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Abstract: Accurately building height estimation from remote sensing imagery is an important and
challenging task. However, the existing shadow-based building height estimation methods have
large errors due to the complex environment in remote sensing imagery. In this paper, we propose a
multi-scene building height estimation method based on shadow in high resolution imagery. First,
the shadow of building is classified and described by analyzing the features of building shadow in
remote sensing imagery. Second, a variety of shadow-based building height estimation models is
established in different scenes. In addition, a method of shadow regularization extraction is proposed,
which can solve the problem of mutual adhesion shadows in dense building areas effectively. Finally,
we propose a method for shadow length calculation combines with the fish net and the pauta criterion,
which means that the large error caused by the complex shape of building shadow can be avoided.
Multi-scene areas are selected for experimental analysis to prove the validity of our method. The
experiment results show that the accuracy rate is as high as 96% within 2 m of absolute error of
our method. In addition, we compared our proposed approach with the existing methods, and the
results show that the absolute error of our method are reduced by 1.24 m–3.76 m, which can achieve
high-precision estimation of building height.

Keywords: remote sensing imagery; building height estimation; multi-scene; shadow; pauta criterion

1. Introduction

Building height information is an important part of urban basic geographic informa-
tion, which plays an important role in many urban applications, such as urban planning,
building floor area ratio calculation, smart city construction [1–5]. Automatic building
height estimation from high-resolution images has always been one of the fundamental
tasks in the field of remote sensing research.

The existing building height estimation methods based on remote sensing images are
mainly divided into two categories. The first is based on light detection and ranging (li-
dar) [6–8], interferometric synthetic aperture radar (InSAR) [9–11], and stereo pair [12–14].
The second is based on the shadows of buildings from remote sensing imagery [15–19]. In
the first method, multi-source data is used for building height estimation. For example,
Soregel et al. proposed an interferometric synthetic aperture radar building height estima-
tion method based on a segmentation algorithm [20]. Dubois et al. carried out the detection
and extraction of building overlap based on the InSAR phase diagram to achieve the pur-
pose of estimating geometric parameters such as building height [9]. Sportouche et al. used
the DTM and system parameters of SAR sensors to provide a building height estimation
method based on likelihood criterion optimization [21]. Wegner et al. used a pair of InSAR
images and an aerial orthophoto to estimate the height of buildings [22]. Brunner et al.
proposed a method for the height estimation of generic man-made structures from single
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detected SAR data, and the efficiency of their method was proven on a set of 40 flat roof
and gable roof buildings in the absence of crosstalk effects [23]. Vu et al. proposed a multi-
scale solution based on morphology, which obtains elevation information from airborne
lidar data, and describes the elevation data in the morphological scale space to realize the
expression of building height [24]. Ding et al. proposed a method to obtain building height
from a single ground image based on the inherent parameters of the camera [25]. Chen
et al. used stereo pairs to extract building height by using the Digital Elevation Model
(DEM) to identify building height in the city’s three-dimensional model [26]. The above
methods have improved the efficiency of obtaining height information, and the accuracy
of the estimation results is also improved. However, the data used are not easy to obtain,
since they are affected by geographical location, weather, and other factors, which shows
obvious limitations in application.

Compared with the limitation that the above data is difficult to obtain, the optical
remote sensing image has obvious advantages. It can be used to extract building height by
constructing a model of the geometric relationship between the building and shadow in the
image [27–31]. Since 1989, in aerial photogrammetry, researchers have long used shadow
information to estimate building height [32]. Wang et al. used ZY3 images to establish a
geometric relationship model between shadow length and building height, and combined
the shadow length to calculate the building height. On this basis, a three-dimensional mod-
eling of urban buildings was carried out [15]. Liasis used the spectrum and spatial analysis
information of satellite image to implement a new active contour model, thereby optimiz-
ing the shadow segmentation process of buildings, improving the accuracy of shadow
extraction, and estimating building height through shadow length [19]. Izadi et al. pro-
posed a building height calculation method by detecting building boundaries and shadow
boundaries, and achieved building height in QuickBird images [33]. Wang et al. used the
geometric relationship between shadows and buildings to calculate the height of buildings
in Kunming, China in QuickBird images [34]. Qi et al. built a method to calculate the height
of buildings, which can calculate building height by Google Earth [35]. Shettigara et al.
used the shadow information on the SPOT panchromatic image to construct a model to
obtain building height [36]. Turker et al. used building shadow to calculate the height
of collapsed buildings in an earthquake [37]. Wang et al. proposed a multi-constrained
method to extract shadow information from images, and calculate the height information
of buildings based on the relationship between shadow and building [38]. Shao et al.
proposed a method combining the spatial index of image objects to improve the accuracy
of shadow extraction, and took IKONOS images as an example to estimate the building
height using shadow length [39].

Although these works are all notable, the application of the scene is limited to building
height estimation in remote sensing images. Firstly, the building height estimation model
in different scenarios is not perfect, because of the influence of the sun azimuth and
altitude angle, the satellite azimuth and altitude, and the terrain. Secondly, the shadow of
densely-built areas in some images adheres to each other, which cannot accurately reflect
the height of buildings. Finally, the traditional method of using the shadow length to
calculate building height cannot effectively deal with the problem of complex shape of
the building shadow. To overcome these limitations, this paper proposes a multi-scene
building height estimation method based on shadow in high-resolution satellite imagery.
The main contributions of our work are summarized below.

(1) The multi-scene building height estimation model is established by analyzing
building shadow in remote sensing images, which can explain the geometric relationship
between buildings and shadows in different scenarios.

(2) A method-regularized extraction of building shadows is proposed, which can solve
the problem of mutual adhesion between shadows in dense areas of buildings.

