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Abstract: In this study, we evaluated the performance of an air pollution forecasting system during a
scientific cruise in the South China Sea (SCS) from 9 August to 7 September 2016. The air pollution
forecasting system consisted of a Lagrangian transport and dispersion model, the flexible particle
dispersion model (FLEXPART), coupled with a high-resolution Weather Research and Forecasting
model (WRF). The model system generally reproduced the meteorological variability and reasonably
simulated the distribution of aerosols both vertically and horizontally along the cruise path. The
forecasting system was further used to study the regional transport of non-local aerosols over the SCS
and track its sources during the cruise. The model results showed that Southeast Asia contributed to
more than 90% of the non-local aerosols over the northern region of the SCS due to the southwesterly
prevailing winds. Specifically, the largest mean contribution was from Vietnam (39.6%), followed
by Thailand (25.1%). This study indicates that the model system can be applied to study regional
aerosols transport and provide air pollution forecasts in the SCS.

Keywords: South China Sea; scientific cruises; air pollution; transportation; forecasting system

1. Introduction

Suspended liquid or solid particles in the atmosphere, called as aerosols [1], can
significantly change the balance of the energy budget between the earth and atmosphere
by absorbing and scattering solar radiation, and altering atmospheric vertical temperature
structure and formation of cloud condensation nuclei, thus leading to regional, or even
global, climate change [2–6]. The South China Sea (SCS), shown in Figure 1a, is the western
part of the Pacific Ocean and one of the three major marginal seas of China [7]. Its north-
south span extends from the coasts of Sumatra and Borneo to the southern coasts of China,
while its east-west span extends from the eastern coasts of mainland Southeast Asia to the
eastern coasts of the Philippines [8]. Aerosols over the SCS originate from multiple sources.
Apart from locally produced marine aerosols, previous studies showed that there are
three major types of non-local, terrestrial aerosols transported into the SCS: anthropogenic
aerosols produced by the metropolises of eastern China throughout the year, biomass
burning aerosols from Southeast Asia produced between August and October, and dust
aerosols from Asian deserts, driven into the SCS, primarily from February to April, by the
East Asia winter monsoon (EAWM) [9].

The problems associated with the ecological environment around the SCS is
generally due to rapid economic and population growth, urbanization in coastal
metropolises, and increasing energy consumption. In the past few decades, energy
consumption and the gross value of industrial output has grown faster in the countries
around the SCS than anywhere else in the world, promoted by the increased population
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and rapid economic growth in this region [10]. Pollution emissions from countries
around the SCS are increasing. Therefore, the distributions of aerosols horizontally
and vertically over the SCS may be strongly impacted by the increased emission of
industrial aerosols surrounding it [11–13].

The properties and distributions of aerosols over the SCS are strongly impacted by
the complex physical geography, social economy, and monsoon climate [10,14]. Therefore,
studies related to environmental planning and governance in the SCS require the appli-
cation of appropriate models that accurately describe the transport processes of aerosols
or pollutants in the atmosphere. The FLEXPART-WRF is a comprehensive analysis tool
for studying the dispersion of tracer gas, aerosols, and hazardous substances from point
sources, line sources, or area sources from accidental releases (such as nuclear leakage
or biomass burning) and anthropogenic emissions [15–17]. In the literature, pollutant
or aerosol transportation, related to air quality prediction over different complicated
terrain conditions, have been investigated by using the FLEXPART-WRF model to
conduct forward simulations. Cécé et al. (2016) predicted NOx concentration over a
small island by conducting forward simulations with micro-scale meteorological data
produced by the WRF-LES model [18]. Zhu et al. (2015) studied the effects of smoke
aerosols produced by Russian biomass burning on the air quality over Asia based on
the FLEXPART-WRF model [19]. Madala et al. (2016) used the FLEXPART-WRF model
for forward simulations to investigate the air pollution caused by NOx over a tropical
city in different seasons [16]. Solomos et al. (2015) used the FLEXPART-WRF model
with satellite observations and high-resolution meteorological data from the Weather
Research and Forecasting (WRF) model to build a forecasting system for biomass
burning over complicated terrain [20].

