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Abstract: Instance segmentation of high-resolution aerial images is challenging when compared to
object detection and semantic segmentation in remote sensing applications. It adopts boundary-aware
mask predictions, instead of traditional bounding boxes, to locate the objects-of-interest in pixel-wise.
Meanwhile, instance segmentation can distinguish the densely distributed objects within a certain
category by a different color, which is unavailable in semantic segmentation. Despite the distinct
advantages, there are rare methods which are dedicated to the high-quality instance segmentation
for high-resolution aerial images. In this paper, a novel instance segmentation method, termed
consistent proposals of instance segmentation network (CPISNet), for high-resolution aerial images
is proposed. Following top-down instance segmentation formula, it adopts the adaptive feature
extraction network (AFEN) to extract the multi-level bottom-up augmented feature maps in design
space level. Then, elaborated RoI extractor (ERoIE) is designed to extract the mask RoIs via the refined
bounding boxes from proposal consistent cascaded (PCC) architecture and multi-level features from
AFEN. Finally, the convolution block with shortcut connection is responsible for generating the
binary mask for instance segmentation. Experimental conclusions can be drawn on the iSAID and
NWPU VHR-10 instance segmentation dataset: (1) Each individual module in CPISNet acts on the
whole instance segmentation utility; (2) CPISNet* exceeds vanilla Mask R-CNN 3.4%/3.8% AP on
iSAID validation/test set and 9.2% AP on NWPU VHR-10 instance segmentation dataset; (3) The
aliasing masks, missing segmentations, false alarms, and poorly segmented masks can be avoided
to some extent for CPISNet; (4) CPISNet receives high precision of instance segmentation for aerial
images and interprets the objects with fitting boundary.

Keywords: instance segmentation; aerial images; region proposals; convolutional neural networks

1. Introduction

With the rapid development of observation and imaging techniques in the remote
sensing field, the quantity and quality of very high-resolution (VHR) optical remote sensing
images provided by airborne and spaceborne sensors have significantly increased, which
simultaneously puts forward new demands on automatic analysis and understanding of
remote sensing images. At present, the VHR images are applied in a wide scope of fields,
e.g., urban planning, precision agriculture, and traffic monitoring. Meanwhile, with the
strong feature extraction and end-to-end training capabilities, deep convolutional neural
network (DCNN)-based algorithms show their superiority in the sub-tasks of computer
vision, such as object detection, semantic segmentation, and instance segmentation. Driven
by the huge application demands and application prospects, researchers have developed
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various methods which are combined with DCNN for intelligent interpretation in remote
sensing images.

So far, object detection in remote sensing images can be divided into traditional
methods, machine learning-based methods, and deep learning-based methods. Traditional
methods include template matching-based, knowledge-based, and OBIA-based methods.
Some machine learning-based methods regard object detection as a classification problem.
A classifier, for instance, Adaboost, support vector machine (SVM), and k-nearest neighbors,
captures the object appearance variation and generates the predicted labels. Other machine
learning-based methods consider object detection in feature space. The most popular
bag-of-words (BoW) model treats the image region as an unordered local descriptor for
quantizing and computing corresponding histogram representation. The histogram of
oriented gradients (HOG) feature represents objects through the distribution of gradient
intensities and orientations in spatial, which shows impressive performance. Compared
with previous methods, deep learning-based methods unload the traditional human-
engineering-based features designed by human ingenuity and replace them with network
construction. Moreover, the deep architecture of CNN can extract the semantic abstracting
properties of remote sensing images. Both can boost the performance of object detection.
Fundamentally, deep learning-based object detection methods for remote sensing images
adopt bounding boxes, e.g., horizontal bounding box and oriented bounding box, as the
criterion to locate the objects. The coordinates of bounding box can be regressed by related
loss function and the backpropagation of DCNN to generate a precise rectangular area that
fits the object. Its characteristics of simple but effective make it widely applied. Ref. [1]
proposed the rotation-invariant CNN (RI-CNN) which is based on R-CNN framework to
detect multi-class geospatial objects in VHR remote sensing images. Ref. [2] proposed
rotation-invariant and fisher discriminative CNN (RIFD-CNN) to impose CNN features
with fisher discriminative regularizer and rotation-invariant regularizer. Ref. [3] presented
a hyper-light deep learning network (HyperLi-Net) which realizes high-accurate and high-
speed ship detection. Ref. [4] puts forward a high-resolution ship detection network
(HR-SDNet) to realize precise and robust synthetic aperture radar (SAR) ship detection.
Meanwhile, researchers adopt the rotatable bounding box (RBox) to detect objects with
arbitrarily changed orientation angles. Ref. [5] designed the detector with RBox (DRBox)
to learn the correct orientation angle of objects, which can better deal with interferes
from the background and locate objects for geospatial object detection in remote sensing
images. Ref. [6] came up with an improved RBox-based SAR target detection framework
to improve the precision and recall rate when detecting objects.