(3) We propose a method of shadow length calculation based on the combination of
fish net and pauta criterion for the problem of complex shadow shapes of buildings, which
can provide more reliable basic data for building height estimation.
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The remainder of this paper is organized as follows. The methods are presented in
Section 2, including classification and description of building shadows and multi-scene
building height estimation. The experiment results and analysis of this article are presented
in Section 3, including building height estimation results of ordinary scene, dense scene,
and complex terrain scene. Finally, the conclusion and future work are presented in
Section 4.

2. Methods

In this paper, we propose a multi-scene building height estimation method based on
shadow in high resolution imagery, as shown in Figure 1. Firstly, the scene description
is performed by analyzing the characteristics of the shadow shape, distribution density,
and regional terrain differences of the buildings in the remote sensing image. Secondly,
the building scenes are divided into three types: ordinary scene, dense scene, and complex
terrain scene. On this basis, the building height calculation method is designed based on
the scene classification results. Finally, building height estimation is achieved through
regularized building shadow, shadow length calculation, shadow length correction, and
the geometric relationship between shadow and building, as shown in highlighted part in
Figure 1.

1 
 

 
Figure 1. The framework of the proposed method for building height estimation.

2.1. Classification and Description of Building Shadow

The existing methods for building height calculation based on shadow are generally
carried out under three assumptions [40–42]. First, the density of the building is small, and
there is no overlap between the shadows of building, as shown in Figure 2a. Second, the
structure of building is regular, as shown in Figure 2b. Third, the buildings is located in
the plain area and not affected by the terrain, as shown in Figure 2c,d. However, these
three assumptions produce an ideal situation, which greatly limits the application of the
shadow-based building height estimation. Therefore, we have classified and described
the shadow of the building in the remote sensing imagery, which can overturn these three
hypotheses. The building shadow is divided into three categories.
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Figure 2. Classification of building shadow scene. (a) Sparse of building shadow; (b) Regular structure of building shadow;
(c,d) Building shadows without terrain differences; (e) Density of building shadow; (f) Complex structure of building
shadow; (g,h) Terrain difference of building shadow.

(1) Density of building shadow. There will be overlap between the shadow as the
density of the building increases, and it is impossible to segment the shadows of buildings
with different heights, which cannot be used to invert the height of buildings directly, as
shown in Figure 2e.

(2) Complex structure of building shadow. There are many complex designs of urban
buildings, such as arcs, circles, complex combinations, etc. Shadow extraction will be
affected and result in lower accuracy of height calculation results if the shape of the
building is complex, as shown in Figure 2f.

(3) Terrain difference of building shadow. Although plain areas are the main popula-
tion gathering places, there are still some cities in areas with large terrain undulations. The
difference of terrain will lead to a great error when calculating the building height based
on shadow. as shown in Figure 2g. Figure 2h, which is a photograph of the terrain with a
difference in the real scene, and the height difference is 3.22 m on the road at a distance of
120 m.

2.2. Multi-Scene Building Height Estimation

In this section, we introduce the building height estimation method in multi-scene in
detail. First, the model for building height estimation using shadow in different azimuths
of the sun and sensors is constructed. Second, the method of shadow regularization
extraction for buildings in dense areas is introduced. Third, shadow length calculation
method combined with fish net and pauta criterion is introduced. Finally, a shadow length
correction method under complex terrain is proposed.

2.2.1. Building Height Estimation Model Based on Shadow

We divide the model that uses shadows to invert the height of building into three types
based on the relationship of the azimuth angle between the sun and the sensor. Including
the same azimuth angle between the sun and the sensor, the azimuth angle difference
between the sun and the sensor is greater than 180◦, and the azimuth angle difference
between the sun and the sensor is between 0◦ and 180◦.

(1) The same azimuth angle between the sun and the sensor. There is no need to
consider the influence of the azimuth angle on the shadow detection when the azimuth
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angle of the sensor is the same as sun azimuth. The sensor and the sun are on the same
side of the building; the geometric relationship is shown in Figure 3.

Figure 3. The sun azimuth is the same as the sensor azimuth.

Where α is the sun elevation, β is the sensor elevation, AB is the height of building, BC
is the shaded part of the building, BD is the total length of the building shadow, CD is the
length of the shadow that can be observed on the remote sensing imagery.

The length of the shadow measured in the image can be calculated in Equation (1).

CD = BD − BC =
AB

tanα
− AB

tanβ
(1)

The height of the building is shown in Equation (2).

AB = CD × tanα × tanβ

tanβ − tanα
(2)

It can be seen that the height of the building is only related to the length of the shadow
on the remote sensing image and the fixed parameters of the sensor and the sun during
shooting. Therefore, the height of the building is proportional to the length of the shadow
in the same image. The proportionality coefficient is k, as shown in Equation (3).

AB = CD × k (3)

k =
tanα × tanβ

tanβ − tanα
(4)

(2) The azimuth angle between the sun and the sensor is greater than 180◦. The sensor
can capture all shadow areas of the building in this situation, and the value of BC is 0, as
shown in Figure 4. The building height is calculated in Equation (5).

AB = BD × tanα (5)

In the same way as Equation (2), the height of the building is proportional to the
length of the shadow in the same image, and the proportionality coefficient is k1, as shown
in Equation (6).

AB = BD × k1 (6)

k1 = tanα (7)

(3) The azimuth angle between the sun and the sensor is within 0◦–180◦. The influence
of the azimuth angle of the sensor on the shadow detection should be considered in this
situation, which is also the most common situation in the image. The geometric relationship
between the sensor, the sun, and the building are shown in Figure 5.
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Figure 4. The azimuth angle between the sun and the sensor is greater than 180◦.

Figure 5. The azimuth angle between the sun and the sensor is within 0◦–180◦.