There are few in situ monitoring data sets available for the SCS. One example
is the atmospheric aerosol data obtained during the Pacific exploratory mission of
Zhang et al. (2007) [12]. Meanwhile, there are many hazardous chemical enterprises
along the coast of the SCS, such as chemical warehouses, oil depots, and nuclear
power plants, which pose a potential risk of leakage. In case of such an emergency,
a forecasting system is required to reduce the loss of lives and property. The major
advantage of Lagrangian models is its accuracy in terms of calculating the trajectory
of particles released from point or line sources, as they are not affected by the grid
numerical diffusion. Additional advantages of the Lagrangian model include that it
is more flexible and less computationally costly than the Eulerian model [21]. There-
fore, the FLEXPART-WRF model is more suitable than Eulerian air quality models for
emergency air pollution forecasting, such as due to biomass burning or nuclear leak-
age [22]. However, few studies have used the FLEXPART-WRF model to investigate
air pollutants or aerosols transportation over the SCS.

The content of this paper is as follows: datasets and methods are introduced in
Section 2; the performance of the WRF model is evaluated against meteorological condi-
tions in Section 3.1; the distributions of aerosols over monitoring sites, simulated by the
FLEXPART-WRF model, is compared with the aerosol extinction coefficient from radar
inversion in Section 3.2; the contribution of anthropogenic PM2.5 to non-local aerosols over
the SCS is assessed in Section 3.3; and, finally, the discussion and conclusions are presented
in Section 4.
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2. Data and Methods
2.1. Data

Sun Yat-sen University organized scientific cruises in the SCS from 9 August 2016
to 7 September 2016. A shipborne micro pulse lidar was used to investigate the aerosols
in the northern region of the SCS. The vertical profiles of the aerosol extinction coeffi-
cient, planetary boundary layer height, and depolarization were investigated by Li et al.
(2020) [23]. The route and the lidar monitoring locations are shown in Figure 1b. For the
sake of eliminating the impact of a complex synoptic situation (such as fog and rain) and
clouds, these usable aerosol extinction coefficient measurements were obtained during a
sunny day.

The hourly 2 m relative humidity, 2 m air temperature, and surface winds at 20 surface
observational stations were provided by the Meteorological Data Sharing Network of
the China Meteorological Administration (http://data.cma.cn (accessed on 27 October
2020)), and used to evaluate the WRF model performance. The hourly total precipitation
of the ECMWF reanalysis, data version 5 (ERA5), was utilized to verify the precipitation
simulated by the WRF.

The MIX inventory was developed by Tsinghua University to support the MICs Asia
III and the United Nations HTAP [24]. It provides data on anthropogenic pollutants and
greenhouse gas emissions from 30 countries and regions in Asia for the years 2008 and 2010,
including SO2, NOx, CO, NH3 (ammonia), NMVOC (non-methane volatile organic com-
pounds), PM10 (particulate matter with diameter less than or equal to 10 µm), PM2.5 (par-
ticulate matter with diameter less than or equal to 2.5 µm), BC (black carbon), OC (organic
carbon), and CO2. The emission inventory provides monthly gridded emissions data with
a spatial resolution of 0.25◦ (latitude)× 0.25◦ (longitude) from five emission sectors (power,
industry, residential, transportation, and agriculture), which serve the simulation needs
of atmospheric chemical transport modes at multiple scales (http://www.meicmodel.org
(accessed on 18 November 2020)).

2.2. FLEXPART-WRF Modeling
2.2.1. Model Description

The FLEXPART model was designed by the Norwegian Institute for Air Research [25].
FLEXPART can run either a forward or a backward simulation in time. For forward
simulation, FLEXPART releases tracer particles at the point, line, or area emission sources
to calculate their trajectories from the source region into the surrounding area [26]. For
backward simulation, FLEXPART releases tracer particles from one or more receptors
(e.g., measurement stations) to determine the potential source regions, which may impact
the receptors. When the number of observational stations in the region of interest is
far less than the quantity of emission sources, the backward simulation is particularly
useful for investigating source-receptor relationships (SRR) [27]. Since FLEXPART is a
trajectory tracking model, it requires meteorological input. FLEXPART is successfully
driven by reanalysis data obtained from the ECMWF and the final analyses data provided
by NECP. It was later modified to accept meteorology from the WRF model (FLEXPART-
WRF) [28,29]. The higher resolution of the WRF improved the ability of FLEXPART to
simulate mesoscale pollution transport over complex terrain and estimate surface heat
fluxes [22,30,31]. Previous studies reported that, given suitable meteorological input data,
FLEXPART can model atmospheric transport for multiple scales, ranging from dozens of
meters to around the globe.