Distinguished from object detection, semantic segmentation performs pix-wise classi-
fication in an image. Such distinguishing characteristics make it widely implemented into
vegetation classification, land-cover classification, and infrastructure management, etc., for
remote sensing images. Among them, CNN-based semantic segmentation methods gener-
ally use the fully conventional network (FCN) to exert end-to-end segmentation for input
images. Ref. [7] presents the recurrent network in fully convolutional network (RiFCN)
to better fuse the multi-level feature maps. Ref. [8] proposed ResUNet-a with performant
results in monotemporal VHR aerial images. Ref. [9] used patch attention module (PAM)
and attention embedding module (AEM) to embed local focus from high-level features
for semantic segmentation in remote sensing images. Ref. [10] presented the DCNN with
built-in awareness of semantical boundaries to realize semantic segmentation.

As instance segmentation simultaneously possesses the characteristic of instance-wise
localization in object detection and pixel-wise category classification in semantic segmenta-
tion, it has been a hotspot for high-resolution aerial and satellite image analysis recently. In
essence, it endows each object under a certain category the attribute of representational
color. In the sequel, the instance mask, which is generated by the segmentation sub-net, is
responsible for generating the contour information of the objects. Ref. [11] proposed the
high-quality instance segmentation network (HQ-ISNet) to implement instance segmenta-
tion in high-resolution (HR) remote sensing images. Ref. [12] constructed a high-resolution
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SAR images dataset (HRSID) for instance segmentation and ship detection. Ref. [13]
introduced the precise region of interests (RoI) pooling for Mask R-CNN [14] to segment
multi-category instances in VHR remote sensing images. Ref. [15] came up with a sequence
local context (SLC) module to avoid confusion in dense-distributed ships. Ref. [16] in-
troduced the semantic boundary-aware multitask learning network for vehicle instance
segmentation. Ref. [17] presented a large-scale instance segmentation dataset for aerial
images that contains 655,451 instances across 2806 HR images. Ref. [18] proposed a marine
oil spill instance segmentation network to identify the similarity of the oil slick and other
elements. Despite the above-mentioned works that predecessors have done, it still lacks
algorithms of instance segmentation for high-resolution aerial images.

In this paper, we proposed a novel instance segmentation network for high-resolution
aerial images, termed consistent proposals of instance segmentation network (CPISNet),
which maintains consistent proposals between object detection and instance segmentation
with cascaded architecture. CPISNet consists of three procedures. First, the adaptive
feature extraction network (AFEN) is responsible for extracting the multi-level feature
maps. Second, the single RoI extractor (SRoIE) and bounding box regression branch are
adopted to construct the cascaded architecture, and the refined proposals from the last
cascaded stage are transmitted to the elaborated RoI extractor (ERoIE) for mask RoI pooling
while maintaining consistent proposals. Third, a consequence of fully convolutional blocks
with shortcut connection replaces the interspersed FCN in the cascaded architecture of
Cascade Mask R-CNN or HTC.