Where γ is sun azimuth, δ is sensor azimuth, ε is the angle formed by the direction of
the building and its shadow projection in the clockwise direction, and it can be assumed
that ε is the same in the same image. BD is the actual length of the building shadow, DE is
the observed building shadow length on the remote sensing imagery.

The length of the shadow is DE = BD − BE, the building height is AB, and the
building height could be computed in Equation (8).

AB =
DE × sinε

cotαsinε − cotβsin(ε + γ − δ)
(8)

In the same way as Equation (2), the height of the building is proportional to the
length of the shadow in the same image, and the proportionality coefficient is k2, as shown
in Equation (9).

AB = DE × k2 (9)

k2 =
sinε

cotαsinε − cotβsin(ε + γ − δ)
(10)

When using the above models to calculate the height of the building, a lot of additional
auxiliary information is needed, such as sun azimuth and sensor azimuth. It is difficult to
obtain these parameters. We have conducted an in-depth study of this difficulty. These
parameters are invariable in the same scene image, which provides more convenience to
our calculations. As long as we know the height of any building in the image and the
length of the shadow, we can calculate the ratio between the building and shadow. After
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that, we can inversely calculate the height of other buildings based on the ratio and shadow
length, as shown in Equations (3), (6) and (9).

2.2.2. Regularized Extraction of Building Shadow in Dense Areas

The building shadows in dense areas will overlap with each other, due to the com-
prehensive influence of multiple factors such as the building, sun elevation, sun azimuth,
sensor elevation, and sensor azimuth, as shown in red box in Figure 6a. The buildings
cannot correspond to their corresponding shadows one-to-one, the length of the shadow
of the building cannot be extracted. To overcome this situation, we propose a method of
regularized extraction of building shadows in dense areas based on building boundary
constraints; the flow chart of our method is shown in Figure 7. It should be noted that the
shadow boundary and building boundary extraction methods used of this article are based
on our previous research [43,44].

Figure 6. The process of shadow regularization extraction. (a) Building and shadow in dense areas;
(b) Corner coordinates of envelope rectangle; (c) Cutting lines; (d) Regularized shadow.

Figure 7. Flow chart of building shadow regularized extraction in dense areas.
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First, an envelope rectangle is made for the building vector boundary, and scaled
according to the proportion. The initial value of the scaling ratio n is 0.7, and the value
range of n is 0 to 1. Second, the corner coordinates are obtained from the enveloping
rectangle; the result is shown in Figure 6b. The cutting line is generated according to the
sun azimuth and corner coordinates; the result is shown in Figure 6c. Then, the regularized
shadow is cropped by the cutting line and overlapped shadow. Finally, the building and
the regularized shadow are matched according to the azimuth direction of the sun [45]. At
the same time, the scaling ratio of the building envelope rectangle is reduced by 0.1 until
all the buildings are matched with the shadow, which can be used to calculate the building
height; the result is shown in Figure 6d.

2.2.3. Shadow Length Calculation Combine Fish Net and Pauta Criterion

The shadow length calculation is a prerequisite for building height estimation. The
existing methods for shadow length calculation include pixel method, area and perimeter,
corner closest distance, and fish net [19]. However, it will be difficult to select appropriate
feature points or feature lines of the pixel method, the area and perimeter, and the corner
closest distance. The fish net has a wide range of applications for the shadow length
calculation, which can generate a series of parallel lines in the shadow area to calculate
shadow length [19]. However, the traditional fish net method has a large error for the spots
and holes in the shadow. In addition, the mean value or median value of fish net length
will produce greater errors for the shadow produced by complex-shaped buildings. In
order to avoid the above problems, we propose that a method of shadow length calculation
combines fish net and pauta criterion, as shown in Figure 8. The method includes two
parts: fish net line generation and gross error elimination.

Figure 8. Flow chart of shadow length calculation method. (a) Flow chart of Fish net line generation; (b) Flow chart of gross
error elimination.

(1) Fish net line generation, as shown in Figure 8a. First, the shadow produced by the
buildings is numbered, as shown in Figure 9a. Second, the fish net lines are constructed
according to the sun azimuth, which is a cluster of parallel lines with certain intervals, as
shown in Figure 9b. Finally, the fish net line and the shadow are superimposed to obtain
the shadow line, as shown in Figure 9c.
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Figure 9. The process of shadow length calculation. (a) Shadow boundary; (b) Fish net lines; (c) Shadow lines; (d) Final
result of shadow lines.

(2) Gross error elimination, as shown in Figure 8b. The shadow length will produce a
large error, if we calculate the average of shadow line directly. Therefore, we propose a
method of eliminating gross errors based on the pauta criterion [46]. The pauta criterion
assumes that a set of fishing net line length contains random errors only, calculates the
standard deviation, and determines an interval with a certain probability. After that, it
considers that any error that exceeds this interval is gross error, and deletes it. This method
is often used to eliminate errors in measurement data. The pauta criterion can improve the
calculation accuracy of the shadow length than average value or median value. The overall
algorithm is explained as follows.

(1) Calculate the standard deviation σ and the arithmetic mean X for all the line
lengths in each shadow plane.

(2) The triple standard deviation is used as the detection interval, and the given
confidence probability is 99.73%.

(3) Find the residual error of the length of each cutting line in the shadow plane, as
shown in Equation (11).

Vi=|Xi − X| (11)

(4) Determine gross error, if Vi ≤ 3σ, then the detection value is normal and should
be retained; If Vi > 3σ, the detected value is determined as an abnormal value and should
be discarded; σ is the standard deviation. Repeat the above steps until all gross errors are
eliminated, the final result is shown in Figure 9d.