http://data.cma.cn
http://www.meicmodel.org
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measurements derived from micro pulse lidar and red characters A-J indicate the cruising monitoring sites. 
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of the SCS, Southeast Asia, as well as part of the south China. The ERA5 reanalysis da-
tasets provided by ECMWF, with a horizontal resolution of 0.25° (latitude) × 0.25° (longi-
tude), vertical resolution of 38 levels, and a temporal resolution of 1 h, were used as initial 
and boundary conditions (ICBCs) to drive the WRF simulation. We tested many groups 
of parameterization schemes and selected the most suitable scheme for the study area (Ta-
ble 1). In order to decrease the model uncertainties caused by long-term continuous inte-
gration, and thereby improve the simulation accuracy [34,35], data assimilation was 
turned on with the simulation nudged by ECMWF winds, temperature, and water vapor 
mixing ratio every 1 h throughout the whole atmospheric column in this study. The out-
put from the WRF model was archived on an hourly basis. The initial 24 h were considered 
the spin-up period and, thus, were not used. Finally, the WRF simulation produced higher 
spatial resolution meteorological data provided with the Lagrangian simulation. 

Table 1. Model configuration and physical options of WRF model simulation. 

Model Configuration and Parameterization Schemes Domain and Physical Options 
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Boundary layer YSU 
Surface layer Revised MM5 Monin-Obukhov 

Land-surface model Noah  

Figure 1. The (a) WRF model simulation domain and topography map, contours with an interval 250 m represent the
terrain height, and (b) the routes of scientific cruise represented by yellow lines. Green dots denote the locations of useable
measurements derived from micro pulse lidar and red characters A-J indicate the cruising monitoring sites.

2.2.2. WRF Modeling Configuration

The WRF modeling system is a mesoscale non-hydrostatic numerical weather pre-
diction system, which is designed to serve both operational forecasting and atmospheric
research needs [32,33]. In this study, we conducted a WRF simulation for the scientific
cruises in the SCS by using WRF version 4.0. The WRF simulation was run from 16 August
2016 00:00 UTC to 7 September 2016 00:00 UTC. The WRF model was set with one domain,
shown in Figure 1a, using a 310 × 245 x-y grid of 9 km spacing, which covered most parts
of the SCS, Southeast Asia, as well as part of the south China. The ERA5 reanalysis datasets
provided by ECMWF, with a horizontal resolution of 0.25◦ (latitude) × 0.25◦ (longitude),
vertical resolution of 38 levels, and a temporal resolution of 1 h, were used as initial and
boundary conditions (ICBCs) to drive the WRF simulation. We tested many groups of
parameterization schemes and selected the most suitable scheme for the study area (Table
1). In order to decrease the model uncertainties caused by long-term continuous integration,
and thereby improve the simulation accuracy [34,35], data assimilation was turned on with
the simulation nudged by ECMWF winds, temperature, and water vapor mixing ratio
every 1 h throughout the whole atmospheric column in this study. The output from the
WRF model was archived on an hourly basis. The initial 24 h were considered the spin-up
period and, thus, were not used. Finally, the WRF simulation produced higher spatial
resolution meteorological data provided with the Lagrangian simulation.

Table 1. Model configuration and physical options of WRF model simulation.

