part indicates dynamic objects,
i.e., bicyclist, which is marked by the red rectangle and outliers (marked by red arrows). (b) Point
cloud after removing bicyclists and outliers.

3.3. Feature Extraction Results

To evaluate the accuracy of the semantic label-based feature extraction algorithm,
a representative urban environment is selected that is an intersection with parked cars,
street lights, trees and buildings. The result is shown in Figure 5. Edge and planar features
are colored red and blue, respectively. Solid yellow rectangles mark the feature point
extraction on parked cars. As shown in Figure 5a, only a few edge features are extracted
from the parked cars in A-LOAM. This is because the space between cars is too close, and
the smoothness-based feature extraction method cannot extract effective edge features
from the objects next to each other. In contrast, our extraction algorithm shows excellent
results on parked cars (see solid yellow rectangles in Figure 5b). This corresponds to the
extraction cases in Figure 2a,b.

Solid yellow ellipses mark edge features on cylinder objects. Cylinder objects, e.g.,
poles and trunks, contain remarkable edge points. However, these features were mistakenly
extracted as planar features in A-LOAM (see red points in solid yellow ellipses of Figure 5a).
As solid yellow ellipses in Figure 5b show, our semantic label-based extraction algorithm
can achieve accurate edge features on poles and trunks. This corresponds to the extraction
method in Figure 2c. Dotted yellow ellipses in Figure 5 mark edges feature at the junction
of the sidewalk and the road. Figure 5b shows our method completely extracts these edge
features, which corresponds to the extraction method in Figure 2b.

In addition to the above, A-LOAM also mistakenly extracts some points as edge
points. For example, red points marked by dotted yellow rectangles in Figure 5a. These
points are from the junction of the starting and ending positions of a LiDAR scan circle.
Due to the influence of motion deformation, there is a large distance between points at
the starting position and the ending position, and the extraction method that uses the
distance to calculate the smoothness will mistake them as edge points. As a result, these
points are always extracted as edge points when the LiDAR moves forward. Further, some
outliers are extracted as edge features in A-LOAM, as shown in Figure 5a (marked by
yellow arrows). By contrast, our semantic label-based method completely removes these
false edge extractions. As for planar features, our method and A-LOAM show similar
performances in Figure 5. However, we only extract planar features from objects with

Remote Sens. 2021, 13, 2864 14 of 21

plane attributes, such as roads, sidewalks, buildings, traffic-signs and cars. This greatly
increases the accuracy of planar feature extraction.

(a) A-LOAM (b) OURS
Figure 5. The comparison of feature extraction after applying A-LOAM and our algorithms, respec-
tively, at an intersection. Edge and planar features are colored red and blue, respectively. The yellow
rectangles and ellipses are used to compare the accuracy of different feature extraction methods.

3.4. Pose Estimation Comparison

In this part, we compare the accuracy and robustness of the proposed method S-
ALOAM with the current state-of-the-art algorithms, namely A-LOAM, LeGO-LOAM and
FLOAM [52], in various challenging outdoor environments. The framework and basic
principles of FLOAM are similar to A-LOAM, but it optimizes the A-LOAM algorithm,
which improves the computational efficiency by three times. Next, we will use the six-
sequence dataset with semantic labels described in Table 1 to evaluate the proposed
algorithm. This experiment first conducted a detailed analysis on the trajectory error
comparison graphs of three sequences. These sequences cover urban, highways and
complex mixed scenes. Then, the quantitatively absolute and relative errors of all six
sequences are given.

Figure 6 shows the trajectory comparison graph of the sequence 00, which is collected
in urban. As Figure 6a shows, the proposed approach, S-ALOAM, generates more consis-
tent trajectories than other methods. This shows semantic labels-based feature extraction
does improve the performance. However, compared with LeGO-LOAM, the other three
methods suffer accumulation errors in loop closures. As Figure 6a(1),a(2) show, there are
large gaps when the robot revisits the same place. By contrast, LeGO-LOAM performs
better in loop closures. This is because loop closure constraints of LeGO-LOAM correct the
accumulated drift. Meanwhile, Figure 6b,c show similar error curves, which demonstrates
the position error is mainly caused by height errors in LOAM and its variants.