The main contributions of this paper are summarized as below:

• CPISNet is proposed for multi-category instance segmentation of aerial images;
• Effects of AFEN, ERoIE, and proposal consistent cascaded (PCC) architecture to the

CPISNet are individually verified, which boost the integral network performance;
• CPISNet achieves the best AP of instance segmentation in high-resolution aerial

images compared to the other state-of-the-art methods.

2. Related Work
2.1. Object Detection

The primary task of object detection is locating each object in the rectangular area
with bounding box. Generally, existing object detection methods can be mainly divided
into two formats: one-stage and two-stage methods. One-stage method omits the time
consuming process of preparing region proposals and generates bounding boxes directly,
e.g., You Only Look Once (YOLO) v1-v4 [19–22], Single Shot MultiBox Detector (SSD) [23]
and RetinaNet [24]. Ref. [25] proposed the Fully Convolutional One-Stage Object Detection
(FCOS) to eliminate the predefined anchors and detect objects in the per-pixel prediction
formula. Ref. [26] adopted keypoint triplets into object detection to suppress the number
of incorrect object bounding box and presented CenterNet for one-stage object detection.
Ref. [27] came up with R3Det to progressively regress rotated bounding boxes from
coarse to fine granularity. Relatively, two-stage methods first generate region proposals
by a preliminary screening network such as Region Proposal Network (RPN) [28,29] then
perform classification and localization via related network branch. The methods derived
from Region with Convolutional Neural Network (R-CNN) [28], e.g., Fast R-CNN [30],
Faster R-CNN [31], constitute the main-stream two-stage methods. Generally, a feature
pyramid network (FPN) [29] is attached to the feature extraction network to generate high-
level semantic feature maps. Based on the basic architecture of Faster R-CNN, Cascade
R-CNN [32] integrate a sequence of detection branches and train them with increasing
Intersection over Union (IoU) thresholds to improve the accuracy. To sum up, one-stage
methods are superior in detection speed but attenuated in detection precision, while
two-stage methods are the opposite.
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2.2. Instance Segmentation

Instance segmentation aims at predicting instance-level mask and pixel-level category
of the objects. Mainstream instance segmentation methods can be roughly divided into top-
down methods and bottom-up methods. Top-down methods follow the paradigm of detect-
then-segment. Fully Convolutional Instance-aware Semantic Segmentation (FCIS [33])
jointly inherits the region proposals generated by RPN to integrate the position-sensitive
score maps and the FCN for semantic segmentation. On the basis of Faster R-CNN, Mask
R-CNN adds the mask branch to predict the instance-aware mask on each RoI. Path
aggregation network (PANet [34]) proposed bottom-up path aggregation to boost the
information flow which propagates in top-down instance segmentation methods. Mask
Scoring R-CNN [35] presents the mask IoU head to improve the quality of the predicted
mask. Hybrid Task Cascade (HTC [36]) proposed the joint multi-stage processing of the
mask branch and detection branch. Bottom-up methods aim at grouping the pixels of each
instance in an image and predict the corresponding semantic category. Polarmask [37] uses
polar coordinate to classify the instance center and regress dense distance. Segmenting
objects by locations (SOLO [38]) uses the location and size of the instance to assign the
pixel-category, which transfers instance segmentation as a pixel-wise classification problem.
SOLOv2 [39] extends SOLO with mask kernel prediction, mask feature learning, and matrix
non-maximum suppression (Matrix NMS). BlendMask [40] presents the blender module
which is inspired by both top-down and bottom-up methods. Analogously, top-down
methods perform well in segmentation precision while bottom-up methods are superior in
segmentation speed.

3. The Proposed Method

Our CPISNet follows the formula of top-down instance segmentation that detecting
the object first and followed by performing instance-wise segmentation on each RoI. The
detailed architecture of CPISNet is shown in Figure 1. First, AFEN is responsible for extract-
ing the multi-level bottom-up augmented feature maps in the design space level. Second,
the SRoIE and ERoIE are adopted for extracting the RoIs within the region proposals
from RPN and multi-level feature maps from AFEN. Finally, the cascaded bounding box
detection architecture and shortcut connection reconstructed mask branch are used for
refining the bounding box detection result and generating the high-quality segmentation
mask, respectively. The outputs from detection branch and mask branch constitute the
instance segmentation result of CPISNet.