Model Configuration and Parameterization Schemes Domain and Physical Options

Horizontal grids 310 × 245 grids
Horizonal resolution 9 km

Vertical levels 42 eta levels
Microphysics Ferrier (new Eta) microphysics

Cumulus parameterization Kain-Fritsch (new Eta) scheme
Short-wave radiation Dudhia
Long-wave radiation RRTM

Boundary layer YSU
Surface layer Revised MM5 Monin-Obukhov

Land-surface model Noah
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2.2.3. FLEXPART-WRF Forward Simulations

FLEXPART-WRF was run forward with simulated emission from the mainland South-
east Asia for 72 h for each polluted measurement site in this study. Black carbon was
selected as the tracer and released from 0 to 200 m above the ground level. Time series of
hourly modelled concentrations were produced for polluted monitoring sites in the SCS.
The vertical resolution of the FLEXPART-WRF output was the same as that of the extinction
coefficient data. Sensitivity tests showed that the modelled episode start time at each of
the measurement sites was independent of the start date of the simulations, provided
sufficient lead time was given to allow transport from the mainland Southeast Asia to
the northern SCS. The schedule of FLEXPART-WRF simulations is listed in Table 2. The
emissions were set based on the MIX inventory for the year 2010. Wet and dry deposition
during transportation was introduced in forward simulations.

Table 2. The schedule of FLEXPART-WRF simulations.

Simulations Simulation Period
(mm/dd/yyyy) Emission Source(s) Release Time

(mm/dd/yyyy)

Forward trajectory
08/17/2016–
08/20/2016

F2 08/17/2016 05:00
F3 08/17/2016 08:00
F4 08/17/2016 10:00
F6 08/17/2016 23:00

09/02/2016–
09/05/2016 D9 09/02/2016 12:00

Backward trajectory 08/17/2016–
08/20/2016

F2 08/20/2016 05:00
F3 08/20/2016 08:00
F4 08/20/2016 10:00
F6 08/20/2016 23:00

2.2.4. Backward Trajectory Analysis for the Contribution of Anthropogenic PM2.5 to
Non-Local Aerosols over the SCS

The output of FLEXPART-WRF in the backward trajectory simulation is residence
time, also known as the “footprint” (unit: s). The residence time indicates the sensitivity of
released particles at a receptor site to emissions from all grid cells in the simulation region.
In this study, monitoring sites F2, F3, F4, and F6 of the scientific cruise were used as receptor
sites in the backward trajectory simulations. We focused on anthropogenic emissions on
the ground. The FLEXPART-WRF output for a thickness of 200 m (8 levels with an interval
of 25 m, from 0 to 200 m) above the ground was considered as the “footprint”, and then
used to calculate the contribution to the receptor site. The contribution from individual
grid cells to the pollutant mass change at the receptor can be estimated by multiplying
the residence time with air pollutant emission rates (unit: g s−1) in the respective grid
cells [36–38].

Since most of the aerosols over the SCS concentrated on low-level (below 4 km) in
this study [23], for each FLEXPART-WRF backward trajectory simulation, 300,000 parti-
cles were released in the first hour from 10 to 4000 m above ground level and followed
backward in time for 72 h. The results were output with the residence time of particles
in a horizontal resolution of 9 km × 9 km. A previous study showed that fine particulate
matters dominated the aerosols transported into the SCS [9]. Therefore, the total residence
time of particles over the 72 h backward trajectory at each grid point was multiplied by
emission rates calculated from the MIX inventory to estimate the contribution of anthro-
pogenic PM2.5 to non-local aerosols over the SCS. On the basis of these backward trajectory
simulations, the main upwind potential sources of PM2.5 emissions for non-local aerosols
at the receptors were identified using the contribution rate “contributionij”, calculated with
Equation (1) [37,38].
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contributionij =
Eij× ∑t Rijt

∑ij
(
Eij ×∑t Rijt

) (1)

where t is the time series of backward trajectory simulation period; the subscripts i = 1,
. . . , N and j = 1, . . . , S denote the grid location (i, j) on the N × S grid of the simulation
domain; Rijt denotes the time series residence time of backward simulation at (i, j); and Eij
represents the PM2.5 emission rate at grid location (i, j).