To prove the advantages of the pauta criterion, we selected 18 buildings to calculate
the building height using the shadow length based on average value, median value and
pauta criterion for comparative experiments, and all errors are taken as absolute values.
The result is shown in Table 1. Among them, the building number 7 is used as the reference
data for height calculation, and its error is regarded as 0. The average value method has
an absolute error between 0.76 m and 19.04 m, and average error is 6.57 m. The median
value method has an absolute error between 0.21 m and 13.34 m, and average error is
3.07 m. After the error is eliminated by the pauta criterion, the absolute error range for
calculating the height of the building is between 0.12 m and 1.81 m, and average error is
3.07 m. Compared with the average value and median value method, the average error is
reduced by 2.38–5.88 m. It can be seen that the accuracy of building height calculated is
higher after the gross error is eliminated by the pauta criterion. In particular, the shadow of
the building number 10 is occluded and only a part of the shadow is detected. The average
and median errors reached 12.13 m and 13.34 m, respectively. This error is extremely large,
and the error is only 1.68 m by our method.
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Table 1. Comparison of building height estimation accuracy between the average value median value and pauta criterion.

Building
Number Average (m) Median (m) Pauta

Criterion (m)
Building
Number

Average
(m) Median (m) Pauta

Criterion (m)

1 1.26 2.84 0.57 10 12.13 13.34 1.68
2 0.87 1.12 0.43 11 3.63 2.00 0.15
3 9.19 1.33 0.59 12 15.81 4.32 1.19
4 6.90 2.42 0.12 13 17.92 5.81 0.47
5 4.07 1.09 0.35 14 19.40 5.11 1.45
6 3.86 3.22 1.81 15 7.35 4.24 0.53
7 0.00 0.00 0.00 16 4.89 0.74 0.79
8 4.05 0.84 0.24 17 0.76 0.21 0.16
9 3.85 3.21 0.99 18 2.35 3.38 0.98

2.2.4. Shadow Length Correction under Complex Terrain

There is no guarantee that the building is located in a plain area in the actual situation,
and the measured shadow length of the building is the slope distance because the actual
bottom surface is non-horizontal. There will be large errors if the building height is
extracted on the premise of assumptions. Therefore, the shadow length needs to be
corrected under complex terrain. In this paper, a DEM-based correction model for the
length of shadow under complex terrain is established. Firstly, the DEM is transformed
into contour line. Secondly, the two ends of the shadow line are used as buffers to obtain
the contour line elevation in the buffer area. Finally, the elevation is assigned to the end
of the fishing net line for correction of the shadow length. The complex terrain shadow
length correction is divided into two situations to establish the model, bearing in mind the
fact that the elevation of the shadow projection surface is higher than the elevation of the
bottom of the building and the elevation of the shadow projection surface is less than the
elevation of the bottom surface of the building.

(1) The elevation of the shadow projection surface is higher than the horizontal
projection surface, as shown in Figure 10. The shadow length obtained on the image is less
than the actual shadow length of the building when the elevation of the shadow projection
surface is higher than the elevation of the bottom of the building. The shadow length result
is corrected by Equation (12).

HF = EG − h1 − h
tanβ

+
h2 − h
tanα

(12)

where EG is the measured shadow length in the image, and HF is the actual shadow length,
α is sun elevation, β is sensor elevation, and h, h1, and h2 are the bottom surface of the
building, the height of the shadow ends.

Figure 10. The elevation of the shadow projection surface is higher than the horizontal projection surface.
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(2) The elevation of the shadow projection surface is less than the elevation of the
horizontal projection surface, as shown in Figure 11. The shadow length obtained on the
image is higher than the actual shadow length of the building when the elevation of the
shadow projection surface is less than the elevation of the bottom of the building. The
shadow length result is corrected by Equation (13).

GE = FH +
h − h1

tanβ
− h − h2

tanα
(13)

where FH is the total measured shadow length of the image, GE is the actual shadow
length, α is sun elevation, β is sensor elevation, and h, h1, and h2 are the bottom surface of
the building, the height of the shadow ends.

Figure 11. The elevation of the shadow projection surface is less than the elevation of the horizontal
projection surface.

3. Experimental Results and Analysis

In order to verify the feasibility of our proposed approach, we judged the effectiveness
of the building height estimation method in different scenarios. Relative error and absolute
error are used as evaluation metrics in order to prove the effectiveness of our method.
We selected five experimental areas for different scenarios. In addition, since the shadow
projections of the buildings are all irregular shapes, we used the shadow length calculation
method in Section 2.2.3 for all scenes in order to further improve the accuracy. In addition,
it should be noted that all actual building heights are obtained by field measurement.

3.1. Building Height Estimation of Ordinary Scene

The first experimental area is a remote sensing image with a spatial resolution of 0.14 m
in Sichuan, China, including 18 buildings. The azimuth difference between the sun and the
sensor is greater than 180◦. The height of building 7 is 20.84 m by field measurement, and
the shadow length of the building obtained by the pauta criterion is 15.21 m. According to
Equation (6), the value of constant k1 is 1.3701. The second experimental area is a remote
sensing image with a spatial resolution of 0.61 m in Sichuan, China, including 43 buildings.
The height of building 7 is 25.26 m by field measurement, and the shadow length obtained
by the pauta criterion is 17.38 m, and the actual value of k2 is 1.4534. The visual display
results of the shadow length calculation process in the two experimental areas are shown
in Figure 12. Firstly, the shadow of the building is extracted based on the object-oriented
method [43]; the result is shown in Figure 12a. Secondly, the fish net line is established
according to the sun azimuth and superimpose it with the shadow boundary for analysis;
the result is shown in Figure 12b. Finally, the shadow line length is extracted combined
with fish net and pauta criterion, as shown in Figure 12b.
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Figure 12. Visual display of building height estimation process in ordinary scenes. (a) Shadow boundary; (b) Shadow lines;
(c) Final result of shadow lines.