Bbox
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Bbox
Stage 2

Bbox
Stage 3

SRoIE SRoIE SRoIE

AFEN

RPN

ERoIE ...

Cls

Reg

Seg
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Connection
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Figure 1. The network architecture of CPISNet, which follows the top-down instance segmentation
formula. It constitutes AFEN for multi-level feature map extraction, PCC architecture containing
cascaded bounding box stages and mask branch with shortcut connection, and ERoIE for extracting
the mask RoI.
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3.1. The Adaptive Feature Extraction Network

Our adaptive feature extraction network (AFEN) is separately introduced in two parts:
the backbone network and multi-level feature extraction network.

3.1.1. Backbone Network

Instead of inheriting individual designed feature extraction network instances, we
introduce RegNetx [41] as the backbone network which processes high-resolution aerial
images in the design space level.

As illustrated in Figure 2, RegNetx consists of the stem (3× 3 convolution with the
stride of 2), stage (consecutive network blocks), and head (average pooling followed by
fully connected layer), which is the same as classic backbone networks such as ResNet.
Elevated to the structural details, classic backbone networks regard the combination of
1× 1 convolution, 3× 3 convolution, and 1× 1 convolution followed by batch normaliza-
tion and ReLU as a block. On this basis, RegNetx replaces the standard 3× 3 convolution
to 3× 3 group convolution [42] with the hyperparameter gi to optimize the rudimentary
residual bottleneck structure in the block. Meanwhile, classic backbones, e.g., ResNet, keep
the same expansion ratio of block width (number of feature layers) among stages, and
manually set the depth of network blocks, e.g., 3, 4, 6, and 3 depths of network blocks for
stage 1 to 4 in ResNet-50, respectively. Relatively, RegNetx interpretably parametrizes the
width and depth of network blocks among stages with a quantized linear function. First,
the width vi of the i− th network block is computed via a linear parameterization:

vi = w0 + wa · i r.t. 0 ≤ i < d, (1)

where the default parameters w0 > 0, wa > 0, and d represent initial width, slope, and
network depth, respectively. However, as vi should be an integer, we supplement the
default constraint wm to compute si via the following formulation:

vi = w0 · wsi
m r.t. 0 ≤ i < d. (2)

Then, si is rounded to compute the quantized width ui of the i− th network block as
follows:

ui = w0 · w
bsie
m r.t. 0 ≤ i < d. (3)

Considering the width of each network block is restricted by the hyperparameter gi of
group convolution, ui is further normalized to the integer multiple of gi via:

ũi = bui/gie · gi r.t. 0 ≤ i < d, (4)

where b∗e represents the rounding operation. Finally, the network blocks with the same
width ũi constitute a certain stage of RegNetx. From a quantitative point of view, give the
hyperparameters w0, wa, wm, gi, and d, the width ũi of the i− th residual block is obtained,
which simultaneously defines the universal RegNet. Meanwhile, by employing the flop
regime [43], hyperparameters w0, wa, wm, gi, and d of top model performance define the
design space of RegNetx.

Compared to classic backbone such as ResNet, RegNetx inherits its merit of the
shortcut connection and further explores the designing space from block and stage to the
whole backbone network structure. Based on the general describable network architecture
in Figure 2 but with distinct hyperparameter settings of RegNetx, the output width of each
stage, the number of blocks, and group ratio for ResNet and RegNetx are summarized
in Table 1. Obviously, RegNetx has reduced output width and flexible expansion ratio of
output width between consecutive stages. Moreover, by implementing group convolution
for each network block, the model size of RegNetx is more lightweight compared to ResNet.
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Stage i
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Stage
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Figure 2. The network architecture and structural details of RegNetx. Following the classic scheme
of the stage, block, and residual bottleneck structure, RegNetx optimizes the width and depth of
network blocks compared to the classic backbone networks such as ResNet.