-100

 0

 100

 200

 300

 400

 500

 600

 700

-300 -200 -100 0 100 200 300

(1)

(2)

y
 [

m
]

x [m]

Ground Truth
A-LOAM

LeGO-LOAM
FLOAM

S-ALOAM

(a) Trajectory comparison

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600 4200

3
D

 P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

A-LOAM
LeGO-LOAM

FLOAM
S-ALOAM

(b) 3D position error

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600 4200

H
e

ig
h

t
e

rr
o

r
[m

]

3D scan index

A-LOAM
LeGO-LOAM

FLOAM
S-ALOAM

(c) Height error

Figure 6. The trajectory comparison in Sequence 00. (a) The plot of the trajectories from different
methods. (b) The absolute 3D translation error. (c) The absolute height error. Rectangles in (a) are
enlargements of the corresponding areas.

The position errors of all algorithms reach the first peak at scan 943 (see Figure 6b,c).
Figure 7a is the real image corresponding to scan 943, we can see that the car is turning left

Remote Sens. 2021, 13, 2864 15 of 21

and going downslope. This shows LOAM and its variants cannot correctly estimate height
in environments with turning and slope. By contrast, A-LOAM has a smaller error here,
while FLOAM and S-ALOAM show similar accuracy. Furthermore, LeGO-LOAM performs
worst here. The reason is LeGO-LOAM cannot accurately extract the ground in such an
environment, which leads to large height errors. After scan 943, S-ALOAM achieves, for
the most part, a lower translational and height error. Table 2 shows the absolute root-mean-
square translation and rotation errors. As shown in Table 2 (00), S-ALOAM is superior to
other methods in the translation estimation. Furthermore, it achieves a similar performance
to A-LOAM in the rotation estimation.

(a) The image in Sequence 00 (b) The image in Sequence 01

Figure 7. The real image in the KITTI dataset.

Table 2. The absolute errors of the proposed method (S-ALOAM) compared with A-LOAM, LeGO-
LOAM and FLOAM, where tabs represents the root-mean-square error (RMSE) of translations, while
rabs represents rotation error. n.a. in this table indicates the rotation part of LeGO-LOAM is not
available. Bold indicates the best result.

Sequence
A-LOAM LeGO-LOAM FLOAM S-ALOAM

tabs (m) rabs (deg) tabs (m) rabs (deg) tabs (m) rabs (deg) tabs (m) rabs (deg)

00 7.6741 1.8436 13.8302 n.a. 8.1101 2.9859 6.2357 1.9447
01 114.8519 7.0807 586.9212 n.a. 118.6060 7.6786 106.2324 7.0901
02 157.2780 32.4780 88.3942 n.a. 38.1684 5.5698 46.1600 6.4704
04 2.1462 0.8338 4.9123 n.a. 2.8831 1.1383 2.9541 1.1444
07 1.0154 0.7329 2.0474 n.a. 1.3097 0.8264 0.8988 0.9361
08 17.1512 2.4255 21.0646 n.a. 20.9252 3.7745 17.9965 3.6825

Figure 8 compares the trajectory error from a highway scene. As Figure 8a shows,
S-ALOAM performs better compared to A-LOAM, LeGO-LOAM and FLOAM. The un-
satisfactory performance of A-LOAM, LeGO-LOAM and FLOAM is caused by the low
geometric structure and many fast-moving dynamic objects in highway scene. Figure 7b
presents a photo corresponding to sequence 01. We can see that the environment contains
many vehicles moving at a high speed and has only very few geometric structures. Most
of the point cloud obtained in such a challenging environment is ground points, and only
a few are from traffic signs and sparse trees. In this challenging environment, the purely
geometric approach cannot obtain the correct data association, which eventually leads to a
large trajectory error.