3. Results
3.1. WRF Performance Evaluation

In this section, we performed a comprehensive evaluation of WRF simulation perfor-
mance. The difference between the simulated mean value (Sim) and the observed mean
value (Obs), or mean difference (Sim-Obs), between the simulations and observations,
mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (CC)
and the hit rate (HR) were used to validate the simulation [39,40]. The MAE can accurately
represent the actual prediction error, since it avoids an issue in which multiple predictions
that have both positive and negative errors may compensate, leading to smaller than
expected total error. The calculation formula of MAE is as follows:

MAE =
1
N

N

∑
i=1
|Si −Oi| (2)

The RMSE gives an overview of the accuracy of simulations, and the calculation
formula of RMSE is as follows:

RMSE =

[
1
N

N

∑
i=1

(Si −Oi)
2

] 1
2

(3)

The CC indicates the strength and direction of a linear relationship between the
simulation and observed values. The calculation formula of CC is as follows:

CC =
∑N

i=1
[(

Si −M
)(

Oi −O
)]

[
∑N

i=1
(
Si − S

)2
] 1

2 ·
[
∑N

i=1
(
Oi −O

)2
] 1

2
(4)

where S denotes the WRF simulations, O represents the observations, N is the quantity of
grid points of verified region, and S and O represent mean simulated values and mean
observational values, respectively.

The hourly 2 m relative humidity, 2 m air temperature, and surface winds from WRF
were validated against observations from 20 meteorological stations (shown in Table 3).
The simulated surface wind speed and the 2 m air temperature were slightly biased high,
with mean differences of 0.91 m s−1 and 0.1 ◦C, respectively. The simulated 2 m relative
humidity was slightly biased low, with a mean difference of −2.4%. The CC of 2 m relative
humidity and the 2 m air temperature were 0.76 and 0.84, respectively, indicating good
agreement between the simulation and observations. However, the CC of wind direction
and wind speed were 0.31 and 0.62, respectively, indicating that the simulated 10 m surface
winds did not match well with observations.
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Table 3. The statistical results of simulated data and hourly observed meteorological data.

Meteorological
Factors

Quantity of
Stations

Mean
∆c MAE d RESM e CC f HR g

Obs a Sim b

Temperature (◦C) 20 28.2 28.3 0.10 1.07 1.44 0.84 0.87
Relative humidity (%) 20 84.4 82.0 −2.4 6.89 9.13 0.76 0.68
Wind direction (deg) 18 - - - - - 0.31 0.42
Wind speed (m s−1) 18 2.01 2.92 0.91 1.29 1.71 0.62 0.50

a Obs: mean of hourly observations; b Sim: mean of hourly simulations; c ∆: difference between simulations and observations; d MAE:
mean absolute error; e RMSE: root mean square error; f CC: correlation coefficient; g HR: hit rate.

The HR is defined as a fraction of the total simulation records that are within a
certain observation threshold. It is a reliable evaluation method of model performance
since it accounts for observation uncertainty, an issue that is difficult to consider using
the mean difference, the CC, or the RMSE. The standard for a “hit” requires that the
difference between observations and simulations fall within 2 ◦C for 2 m air temperature,
10% for 2 m relative humidity, 30◦ for surface wind direction, and 1 m s−1 for surface wind
speed [40,41]. The HR of the 2 m air temperature, 2 m relative humidity, surface wind speed,
and surface wind direction, calculated using these thresholds, were 0.87, 0.68, 0.50, and 0.42,
respectively. This indicated that simulated 2 m air temperature, 2 m relative humidity and
surface winds speed were realistic. The HR of surface wind direction was lower than that
of the other variables. However, the above statistics were well within reasonable ranges
compared with previous studies on short-term dynamical downscaling, and some were
slightly better [41–43]. This indicated that the simulation reasonably matched observations
during the study period.