We obtain the building height in the actual scene through field measurement, and
compare it with the calculated height. An error curve is drawn for the height calculation
results of 59 buildings in experimental area 1 and experimental area 2, as shown in Figure 13.
Among them, 43 buildings have an absolute error of 0~1 m, accounting for about 73%,
15 buildings have an error of 1 m~2 m, accounting for about 25%, and 1 building has
an error of greater than 2 m, accounting for about 2%. The analysis found that the large
absolute error of more than 2 m is caused by the large shadow extraction error of the
building. In general, the 98% absolute error of the building height extracted by this method
is between 0 m and 2 m, which can meet the requirements of urban planning and has a
certain practical value.

Figure 13. Accuracy analysis of building height estimation in ordinary scenes.
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3.2. Building Height Estimation in Dense Scene

The third and fourth experimental areas are a remote sensing image with a spatial
resolution of 1 m in Xinjiang, China. We select the images to verify the effectiveness of
our method for dense scene areas. As shown in Figure 14a, the gray part is the extracted
shadows, and the light blue is the building. There is obvious overlap in the building
shadows, and it is impossible to calculate the height of buildings through the shadow.
According to the building shadow regularization extraction method in Section 2.2.2, the
available area of shadow can be obtained, as shown in the yellow area in Figure 14b. Finally,
the shadow length is calculated by the fish net line and the pauta criterion, as shown in
Figure 14c.

Figure 14. Visual display of building height estimation process in dense scenes. (a) Shadow boundary; (b) Shadow lines; (c)
Final result of shadow lines.

Quantitative statistics are performed on the height estimation results of 55 buildings
in the third experimental area, where the proportional coefficient k1 is 0.5624, and the result
is shown in Figure 15. It can be seen from the result that the height of buildings can be
effectively extracted through the shadow regularization extraction method. The absolute
error is within 3 m, and the relative error is kept within 10%, which can generally meet the
needs of urban planning. This further proves the effectiveness of the shadow regularization
extraction method in this paper for dense building areas.

Figure 15. Accuracy analysis of building height estimation in dense scenes.
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3.3. Building Height Estimation for Complex Terrain Scene

The fifth experimental area is a remote sensing image with a spatial resolution of
0.14 m in Chongqing, China, as shown in Figure 16a. The terrain of the area is undulating,
and the experiment can verify the correctness of the building height estimation model
under complex terrain. Firstly, the DEM is transformed into contour lines, which are
used to obtain the elevation value of complex terrain, as shown in Figure 16b. Secondly,
the shadow of building boundary is extracted, in which the shape of building shadow is
complex, as shown in the red box in Figure 16c. Finally, the shadow lines that can be used
for building height estimation are obtained by the method of combination of the fish net
and the pauta criterion, as shown in Figure 16d.

Figure 16. Visual display of building height estimation in complex terrain. (a) Original image; (b) Contour lines; (c) Shadow
boundary; (d) Final result of shadow lines.

The shadow correction results and uncorrected results of 16 buildings in the fifth
experimental area are statistically analyzed. The uncorrected proportional coefficient is
1.311, and the corrected proportional coefficient is 1.097. Finally, the building height error
curve is drawn according to the calculation results, as shown in Figure 17. It can be seen
from the result that most of the absolute height errors of 16 buildings in the experimental
area are less than 2 m after shadow correction, and the fluctuation range of the absolute
error is small. Among them, only one building is more than 2 m, which is due to the
low accuracy of contour lines and imperfect shadow extraction. However, the absolute
error of building heights without shadow correction fluctuate greatly, and the maximum
error reaches 11.91 m, which cannot meet the accuracy requirements of building height
estimation.

Figure 17. Accuracy analysis of building height estimation in complex terrain.

3.4. Comparison with Different Methods

In order to prove the advantages of our method, we choose two methods to compare
with our method in five experimental areas; the result is shown in Table 2. It can be seen
that our method has better performance. The method proposed by Liasis et al. [19] reached
an average of 4.89 m and 17.28% in absolute error and relative error, respectively. The
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reason for this large error is that the shadow boundary in the shadow experiment area
is more complicated, and there are some holes in the shadow. The gross error cannot be
avoided by only using the median method. The method proposed by Chen et al. [47]
reached an average of 2.37 m and 9.54% in absolute error and relative error, respectively.
The method in this paper has higher accuracy, in which the average absolute error reaches
1.13 m, and the average relative error reaches 3.49%. In addition, we use aggregate variance
to verify the stability of our method. Compared with the comparison method, the aggregate
variance value of our method is increased by 1.83–4.6, which can prove that our method
not only has better accuracy but also has better stability.

Table 2. Accuracy comparison between the methods on our data.

Methods Mean Absolute Error
(m)

Mean Relative Error
(%) Aggregate Variance

Liasis et al. [19] 4.89 17.28 5.14
Chen [47] 2.37 9.54 2.37

Our method 1.13 3.49 0.54

Furthermore, to further prove the robustness of our method, we use the Worldview-3
image provided by Chen [47] for building height calculation experiments, and compare
the results with our method; the result is shown in Table 3. Compared with the method
proposed by Chen, our method increases the average value of absolute error and the
average value of relative error by 1.02 m and 1.18%, respectively. In addition, in terms
of the stability of the method, it shows a stronger advantage, with an increase of 9.54.
Experiments in different experimental areas show that our method has better robustness
for building height estimation.

Table 3. Accuracy comparison between the methods on data of Chen [47].