By comparing Figure 8a with Figure 8c, we can see the errors of S-ALOAM are mainly
from height errors, which shows S-ALOAM achieves more accurate pose estimates in
[x, y, θyaw]. This is because our semantic label-based feature extraction method can obtain
accurate edge features that contribute three degrees of freedom for the pose, i.e., [x, y, θyaw].
Furthermore, there are many factors that cause height errors. First, few distinct structures
and the incomplete removal of dynamic vehicles lead to wrong data association. Then, the
height is mainly estimated by matching planar features. We extract plane extraction by
simply downsampling points with plane attributes. Those uneven planes, for example,
roads, that include many slopes will limit the correct estimation of height information.
However, as Table 2 (01) shows, S-ALOAM achieves more accurate estimates of the height
and also another translation, which is attributed to the semantic constraints and the two-

Remote Sens. 2021, 13, 2864 16 of 21

step dynamic object removal strategy. Note that Figure 8c shows that LeGO-LOAM seems
to achieve the most accurate height estimation. However, we can find from Figure 8a that
LeGO-LOAM fails in the challenging environment.

-1200

-1000

-800

-600

-400

-200

 0

 200

 400

-400 0 400 800 1200 1600 2000

y
 [

m
]

x [m]

Ground Truth
A-LOAM

LeGO-LOAM
FLOAM

S-ALOAM

(a) Trajectory comparison

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000

3
D

 P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

A-LOAM
LeGO-LOAM

FLOAM
S-ALOAM

(b) 3D position error

 0

 50

 100

 150

 200

 500 1000

H
e

ig
h

t
e

rr
o

r
[m

]

3D scan index

A-LOAM
LeGO-LOAM

FLOAM
S-ALOAM

(c) Height error

Figure 8. The trajectory comparison in Sequence 01. (a) The plot of the trajectories from different
methods. (b) The absolute 3D translation error. (c) The absolute height error.

We also evaluate the proposed method in a mixed scene, including an urban area and
the country. Figure 9a shows S-ALOAM is slightly worse than A-LOAM in terms of 2D
trajectory, which is mainly due to the fact that the three degrees of freedom [x, y, θyaw] are
mainly estimated by the edge features. We can see from Figure 10b that the environment
contains plenty of vegetation, which is extracted as edge features in S-ALOAM. This may
lead to the wrong data association when calculating point-to-edge distance. However, we
have to keep this vegetation for edge points extraction in the country and highway where
few geometric structures exist (see Figure 10b). Figure 9c shows that S-ALOAM achieves
more accurate height estimates. Overall, our approach is only slightly inferior to A-LOAM
and outperforms LeGO-LOAM and FLOAM (see Table 2 (08)).

The absolute errors of the remaining sequences (02, 04, 07) are also given in Table 2.
Table 3 shows the relative errors of all sequences that are evaluated using evo [53]. The
relative error evaluates the local accuracy (drift) of the trajectory. We can see from
Tables 2 and 3 that in most sequence, S-ALOAM is superior to A-LOAM and FLOAM
in the translation estimation. As for rotation parts, S-ALOAM is only slightly inferior to
A-LOAM. Next, some necessary discussions are presented based on the above results.

-100

 0

 100

 200

 300

 400

-400 -300 -200 -100 0 100 200 300 400

y
 [

m
]

x [m]

Ground Truth
A-LOAM

LeGO-LOAM
FLOAM

S-ALOAM

(a) Trajectory comparison

 0

 5

 10

 15

 20

 25

 30

 35

 40

 600 1200 1800 2400 3000 3600

3
D

 P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

A-LOAM
LeGO-LOAM

FLOAM
S-ALOAM

(b) 3D position error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 600 1200 1800 2400 3000 3600

H
e

ig
h

t
e

rr
o

r
[m

]

3D scan index

A-LOAM
LeGO-LOAM

FLOAM
S-ALOAM

(c) Height error

Figure 9. The trajectory comparison in Sequence 08. (a) The plot of the trajectories from different
methods. (b) The absolute 3D translation error. (c) The absolute height error.