FLEXPART includes tracer attenuation through dry and wet deposition [44]. Since
wet deposition can be significant, the accuracy of WRF precipitation is also important
for the FLEXPART simulation. We further verified hourly total precipitation from WRF
against the ERA5 reanalysis. To facilitate comparisons, the WRF output was interpolated
to the ERA5 grid, from the horizontal resolution of 9 km × 9 km to 0.25◦ × 0.25◦. The
distributions of accumulated precipitation from ERA5 and WRF are displayed in Figure 2.
The hourly total precipitation of WRF and ERA5 showed a common feature in that the
rain belt in both ERA5 and WRF was mainly located in the northern SCS, while less
precipitation fell in the southern SCS. The major precipitation centers were located in the
Beibu Gulf, the eastern coast of Myanmar, and central Laos. As a whole, WRF was able to
effectively capture the location of maximum and minimum of precipitation. The spatial
correlation coefficient between WRF and ERA5 was 0.71, indicating that WRF reproduced
the spatial distribution of the rain belt. However, the hourly total precipitation from
WRF was higher than ERA5. Since most tropical monsoon precipitation is convective, this
suggested that the Kain-Fritsch cumulus parameterization scheme produced more cumulus
precipitation than realistic during the scientific cruise period. In addition, since nudging
analysis was used throughout the whole atmospheric column in the WRF simulation, the
surface variable might have been nudged towards unrealistic values, resulting in biased
precipitation [45,46].

The accuracy of the simulated precipitation at each grid point was determined by the
correlation coefficients between times series of 24 h accumulated precipitation of the WRF
and ERA5 total daily precipitation (Figure 3), during the period of 17 August 2016 to 6
September 2016. The correlation coefficients, shown in Figure 3, give a spatial indication
of the model performance. The correlation coefficients were more than 0.6 in most of
the oceanic regions. However, the correlation coefficients were less than 0.4 over most
of the terrestrial regions, especially over the south of terrestrial Southeast Asia. Hence,
precipitation was less well simulated over land than over the ocean. The cumulative
distribution of grid-point correlation coefficients is shown in Figure 4. The vertical axis
gives the percentage of grid-points in the domain that have correlation coefficients (CC)



Remote Sens. 2021, 13, 2855 8 of 17

less than or equal to the value given in the horizontal axis. From Figure 4, WRF performed
very well (CC > 0.8) over 21% of the verification region, and performed poorly (CC ≤ 0.4)
over 17% of the verification region. Performance was intermediate (0.4 < CC ≤ 0.8) over
the remaining 62% of the verification region. The downscaling of precipitation in regional
climate models is difficult, especially precipitation over monsoon regions. To improve the
dynamical downscaling performance in these regions, advances in the dynamic solver of
the WRF model and parameterized physics are required [45]. In summary, we estimated
the WRF performance in simulating precipitation, and found that the WRF model could
reproduce the basic temporal and spatial variations of precipitation in the verification area.
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3.2. FLEXPART-WRF Evaluation

The vertical distributions of aerosols over the SCS was modeled using FLEXPART-WRF
forward simulations and compared with aerosol extinction coefficients calculated from
lidar measurements on the scientific cruise. This study focused on the areas surrounding
routes D- and F- of the scientific cruise. Since measurements at each monitoring site were
taken at different times, the emission sources affecting these monitoring sites might be
significantly different. We first conducted backward trajectory simulations to determine
the sources which might potentially affect each monitoring site within 72 h, and to reduce
errors caused by emission sources settings in forward simulations. The backward trajectory
simulations showed that aerosols over route D- and route F- were mainly transported from
mainland Southeast Asia by southwesterly prevailing winds in the middle- and low-level
atmosphere (as shown in Figure 5). Since there was little biomass burning in mainland
Southeast Asia during the cruise period (as shown in Figure 6), we only considered the effect
of anthropogenic emission from mainland Southeast Asia on the distribution of aerosols
over the SCS. On the basis of the results of these backward trajectory simulations, and using
the Asian anthropogenic emission inventory of 2010, we set up a series of continuously
releasing pollution sources in mainland Southeast Asia and then conducted 72 h forward
simulations for each of the polluted monitoring sites. To facilitate the comparison between
the FLEXPART-WRF output and the lidar-derived extinction coefficients, the FLEXPART-
WRF output was interpolated onto the monitoring sites F2, F3, F4, F6, and D9.