Methods Mean Absolute Error
(m)

Mean Relative Error
(%) Aggregate Variance

Chen [47] 2.38 4.15 10.78
Our method 1.36 2.97 1.24

3.5. Speed Analysis of the Proposed Algorithm

In addition to accuracy, estimation speed is also one of the important conditions for
the feasibility of the method. We tested our method in three different device configurations,
including Device1 (an Intel Core i7-8750H CPU with 16 GB of RAM), Device2 (an Intel(R)
Core (TM) i7-4810MQ CPU with 8 GB of RAM), and Device3 (an Intel(R) Core (TM)
i7-5500U CPU with 8 GB of RAM); the result is shown in Table 4. The average time
used in different experimental equipment are 5.1 min, 7.0 min, 9.2 min respectively. In
practical applications, the average value is kept within 10 min even in device 3 with lower
performance, which proves that the method in this paper has higher efficiency and can
realize building height estimation.

Table 4. Analysis of the time taken by our method with three different device configurations.

Area Device1 (min) Device2 (min) Device3 (min)

Area1 2.1 3.6 5.1
Area2 3.3 4.9 6.8
Area3 7.2 8.6 10.9
Area4 9.3 12.7 15.2
Area5 3.6 5.4 7.6

Average time 5.1 7.0 9.2
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4. Conclusions and Future Works

Although there is much research on building height estimation by shadow, there is
little research on the calculation methods of building height in different scenes. In this
paper, we implement a variety of scenarios of the building height estimation method, and
verify the effectiveness of the method framework in several experimental areas. Firstly,
we completed the classification and semantic description of building shadows in different
scenes, which provides a basis for using shadows to extract building height. Secondly, we
solved the problem of building shadows’ mutual adhesion in dense areas, which is very
common in remote sensing images. Then, the shadow length is calculated by combining
the fish net line and the pauta criterion in order to obtain more accurate shadow lines,
which provides a more reliable data basis for building height estimation. Finally, the
comparison with existing methods under the same data also proves that our method has
accuracy advantages. In this work, using our method can effectively avoid the limitation
of ideal conditions in traditional building height estimation methods, and further expand
the application scenarios of building height estimation using shadow.

However, the estimation accuracy still needs to be further improved, and the scene
scalability also needs to be further expanded. In future works, we consider using artifi-
cial intelligence methods for in-depth research on this basis, so that the building height
estimation results can achieve higher accuracy and be applied to more complex scenes.

Author Contributions: Conceptualization, Y.X., D.F. and J.Z.; data curation, Y.X., D.F. and Y.L.;
formal analysis, Y.X.; funding acquisition, J.Z.; investigation, J.Z.; methodology, Y.X., D.F. and J.Z.;
project administration, D.F.; software, S.X. and Y.L.; supervision, D.F.; validation, S.X. and Y.L.;
visualization, S.X.; writing—original draft, Y.X. and S.X.; writing—review and editing, Y.X., D.F. and
J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by the National Natural Science Foundation of China (Grant
Nos. U2034202 and 41871289), the Sichuan Youth Science and Technology Innovation Team (Grant
No. 2020JDTD0003), and the road affairs center of Chongqing (Grant No. R113520H01095).

Acknowledgments: The authors would like to thank Xiaoliang Shi and Chong Chen from Xi’an
University of Science and Technology for providing the comparative dataset. All authors would
sincerely thank the reviewers and editors for their beneficial, careful, and detailed comments and
suggestions for improving the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, J.; Li, P.; Wang, X. A new segmentation method for very high resolution imagery using spectral and morphological

information. ISPRS J. Photogramm. Remote Sens. 2015, 101, 145–162. [CrossRef]
2. Zhang, X.; Chen, Z.; Yue, Y.; Qi, X.; Zhang, C.H. Fusion of remote sensing and internet data to calculate urban floor area ratio.

Sustainability 2019, 11, 3382. [CrossRef]
3. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117,

11–28. [CrossRef]
4. Liu, C.-J.; Krylov, V.; Kane, P.; Kavanagh, G.; Dahyot, R. IM2ELEVATION: Building height estimation from single-view aerial

imagery. Remote Sens. 2020, 12, 2719. [CrossRef]
5. Frantz, D.; Schug, F.; Okujeni, A.; Navacchi, C.; Wagner, W.; van der Linden, S.; Hostert, P. National-scale mapping of building

height using Sentinel-1 and Sentinel-2 time series. Remote. Sens. Environ. 2021, 252, 112128. [CrossRef]
6. Aringer, K.; Roschlaub, R. Bavarian 3d building model and update concept based on lidar, image matching and cadastre

information. In Innovations in 3D Geo-Information Sciences; Isikdag, U., Ed.; Springer International Publishing: Cham, Switzerland,
2014; pp. 143–157.

7. Gamba, P.; Houshmand, B. Digital surface models and building extraction: A comparison of IFSAR and LIDAR data. IEEE Trans.
Geosci. Remote Sens. 2000, 38, 1959–1968. [CrossRef]

8. Lu, Z.; Im, J.; Rhee, J.; Hodgson, M. Building type classification using spatial and landscape attributes derived from LiDAR
remote sensing data. Landsc. Urban Plan. 2014, 130, 134–148. [CrossRef]

9. Dubois, C.; Thiele, A.; Hinz, S. Building detection and building parameter retrieval in InSAR phase images. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 228–241. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2014.11.009
http://doi.org/10.3390/su11123382
http://doi.org/10.1016/j.isprsjprs.2016.03.014
http://doi.org/10.3390/rs12172719
http://doi.org/10.1016/j.rse.2020.112128
http://doi.org/10.1109/36.851777
http://doi.org/10.1016/j.landurbplan.2014.07.005
http://doi.org/10.1016/j.isprsjprs.2016.02.009


Remote Sens. 2021, 13, 2862 17 of 18

10. Thiele, A.; Cadario, E.; Schulz, K.; Thoennessen, U.; Soergel, U. Building recognition from multi-aspect high-resolution insar data
in urban areas. IEEE Trans. Geosci. Remote Sens. 2009, 45, 3583–3593. [CrossRef]

11. Sauer, S.; Ferro-Famil, L.; Reigber, A.; Pottier, E. Multi-aspect POLInSAR 3D urban scene reconstruction at L-band. In Proceedings
of the European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; Volume 3.