Table 1. Comparison of ResNet and RegNetx. Please note that S1 to S4 represent stage 1 to stage 4 of
the backbone network, respectively.

Backbone Network
Stage Output Width Num of Blocks Group Ratio

S1 S2 S3 S4 S1 S2 S3 S4 gi

ResNet-50 256 512 1024 2048 3 4 6 3 8
ResNet-101 256 512 1024 2048 3 4 23 3 8

RegNetx-3.2GF 96 192 432 1008 2 6 15 2 48
RegNetx-4.0GF 80 240 560 1360 2 5 14 2 40

3.1.2. Multi-Level Feature Extraction Network

In top-down instance segmentation networks, FPN shows notable performance of
multi-scale instance segmentation. As the edges and instance parts of low-level features can
improve the localization capability of FPN, we introduce the bottom-up path augmentation
(BPA) for FPN to improve the semantic representation of output feature maps. The lowest
level of FPN is regarded the same as BPA. For the upper layer Bi of BPA, it is constructed
from Bi−1 and the FPN layer F i via:

B′i = F i + Conv3×3(Bi−1; θ1), (5)

Bi = Conv3×3(B′i; θ2), (6)

where θ1 and θ2 represent the weight for each 3× 3 convolution layer. As an extension of
FPN, the output Bi of BPA is regarded as the output multi-level feature map of AFEN. As
illustrated in Figure 3, the backbone network and multi-level feature extraction network
constitute the overall network architecture of our AEFN.

3.2. The RoI Extractors

As for top-down instance segmentation methods, RPN is responsible for preliminarily
predicting the candidate region proposals, which initially screens out the positive samples
among the predictions. To map the coordinate-based region proposals to the multi-level
feature from FPN, [31] proposed the RoI extractor which selects matched region proposals
for each output level of FPN and pools them with RoI Pooling to generate RoIs for object de-
tection. Based on the previous exploration of researchers, we have designed corresponding
RoI extractors for our CPISNet.
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RegNetx

2 × upsampling

1 × 1 conv
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B4

B3

B2

B1
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3 × 3 conv

Aerial Image

BPA

Figure 3. The network architecture of AFEN.

3.2.1. Single RoI Extractor

Generally, in the top-down instance segmentation methods, the speed of mask pre-
diction is limited to object detection as it executes the detect-then-segment formula. The
decrease of object detection speed will iteratively slow down the segmentation speed, and
ulteriorly influence the network speed. Therefore, we adopt the single RoI extractor for
each stage of our subsequent object detection network here.

Assuming the output multi-level feature map from FPN are {F0, F1, F2, F3}, and
the initially screened out i − th bounding box from RPN is denoted as {xb, yb, xt, yt} in
Cartesian coordinate, where {xb, yb} and {xt, yt} represent the bottom left and top right
coordinate of the bounding box, respectively. Therefore, area Si of the i− th bounding box
is calculated as:

Si = (xt − xb) ∗ (yt − yb). (7)

Following the above-mentioned bounding box area Si, the level of i− th bounding
box is calculated as:

k =
⌊

log2(
√

S/56)
⌋

, (8)

where k is related to the k − th level of FPN level; the denominator 56 denotes the
smallest threshold scale of 562 for 0 − th level mapping that is defined by the canoni-
cal ImageNet [44] pre-training size. Following the schedule, each bounding box is mapped
to a certain level of FPN. Next, the bounding box and correspondig FPN level are pooled
by RoIAlign [14] to generate the RoI via:

RoIi = RoIAlign(F i; (xb, yb, xt, yt)), (9)

where RoIi represents the i − th RoI pooled by the i − th bounding box and F i. In this
paper, we present the single RoI extractor (SRoIE) to extract the RoIs prepared for object
detection branch. The architecture of SRoIE is shown in Figure 4.