The vertical profiles of BC concentration simulated by the FLEXPART-WRF model and
the vertical profiles of the aerosol extinction coefficient at monitoring sites F2, F3, F4, F6,
and D9 are displayed in Figure 7. The results showed that the simulated BC concentration
over the South China Sea was slightly lower than the findings of Yin et al. (2019) [47]. The
lidar-derived extinction coefficients were 0.060–0.165 km−1 below 1 km, and very close to
0 above 3.5 km (Figure 7b). This suggested that aerosols were mainly concentrated below
1 km and did not diffuse to above 3.5 km. Such vertical distributions were produced by the
FLEXPART-WRF (Figure 7a). The extinction coefficient between 0.5 km and 0.7 km was
larger at F2 than that at other monitoring sites, and the FLEXPART-WRF produced higher
BC concentrations than at other monitoring sites. The vertical distribution of aerosols at F2
was reproduced by the FLEXPART-WRF model.
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We quantitatively verified the performance of the FLEXPART-WRF model using the
correlation coefficient between the vertical concentration profile and extinction coefficient
profile at each monitoring site, as shown in Table 4. The correlation coefficients at mon-
itoring sites F2, F3, F4, F6, and D9 were 0.88, 0.90, 0.88, 0.70, and 0.82, respectively. This
suggested that the vertical distribution of the aerosols was reproduced by the model. The
vertical profiles of extinction coefficient were measured at specific times, while the results
of the FLEXPART-WRF model reflected the time-mean transport of aerosols over different
conditions of atmospheric circulation. Some discrepancies would be expected. In the
forward simulation, we only released one species and used it to evaluate the ability of the
FLEXPART-WRF to simulate the particle transport, which might cause the deviation of the
vertical distribution of particles. For example, the extinction coefficient curve at measure-
ment site F6 presented a bimodal structure with a peak value of more than 0.07 km−1, but
this feature was not reproduced by the model.

Table 4. Correlation coefficient between vertical concentration profile and extinction coefficient
profile at monitoring sites F2, F3, F4, F6, and D9.

Monitoring Sites Locations Correlation Coefficient

F2 112.53◦E, 21.16◦N 0.88
F3 113.02◦E, 21.03◦N 0.90
F4 113.13◦E, 20.49◦N 0.88
F6 113.46◦E, 19.59◦N 0.70
D9 116.13◦E, 20.10◦N 0.82

We compared the simulated concentration within the planetary boundary layer with
the measured extinction coefficient. Powell et al. (2000) measured the marine aerosol
extinction using a micro pulse lidar and obtained an aerosol extinction coefficient ranging
from 0.02 to 0.07 km−1 for unpolluted conditions [48]. Based on the result of Powell et al.,
we considered measurement sites with a maximum extinction coefficient of more than
0.07 km−1 as polluted measurement sites. Li et al. found the mean planetary boundary
layer height (PBLH) was 653.2 m during the scientific cruise. It was noted that the vertical
range of the micro pulse lidar system on the ship was from 250 m to 4000 m [23]. We
selected the polluted measurement sites to calculate the correlation coefficient between the
simulated concentration and the observed extinction coefficient at three different layers
within the planetary boundary layer. The linear correlation between BC concentration
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and extinction coefficient at 250 m, 350 m, and 550 m are shown in Figure 8. Overall,
the correlations at 250 m, 350 m, and 550 m were 0.81, 0.68, and 0.83, respectively. This
suggested that the vertical distribution of the aerosols was also reproduced by the model.
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3.3. Contribution of Anthropogenic PM2.5 to Non-Local Aerosols over the SCS

We selected four polluted measurement sites and estimated the regional contributions
to observed pollution over the SCS. The contribution rates of non-local sources were
calculated with Equation (1), shown in Figure 9. The model result showed that sources
in mainland Southeast Asia contributed to more than 90% of the non-local aerosols at the
three monitoring sites. This was because the prevailing winds were southwesterly during
the scientific cruise. The major pathways of transport were a southern route from Ho Chi
Minh City, Vietnam, a mid-route from Bangkok, Thailand, and a northern route from the
southern coastal areas of Myanmar. Transport from the source regions in Ho Chi Minh City
and Bangkok regions contributed significantly to the non-local aerosols at monitoring sites
F2, F3, F4, and F6.
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We further investigated the contributions of individual countries in mainland South-
east Asia to non-local aerosols at monitoring sites F2, F3, F4, and F6. As shown in Table 5,
Vietnam and Thailand were the main contributors, with mean contribution rates of 39.6%
and 25.1%, respectively. Although the mean contribution rate of Myanmar was lower at
16.7%, it was still a significant pollution source since its contribution rate at monitoring site
F3 was second to Vietnam at 26.5%. The mean contribution rates of Laos and Cambodia
were minor at 1.86% and 10.3%, respectively.