12. Stal, C.; Tack, F.; De Maeyer, P.; De Wulf, A.; Goossens, R. Airborne photogrammetry and lidar for DSM extraction and 3D change
detection over an urban area—A comparative study. Int. J. Remote Sens. 2013, 34, 1087–1110. [CrossRef]

13. Takaku, J.; Tadono, T.; Tsutsui, K.; Ichikawa, M. Validation of "AW3D" global DSM generated from ALOS prism. ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-4, 25–31. [CrossRef]

14. Unger, J.; Reich, M.; Heipke, C. UAV-based photogrammetry: Monitoring of a building zone. ISPRS Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2014, XL-5, 601–606. [CrossRef]

15. Wang, X.; Yu, X.; Ling, F. Building heights estimation using ZY3 data-A case study of Shanghai, China. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1749–1752. [CrossRef]

16. Liu, Z.J.; Wang, J.; Liu, W.P. Building extraction from high resolution imagery based on multi-scale object oriented classification
and probabilistic hough transform. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seoul,
Korea, 25–29 July 2005; pp. 2250–2253. [CrossRef]

17. Hartl, P.; Cheng, F. Delimiting the building heights in a city from the shadow on a panchromatic SPOT-image: Part 2: Test of a
complete city. Int. J. Remote Sens. 1995, 16, 2829–2842. [CrossRef]

18. Cheng, F.; Thiel, K.-H. Delimiting the building heights in a city from the shadow in a panchromatic SPOT-image—Part 1. Test of
forty-two buildings. Int. J. Remote Sens. 1995, 16, 409–415. [CrossRef]

19. Liasis, G.; Stavrou, S. Satellite images analysis for shadow detection and building height estimation. ISPRS J. Photogramm. Remote
Sens. 2016, 119, 437–450. [CrossRef]

20. Soergel, U.; Thoennessen, U.; Gross, H.; Stilla, U. Segmentation of interferometric SAR data for building detection. Int. Arch.
Photogramm. Remote Sens. 2000, 33, 328–335. [CrossRef]

21. Sportouche, H.; Tupin, F.; Denise, L. Building detection by fusion of optical and SAR features in metric resolution data. In
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 28–2 August 2019;
pp. 769–772. [CrossRef]

22. Wegner, J.D.; Ziehn, J.R.; Soergel, U. Combining high-resolution optical and InSAR features for height estimation of buildings
with flat roofs. IEEE Trans. Geosci. Remote Sens. 2013, 52, 5840–5854. [CrossRef]

23. Brunner, D.; Lemoine, G.; Bruzzone, L.; Greidanus, H. Building height retrieval from vhr sar imagery based on an iterative
simulation and matching technique. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1487–1504. [CrossRef]

24. Vu, T.T.; Yamazaki, F.; Matsuoka, M. Multi-scale solution for building extraction from LiDAR and image data. Int. J. Appl. Earth
Obs. Geoinformation 2009, 11, 281–289. [CrossRef]

25. Ding, W.; Zhu, F.; Hao, Y. Interactive 3D city modeling using Google Earth and ground images. In Proceedings of the Fourth
International Conference on Image and Graphics, Chengdu, China, 22–24 August 2007; pp. 849–854. [CrossRef]

26. Chen, A.J.; XU, G.Y.; Shi, Y.C. Automated 3D building modeling based on urban aerial stereopair. Acta Geod. Et Cartogr. Sin. 2002,
1, 54–59. [CrossRef]

27. Massalabi, D.-C.H.A.; Massalabi, A.; He, D.-C.; Bénié, G.; Beaudry, E. Detecting information under and from shadow in
panchromatic IKONOS images of the city of Sherbrooke. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 3, pp. 2000–2003. [CrossRef]

28. Kim, T.; Javzandulam, T.; Lee, T.-Y. Semiautomatic reconstruction of building height and footprints from single satellite images.
In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007;
pp. 4737–4740. [CrossRef]

29. Qi, F.; Wang, Y. A new calculation method for shape coefficient of residential building using Google Earth. Energy Build. 2014, 76,
72–80. [CrossRef]

30. Lee, T.; Kim, T. Automatic building height extraction by volumetric shadow analysis of monoscopic imagery. Int. J. Remote Sens.
2013, 34, 5834–5850. [CrossRef]

31. Comber, A.J.; Umezaki, M.; Zhou, R.; Ding, Y.; Li, Y.; Fu, H.; Jiang, H.; Tewkesbury, A. Using shadows in high-resolution imagery
to determine building height. Remote Sens. Lett. 2012, 3, 551–556. [CrossRef]

32. Irvin, R.B.; McKeown, D.M. Methods for exploiting the relationship between buildings and their shadows in aerial imagery. IEEE
Trans. Syst. Man Cybern. 1989, 19, 1564–1575. [CrossRef]

33. Izadi, M.; Saeedi, P. Three-dimensional polygonal building model estimation from single satellite images. IEEE Trans. Geosci.
Remote Sens. 2012, 50, 2254–2272. [CrossRef]

34. Wang, J.L.; Wang, X.H. Information extraction of building height and density based on quick bird image in Kunming, China. In
Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–8. [CrossRef]

35. Qi, F.; Zhai, J.Z.; Dang, G. Building height estimation using Google Earth. Energy Build. 2016, 118, 123–132. [CrossRef]
36. Shettigara, V.K.; Sumerling, G.M. Height determination of extended objects using shadows in SPOT images. Photogramm. Eng.