H
e
u
ristica

l
A
ssig

n
m
e
n
t

Proposals

Features

Pooled RoIs

RoIAlign

RoIAlign

RoIAlign

RoIAlign

Figure 4. Illustration of SRoIE. It allocates the RPs from FPN with heuristical assigment criterion (the
formulation in Equation (8)).
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3.2.2. Elaborated RoI Extractor

Distinguished from the heuristically selected schedule in SRoIE, we select the pre
elaborate, aggregate, and post elaborate schedule to construct our elaborated RoI extractor
(ERoIE). The architecture of ERoIE is illustrated in Figure 5.

Objects (e.g., planes, harbors, and helicopters) in aerial images have geometric varia-
tions due to overlooking angle, local characteristics, etc., which may impede the network
from integrally presenting the shape of an object. Consequently, we choose the dynamic
convolutional network (DCN) [45,46] to deal with such variations. Assuming the output
multi-level feature maps from FPN are {F0, F1, F2, F3}, along with the stride of {4, 8, 16, 32}
(corresponding to the original image) for RPN. All the region proposals (RPs) from RPN
are pooled within F i by RoIAlign via:

RoIi−th = RoIAlign(F i; RPs), (10)

where RoIi−th represents the pooled RoIs in i− th level. Here, all the RPs are regarded as
the indispensable elements for RoI pooling. Then, each RoIi−th are preliminarily elaborated
by the 5× 5 dynamic convolution:

DRoIi−th = dynamic_conv5×5(RoIi−th), (11)

where dynamic_conv denotes the dynamic convolutional network. More details see [45,46].
Next, the DRoIi−th for each level is aggregated via the element-wise addition:

RoI =
3

∑
i=0

DRoIi−th. (12)

Finally, we adopt the global context block (GCB) to post elaborate the aggregated
RoIs via:

ERoI = RoI + Conv1×1(RL(Conv1×1(βj; γ1)); γ2), (13)

βj = RoI ∗ (so f tmax(Conv1×1(RoI; γ3))), (14)

where γ1, γ2, and γ3 are the weight for each 1× 1 convolution; RL represents the consec-
utive ReLU and Layer Normalization operation. βj represents the global context feature
weighted by softmax function. The output ERoI is regarded as the elaborated RoI feature
of our ERoIE.

Pooled RoIs

RoIAlign

DCN

GCB
Proposals

Features

Figure 5. Detailed architecture of ERoIE. Each level of the pooled RoI is preliminarily elaborated
by DCN, aggreagted by element-wise addition, and post elaborated by GCB to generate the RoI for
mask prediction.

3.3. Proposal Consistent Cascaded Architecture for Instance Segmentation

Cascaded architecture is first introduced in object detection. Cai et al. [32] proposed
a stage by stage object detector termed Cascade R-CNN, which leverages the output of
previous stage to meet the demand of high-quality sample distribution of next stage.
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Similar to the formula of extending Faster R-CNN to Mask R-CNN, Cascade Mask R-CNN
attaches a mask branch paralleling to the object detection branch in each stage to exert
instance segmentation, which can be formulated via:

RBox
t = Pb(x; Pbt−1), (15)

RMask
t = Pm(x; Pbt−1), (16)

Pbt = Bt(RBox
t ), (17)

Pmt =Mt(RMask
t ), (18)

where RBox
t and RMask

t represent the pooled bounding box RoI features by bounding
box RoI extractor Pb and the pooled mask RoI features by mask RoI extractor Pm in the
t− th stage, respectively. x is the multi-scale feature map from FPN. Pbt and Pmt denote
the predicted bounding box and predicted mask by bounding box branch Bt and mask
branchMt, respectively. Obviously,Mt is individually generated in each stage, causing
computationally inefficient.