Table 5. The potential contributions of individual countries in mainland Southeast Asia to four
receptors, F2, F3, F4, and F6. (unit: %).

Potential Sources
Contribution Rates

Averages
F2 F3 F4 F6

Vietnam 36.2 35.7 35.5 50.9 39.6
Laos 2.06 1.68 2.03 1.66 1.86

Cambodia 11.5 8.40 12.7 8.58 10.3
Thailand 25.7 21.8 30.5 22.3 25.1
Myanmar 17.8 26.5 13.7 8.97 16.7

Typically, scientists or researchers use Eulerian models with the ability to describe
complex non-linear chemistry process, such as WRF-Chem and GEOS-Chem, to quanti-
tatively estimate the contribution of regional transport to air pollution [32,49,50]. In this
study, we applied the Lagrangian particle dispersion model (LPDM) FLEXPART-WRF to
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calculate the contribution rates of anthropogenic PM2.5 to non-local aerosols over the SCS.
The main uncertainty of the Lagrange method for such calculations, as compared to Eule-
rian methods, is that this method ignores the complex non-linear chemistry reaction, which
is crucial to the formation of secondary aerosols. This uncertainty may underestimate the
contribution of source regions to receptors. Many previous studies, however, have shown
that using this method to quantity the contribution of regional transport to air pollution is
feasible [37,38].

4. Discussions and Conclusions

The major purpose of this study was to evaluate the applicability of FLEXPART-WRF
as an air pollution forecasting system and to estimate the contribution of anthropogenic
PM2.5 to non-local aerosols over the SCS. The model was verified against meteorological
observations collected at 20 stations and aerosol extinction coefficients measured by ship-
borne micro pulse lidar in the SCS. The simulated 2 m air temperature and surface wind
speed were slightly greater than observed, with mean differences of 0.1 ◦C and 0.91 m s−1,
respectively. The simulated 2 m relative humidity was slightly less than observed, with a
mean difference of −2.4%. The correlation coefficients of 2 m air temperature, 2 m relative
humidity, surface wind speed and direction were 0.84, 0.76, 0.62, and 0.31, respectively,
indicating that the WRF model reproduced the meteorological elements.

The simulated wind direction was within reasonable ranges compared with previous
studies [41,43,51,52]. There were few coupled climate models that could reproduce surface
wind direction with better accuracy. Despite the fact that using finer land use and surface
textures in the model can improve the simulated elements, the surface wind is influenced
by many complicated physical processes (e.g. turbulence processes, thermal effect, and
topography) and is usually characterized by a considerable sub-grid scale in the model.

FLEXPART-WRF simulated the vertical distribution of aerosols over the northern
SCS. The concentration, however, was slightly lower than a previous study [47]. The
low concentration was likely induced by an overestimation of the precipitation, resulting
in excessive removal processes. In addition, the non-linear chemical reactions were not
involved, which was crucial to the formation of secondary aerosols and may have been
another factor for biases.

Many previous studies found that pollutants transported into the SCS mainly originate
from eastern China. However, our results showed that the non-local aerosols over the
northern SCS were mainly from Southeast Asia, which indicated that emissions from
Southeast Asia also had an important impact.

The model results showed that sources in mainland Southeast Asia contributed to
more than 90% of non-local aerosols along the cruise path. This was explained by the strong
southwesterly monsoon winds. Vietnam and Thailand were the main sources of PM2.5,
accounting for 39.6% and 25.1%, respectively. Burning aerosols have a large short-term
impact on the pollutant concentration. It will be helpful to track such sources and update
emission inputs using near real-time monitoring methods [53–56]. Further modelling
of physical processes and the improvement of the model resolution are also expected to
improve the performance.
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