Remote Sens. 1998, 64, 35–43. [CrossRef]
37. Türker, M.; Sümer, E. Building-based damage detection due to earthquake using the watershed segmentation of the post-event

aerial images. Int. J. Remote Sens. 2008, 29, 3073–3089. [CrossRef]

http://doi.org/10.1109/TGRS.2007.898440
http://doi.org/10.1080/01431161.2012.717183
http://doi.org/10.5194/isprs-annals-III-4-25-2016
http://doi.org/10.5194/isprsarchives-XL-5-601-2014
http://doi.org/10.1109/IGARSS.2014.6946790
http://doi.org/10.1109/IGARSS.2014.6946790
http://doi.org/10.1080/01431169508954594
http://doi.org/10.1080/01431169508954409
http://doi.org/10.1016/j.isprsjprs.2016.07.006
http://doi.org/10.1109/36.823956
http://doi.org/10.1109/IGARSS.2009.5417490
http://doi.org/10.1109/TGRS.2013.2293513
http://doi.org/10.1109/TGRS.2009.2031910
http://doi.org/10.1016/j.jag.2009.03.005
http://doi.org/10.1109/ICIG.2007.5
http://doi.org/10.1007/s11769-002-0045-5
http://doi.org/10.1109/IGARSS.2004.1370740
http://doi.org/10.1109/igarss.2007.4423918
http://doi.org/10.1016/j.enbuild.2014.02.058
http://doi.org/10.1080/01431161.2013.796434
http://doi.org/10.1080/01431161.2011.635161
http://doi.org/10.1109/21.44071
http://doi.org/10.1109/TGRS.2011.2172995
http://doi.org/10.1109/URS.2009.5137614
http://doi.org/10.1016/j.enbuild.2016.02.044
http://doi.org/10.1016/S0273-1177(97)00977-0
http://doi.org/10.1080/01431160701442096


Remote Sens. 2021, 13, 2862 18 of 18

38. Wang, Y.; Liu, H. Semiautomatic extraction of building information and variation detection from high resolution remote sensing
images. In Proceedings of the Remotely Sensed Data and Information, Wuhan, China, 28 October 2006; pp. 1–11. [CrossRef]

39. Shao, Y.; Taff, G.N.; Walsh, S.J. Shadow detection and building-height estimation using IKONOS data. Int. J. Remote Sens. 2011, 32,
6929–6944. [CrossRef]

40. Biljecki, F.; LeDoux, H.; Stoter, J. Generating 3D city models without elevation data. Comput. Environ. Urban Syst. 2017, 64, 1–18.
[CrossRef]

41. Zhang, H. Research on Buildings Shadow Detection Method and Height Inversion with Hight Resolution Sensed Image. Master’s
Thesis, Southwest Jiaotong University, Chengdu, China, May 2017.

42. Hu, L.; Zheng, J.; Gao, F. A building extraction method using shadow in high resolution multispectral images. In Proceedings of
the IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1862–1865.
[CrossRef]

43. Xie, Y.; Feng, D.; Li, Q.; Wang, Y.; Hu, M. Building shadow detection with integrated characteristic components for high resolution
remote sensing images. Bull. Surv. Mapp. 2018, 10, 16–65. [CrossRef]

44. Xie, Y.; Zhu, J.; Cao, Y.; Feng, D.; Hu, M.; Li, W.; Zhang, Y.; Fu, L. Refined extraction of building outlines from high-resolution
remote sensing imagery based on a multifeature convolutional neural network and morphological filtering. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 1842–1855. [CrossRef]

45. Guo, Z.; Du, S. Mining parameter information for building extraction and change detection with very high-resolution imagery
and GIS data. GIScience Remote Sens. 2017, 54, 38–63. [CrossRef]

46. Guo, Y.; Sun, Y.; Li, L.; Tang, X. Reliability assessment for multi-source data of mechanical parts of civil aircraft based on the
model. J. Mech. Sci. Technol. 2019, 33, 3205–3211. [CrossRef]

47. Chen, C. Building Heigh Information Extraction from Shadow Derived from High Resolution Satellife Image Based on Scene
Classification. Master’s Thesis, Xi’an University of Science and Technology, Xian, China, July 2020. [CrossRef]

http://doi.org/10.1117/12.712984
http://doi.org/10.1080/01431161.2010.517226
http://doi.org/10.1016/j.compenvurbsys.2017.01.001
http://doi.org/10.1109/IGARSS.2011.6049486
http://doi.org/10.13474/j.cnki.11-2246.2018.0316
http://doi.org/10.1109/JSTARS.2020.2991391
http://doi.org/10.1080/15481603.2016.1250328
http://doi.org/10.1007/s12206-019-0615-4
http://doi.org/10.27397/d.cnki.gxaku.2020.000867

	Introduction 
	Methods 
	Classification and Description of Building Shadow 
	Multi-Scene Building Height Estimation 
	Building Height Estimation Model Based on Shadow 
	Regularized Extraction of Building Shadow in Dense Areas 
	Shadow Length Calculation Combine Fish Net and Pauta Criterion 
	Shadow Length Correction under Complex Terrain 


	Experimental Results and Analysis 
	Building Height Estimation of Ordinary Scene 
	Building Height Estimation in Dense Scene 
	Building Height Estimation for Complex Terrain Scene 
	Comparison with Different Methods 
	Speed Analysis of the Proposed Algorithm 

	Conclusions and Future Works 
	References