Remote Sens. 2021, 13, 2864 17 of 21

(a) The urban in Sequence 08 (b) The country in Sequence 08

Figure 10. The real image in Sequence 08.

Table 3. The relative errors per 100 m, where trel represents root-mean-square error (RMSE) of
translations, while rrel represents rotation error. Because LeGO-LOAM suffers large errors, the
corresponding errors are not given here. Bold indicates the best result. Note that rotation error has
no unit.

Sequence A-LOAM FLOAM S-ALOAM
trel (m) rrel trel (m) rrel trel (m) rrel

00 1.1639 0.0205 1.0536 0.0206 1.0373 0.0193
01 1.0312 0.0127 1.0533 0.0140 0.9621 0.0142
02 55.7849 32.4780 1.0397 0.0157 0.9593 0.0194
04 0.5825 0.0096 0.5970 0.0123 0.6677 0.0143
07 0.5590 0.0129 0.5478 0.0110 0.5080 0.0154
08 1.3467 0.0142 1.2743 0.0143 1.3818 0.0154

4. Discussion

Overall, S-ALOAM often achieves better local accuracy (Table 3) and global consis-
tency (Table 2) in terms of translational errors. Furthermore, S-ALOAM is slightly worse
than A-LOAM in rotational errors. The overall performance of A-LOAM is higher than
FLOAM and LeGO-LOAM. The accuracy of LeGO-LOAM is worse than the other three
methods, which is caused by the inaccurate ground extraction.

In addition, we found that height estimation is one of main error sources in the LOAM
algorithm and its variants. This is especially obvious in sequence 00 and sequence 01. For
example, we can see from Figure 8a that the 2D trajectory of S-ALOAM coincides well with
the ground truth. Meanwhile, Figure 8b,c show similar error curves. These demonstrate
the height error accounts for a large proportion in the total absolute translation error. The
main factors that cause a large height error is uneven ground. This is because the planar
features provide necessary constraints for height estimation, and slopes in the environment
may cause height estimation errors. If these small local errors are not corrected, they will
continue to accumulate and eventually cause large height errors.

From the type of environment, all methods perform poorly on the highway (01).
Even for S-ALOAM, which performs better than other methods, its absolute translation
error reaches up to 106.2324 m. This is because there are few geometric structures and
many fast-moving dynamic objects in a challenging environment. Meanwhile, The high
dynamics of the carrier itself is also one of the reasons for the larger errors. As the previous
analysis show, the error in this scenario is mainly caused by height. Even then, S-ALOAM
still performs very well in 2D translation estimates (cf Figure 8a). Moreover, S-ALOAM
also corrects the height error to a certain extent which benefits from our semantic label-
based edge features extraction method and dynamic object removal strategy. In general,
compared with A-LOAM, S-ALOAM reduces the absolute translation error from 114.8519
to 106.2324 m. Furthermore, the relative translation error is reduced from 1.0312 to 0.9621 m
(cf Tables 2 and 3). As for the rotation error, S-ALOAM is similar to A-LOAM. For example,
the absolute rotation errors of A-LOAM and S-ALOAM are 7.0807 and 7.0901, respectively.

Remote Sens. 2021, 13, 2864 18 of 21

Another challenging scene is the urban/rural hybrid scene (sequence 02 and 08). The
performance of A-LOAM is slightly better than S-ALOAM in the 08 sequence. For example,
its absolute position error is 17.1512 m while S-ALOAM is 17.9965 m (see 08 in Table 2).
However, its error reaches up to 157.2780 m in the 02 sequence (see 02 in Table 2). This
shows that A-LOAM is less robust in mixed scenarios. On the other hand, in terms of
absolute error, FLOAM is better than the other methods in the 02 sequence (02 in Table 2).
However, its performance is the worst in the 08 sequence (see 08 in Table 2). In contrast, S-
ALOAM maintains stable performance. Although, the absolute position error still reached
tens of meters, which is only behind the highway scene (01).

S-ALOAM works well in urban. Especially for sequence 07, the absolute translation
error are decreased from 1.0154 to 0.8988 (see sequence 07 in Table 2). Furthermore, the
relative translation error is only 0.5080 m (see sequence 07 in Table 3). The reason is these
environments contain much structural information. By contrast, the absolute translation
error of sequence 00 is 6.2357 m, which is larger than sequence 07 (see sequence 00 and
07 in Table 2). The errors in sequence 00 are mainly from the long path and many loop
closures (see Figure 6a(1),a(2)), which can cause accumulative errors. However, neither
A-LOAM nor S-ALOAM has loop closures constraints. Even then, the performance of
S-ALOAM outperforms A-LOAM and FLOAM (cf Figure 6a–c).

For country scenes (sequence 04), the performance of S-ALOM is slightly worse than
other methods (see Tables 2 and 3). The reasons could be the scene contains a lot of
vegetation, such as grass and rush, which can lead to false feature extraction. Besides, we
also show two feature maps from sequence 00 and 07, as shown in Figure 11. The color
changes with elevation.

(a) The map of Sequence 00 (b) The map of Sequence 07

Figure 11. The map of two sequences.

5. Conclusions

In this paper, we presented a novel semantic-assisted lidar odometry and mapping
system for performing accurate pose estimation and mapping in a large-scale outdoor
environment. The system is composed of a point cloud pre-processing module, a feature
extraction module, a lidar odometry module and a lidar mapping module. A two-step
dynamic objects filtering method is presented in the pre-processing module and lidar map-
ping module, respectively. In the feature extraction module, we use point-wise semantic
labels instead of the smoothness of the local surface to extract edge and plane features.
Another key feature we proposed is the semantic constraint is added to lidar odometry
module and lidar mapping module, which ensures that the algorithm can accurately and
efficiently search for the corresponding points.

Qualitative and quantitative experiments in many challenging environments demon-
strate that the proposed method achieves similar or better accuracy in comparison to
state-of-the-art methods. Specifically, The proposed algorithm is completely better than
LeGO-LOAM and only inferior to FLOAM in sequence 02. Compared with A-LOAM,
our approach have higher accuracy in the translation estimation. As for rotation parts, S-
ALOAM is only slightly inferior to A-LOAM. This shows integrating semantic information
into a lidar odometry and mapping system can achieve more accurate translation estimates
than the pure geometric methods.

Remote Sens. 2021, 13, 2864 19 of 21

Despite these encouraging results, there are some limitations here. Our method
achieves better accuracy in comparison to other methods in the highway scene; however,
the magnitude of the error is still large. This is caused by the challenging environment,
such as uneven ground, fewer structural features, many dynamic vehicles and the high
dynamics of the carrier itself. Therefore, we have not made a significant correction. These
can be improved in our future work. First, we consider adding loop-closure constraints to
correct drift. Since our method suffers from large height errors. Furthermore, we plan to
add a ground constraint or use IMU to correct the height errors.

Author Contributions: Conceptualization, S.D.; data curation, S.D. and Y.L.; formal analysis, S.D.
and Y.L.; investigation, X.L. and Y.L.; methodology, S.D. and X.L.; software, S.D.; validation, S.D. and
M.W.; funding acquisition, X.L.; supervision, X.L.; project administration, X.L.; writing—original
draft preparation, S.D.; writing—review and editing, Y.L. and M.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
(NSFC) under Grant 51309058 and the Science Foundation of Heilongjiang Province under Grant
E2017015.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
2. Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010,

2, 31–43. [CrossRef]
3. Bârsan, I.A.; Liu, P.; Pollefeys, M.; Geiger, A. Robust dense mapping for large-scale dynamic environments. In Proceedings

of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018;
pp. 7510–7517.

4. Xu, C.; Liu, Z.; Li, Z. Robust visual-inertial navigation system for low precision sensors under indoor and outdoor environments.
Remote Sens. 2021, 13, 772. [CrossRef]

5. Ji, K.; Chen, H.; Di, H.; Gong, J.; Xiong, G.; Qi, J.; Yi, T. CPFG-SLAM: A robust simultaneous localization and mapping based on
LIDAR in off-road environment. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30
June 2018; pp. 650–655.

6. Zhang, J.; Singh, S. Laser-visual-inertial odometry and mapping with high robustness and low drift. J. Field Robot. 2018,
35, 1242–1264. [CrossRef]

7. Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual-inertial
fusion. J. Field Robot. 2018, 35, 23–51. [CrossRef]

8. Fu, D.; Xia, H.; Qiao, Y. Monocular visual-inertial navigation for dynamic environment. Remote Sens. 2021, 13, 1610. [CrossRef]
9. Horaud, R.; Hansard, M.; Evangelidis, G.; Menier, C. An overview of depth cameras and range scanners based on time-of-flight

technologies. Mach. Vis. Appl. 2016, 27, 1005–1020. [CrossRef]
10. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765.

11. Hall, D. Velodyne Lidar. HDL-64E High Definition Real-Time 3D LiDAR. 2021. Available online: https://velodynelidar.com/
products/hdl-64e/ (accessed on 16 June 2021).

12. Elhousni, M.; Huang, X. A survey on 3D LiDAR localization for autonomous vehicles. In Proceedings of the 2020 IEEE Intelligent
Vehicles Symposium (IV), Las, Vegas, NV, USA, 23–26 June 2020; pp. 1879–1884.

13. Magnusson, M.; Vaskevicius, N.; Stoyanov, T.; Pathak, K.; Birk, A. Beyond points: Evaluating recent 3D scan-matching algorithms.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May
2015; pp. 3631–3637.

14. Li, X.; Du, S.; Li, G.; Li, H. Integrate point-cloud segmentation with 3D LiDAR scan-matching for mobile robot localization and
mapping. Sensors 2020, 20, 237–259. [CrossRef] [PubMed]

15. Besl, P.; McKay, N. A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [CrossRef]

http://doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/MITS.2010.939925
http://dx.doi.org/10.3390/rs13040772
http://dx.doi.org/10.1002/rob.21809
http://dx.doi.org/10.1002/rob.21732
http://dx.doi.org/10.3390/rs13091610
http://dx.doi.org/10.1007/s00138-016-0784-4
https://velodynelidar.com/products/hdl-64e/
https://velodynelidar.com/products/hdl-64e/
http://dx.doi.org/10.3390/s20010237
http://www.ncbi.nlm.nih.gov/pubmed/31906166
http://dx.doi.org/10.1109/34.121791

Remote Sens. 2021, 13, 2864 20 of 21

16. Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the 2008 IEEE International Conference on Robotics and
Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25.

17. Low, K. Linear least-squares optimization for point-to-plane ICP surface registration. Chapel Hill 2004, 4, 1–3.
18. Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of Robotics Science and Systems V (RSS), University of

Washington, Seattle, WA, USA, 1–28 July 2009; pp. 1–8.
19. Borrmann, D.; Elseberg, J.; Lingemann, K.; Nuechter, A.; Hertzberg, J. Globally consistent 3D mapping with scan matching. Robot.

Auton. Syst. 2008, 56, 130–142. [CrossRef]
20. Elseberg, J.; Borrmann, D.; Nuechter, A. Algorithmic solutions for computing precise maximum likelihood 3D point clouds from

mobile laser scanning platforms. Remote Sens. 2013, 5, 5871–5906. [CrossRef]
21. Lauterbach, H.A.; Borrmann, D.; Heß, R.; Eck, D.; Schilling, K.; Nüchter, A. Evaluation of a backpack-mounted 3D mobile

scanning system. Remote Sens. 2015, 7, 13753–13781. [CrossRef]
22. Moosmann, F.; Stiller, C. Velodyne slam. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden, Germany,

5–9 June 2011; pp. 393–398
23. Magnusson, M.; Lilienthal, A.; Ducket, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2007,

24, 803–827. [CrossRef]
24. Stoyanov, T.; Magnusson, M.; Lilientha, A.J. Point set registration through minimization of the L2 distance between 3D-NDT

models. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA,
14–18 May 2012; pp. 5196–5201.

25. Koide, K.; Miura, J.; Menegatti, E. A portable three-dimensional LIDAR-based system for long-term and wide-area people
behavior measurement. Int. J. Adv. Robot. Syst. 2019, 16, 1–16. [CrossRef]

26. Pathak, K.; Birk, A.; Vaskevicius, N.; Pfingsthorn, M.; Schwertfeger, S.; Poppinga, J. Online three-dimensional slam by registration
of large planar surface segments and closed-form pose-graph relaxation. J. Field Robot. 2010, 27, 52–84. [CrossRef]

27. Zhou, Q.Y.; Park, J.; Koltun, V. Fast global registration. In Proceedings of the 2016 European Conference on Computer Vision
(ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 766–782.

28. Zaganidis, A.; Sun, L.; Duckett, T.; Cielniak, G. Integrating deep semantic segmentation into 3-D point cloud registration. IEEE
Robot. Autom. Lett. 2018, 3, 2942–2949. [CrossRef]

29. Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robot. 2017, 41, 401–416. [CrossRef]
30. Park, Y.S.; Jang, H.; Kim, A. I-LOAM: Intensity Enhanced LiDAR Odometry and Mapping. In Proceedings of the 2020 17th

International Conference on Ubiquitous Robots (UR), Kyoto, Japan, 22–26 June 2020; pp. 455–458.
31. Rufus, N.; Nair, U.K.R.; Kumar, A.V.S.S.B.; Madiraju, V.; Krishna, K.M. SROM: Simple Real-time Odometry and Mapping using

LiDAR data for Autonomous Vehicles. arXiv 2020, arXiv:2005.02042.
32. Zhou, B.; He, Y.; Qian, K.; Ma, X.; Li, X. S4-SLAM: A real-time 3D LIDAR SLAM system for ground/watersurface multi-scene

outdoor applications. Auton. Robot. 2021, 45, 77–98. [CrossRef]
33. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A dataset for semantic scene

understanding of LiDAR sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Korea, 27 October–2 November 2019; pp. 9296–9306.

34. Zhao, Z.; Zhang, W.; Gu, J.; Yang, J.; Huang, K. Lidar mapping optimization based on lightweight semantic segmentation. IEEE
Trans. Intell. Veh. 2019, 4, 353–362. [CrossRef]

35. Wang, F.; Wang, Z.; Yan, F.; Gu, H.; Zhuang, Y. A novel real-time semantic-assisted Lidar odometry and mapping system.
In Proceedings of the 10th International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh,
Morocco, 11–16 December 2019.

36. Zaganidis, A.; Zerntev, A.; Duckett, T.; Cielniak, G. Semantically assisted loop closure in SLAM using NDT histograms.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 4562–4568.

37. Zhao, Z.; Mao, Y.; Ding, Y.; Ren, P.; Zheng, N. Visual-based semantic SLAM with landmarks for large-scale outdoor environment.
In Proceedings of the 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), Xi’an, China, 21–22
September 2019; pp. 149–154.

38. Nuechter, A.; Wulf, O.; Lingemann, K.; Hertzberg, J.; Wagner, B. 3D mapping with semantic knowledge. In Robot Soccer World
Cup; Springer: Berlin/Heidelberg, Germany, 2005; pp. 335–346.

39. Zaganidis, A.; Magnusson, M.; Duckett, T.; Cielniak, G. Semantic-assisted 3D normal distributions transform for scan registration
in environments with limited structure. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017.

40. Liu, H.; Ye, Q.; Wang, H.; Chen, L.; Yang, J. A precise and robust segmentation-based lidar localization system for automated
urban driving. Remote Sens. 2019, 11, 1348. [CrossRef]

41. Griffiths, D.; Boehm, J. A review on deep learning techniques for 3D sensed data classification. Remote Sens. 2019, 11, 1499.
[CrossRef]

42. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on point sets for 3D classification and segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85.

http://dx.doi.org/10.1016/j.robot.2007.07.002
http://dx.doi.org/10.3390/rs5115871
http://dx.doi.org/10.3390/rs71013753
http://dx.doi.org/10.1002/rob.20204
http://dx.doi.org/10.1177/1729881419841532
http://dx.doi.org/10.1002/rob.20322
http://dx.doi.org/10.1109/LRA.2018.2848308
http://dx.doi.org/10.1007/s10514-016-9548-2
http://dx.doi.org/10.1007/s10514-020-09948-3
http://dx.doi.org/10.1109/TIV.2019.2919432
http://dx.doi.org/10.3390/rs11111348
http://dx.doi.org/10.3390/rs11121499

Remote Sens. 2021, 13, 2864 21 of 21

43. Hua, B.S.; Tran, M.K.; Yeung, S.K. Pointwise convolutional neural networks. In Proceedings of the 2018 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 984–993.

44. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient semantic segmentation of
large-scale point clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 11105–11114.

45. Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. SuMa++: Efficient LiDAR-based semantic SLAM.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 4530–4537.

46. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 4213–4220.

47. Chen, S.W.; Nardari, G.V.; Lee, E.S.; Qu, C.; Liu, X.; Romero, R.A.F.; Kumar, V. SLOAM: Semantic Lidar odometry and mapping
for forest inventory. IEEE Robot. Autom. Lett. 2020, 5, 612–619. [CrossRef]

48. Qin, T.; Cao, S. Advanced Implementation of LOAM. 2019. Available online: https://github.com/HKUST-Aerial-Robotics/A-
LOAM (accessed on 16 June 2019).

49. Lin, J.; Zhang, F. Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV.
In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA,
24 October–24 Jannuary 2021; pp. 3126–3131.

50. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

51. May, S.; Droeschel, D.; Holz, D.; Fuchs, S.; Malis, E.; Nuechter, A. Three dimensional mapping with time of flight cameras. J. Field
Robot. 2009, 26, 934–965. [CrossRef]

52. Wang, H. Fast Lidar Odometry and Mapping. 2020. Available online: https://github.com/bill4u/floam (accessed on 16
June 2020).

53. Grupp, M. evo: Python Package for the Evaluation of Odometry and SLAM. 2017. Available online: https://github.com/
MichaelGrupp/evo (accessed on 16 June 2017).

http://dx.doi.org/10.1109/LRA.2019.2963823
https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/HKUST-Aerial-Robotics/A-LOAM
http://dx.doi.org/10.1002/rob.20321
https://github.com/bill4u/floam
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo

	Introduction
	Classification of SLAM Methods Based on Registration
	LOAM and Its Variants
	Semantic-Assisted LiDAR SLAM Method

	Materials and Methods
	Scan Pre-Processing
	Feature Extraction
	LiDAR Odometry
	Deformation Correction
	LiDAR Odometry

	Lidar Mapping

	Results
	Experimental Platform and Evaluation Method
	Dynamic Object Removal
	Feature Extraction Results
	Pose Estimation Comparison

	Discussion
	Conclusions
	References