To exploit the reciprocal relationship between detection and segmentation in cascaded
architecture, Chen et al. [36] proposed HTC to interweave them for a joint stage by stage
processing. Based on the merits of Cascade Mask R-CNN as Equations (15)–(17), HTC
connects the mask branch of each stage as Equations (19) and (20):

Ft = Conv1×1(Mt(Pm(x; Pbt−1)); ωt), (19)

RMask
t = Ft + Pm(x; Pbt), (20)

where Conv1×1(∗; ωt) represents 1× 1 convolution with the weight ωt. Ft is the mask
information flow from stage t− 1 to stage t. RMask

t denotes the interweaved mask fea-
ture for mask prediction. Intuitive comparison of the cascaded architecture in Cascade
Mask R-CNN and HTC is illustrated in Figure 6a,b. Unfortunately, these two cascaded
architectures ignore the sample IoU distribution consistency of mask prediction, which
potentially exacerbate the instance segmentation precision [47]. In this paper, we intro-
duce the proposal consistent cascaded (PCC) architecture to realize high-quality instance
segmentation for high-resolution aerial images with a novel cascaded architecture. The
network architecture of PCC is shown in Figure 6c.

In PCC architecture, we inherit the architecture of cascaded bounding box stages in
Cascade Mask R-CNN but abandon the additional mask branch in each detection stage to
eliminate the disparity of the sample’s IoU distribution when training and testing. As an
alternative, we attach the mask branch to the last stage of detection branch. The pipeline is
formulated as follows:

RBox
t = Pb(x; Pbt−1), (21)

Pbt = Bt(RBox
t ), (22)

RMask = Pm(x; Pb2), (23)

Pm =M′
n(RMask), (24)

whereRMask is pooled with the refined bounding box in the last stage. M′
n is the mask

branch which contains n consecutive blocks with stacked convolutions. Each blockM′

contains two 3× 3 convolution with shortcut connection via:

M′ =RMask
n + Conv3×3(Conv3×3(RMask

n ; θ1); θ2), (25)

whereRMask
n denotes the input of the n− th block; θ1 and θ2 are the weight for each 3× 3

convolution. At the structural level, PCC does not just ensure instance segmentation to be
performed on the basis of precise localization, but also eliminates the intermediate noisy



Remote Sens. 2021, 13, 2788 10 of 24

boxes of mask prediction. Moreover, moderately adjusting the depth of mask branch can
tweak the quality of mask predictions.
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Figure 6. Comparison of the cascaded architectures in Cascade Mask R-CNN, HTC, and PCC.
The panels are listed as: (a) The cascaded architecture in Cascade Mask R-CNN. (b) The cascaded
architecture in HTC. (c) The PCC in our CPISNet.

4. Experiments

In this section, we will separately introduce the datasets, loss functions, evaluation
metrics, and implementation details. Next, experiments on these prerequisites are imple-
mented to verify the effectiveness of our proposed CPISNet.

4.1. The Datasets

We select two mainstream instance segmentation dataset of high-resolution aerial
images for experiments, including the Instance Segmentation in Aerial Images Dataset
(iSAID [17]) and NWPU VHR-10 instance segmentation dataset [11].

4.1.1. The iSAID

iSAID is the first benchmark instance segmentation dataset for aerial images, akin
to Microsoft Common Objects in Context (MS COCO) dataset in the natural scene, with
dense but detailed annotation. It contains 2806 large-scale images interspersed with
15 categories, and there are 655,451 object instances in total. To satisfy the demand of
real-world application, the object categories including small vehicle (SV), large vehicle
(LV), plane (PL), storage tank (ST), ship (SH), swimming pool (SP), harbor (HB), tennis
court (TC), ground track field (GTF), soccer ball field (SBF), baseball diamond (BD), bridge
(BR), basketball court (BC), roundabout (RA), and helicopter (HC) are chosen according



Remote Sens. 2021, 13, 2788 11 of 24

to the frequency of occurrence and earth observation importance. iSAID is divided into
three parts: 1/2 original images for constructing the training set, 1/6 original images for
the validation set, and 1/3 original images for the test set. As existing methods cannot
handle the large spatial dimension of high-resolution images in iSAID, we split each image
into 800× 800 pixels through a sliding window with the stride of 200 pixels in length and
width. Consequently, there are 18,732 images for training, 9512 images for validation, and
19,377 images for testing.

4.1.2. The NWPU VHR-10 Instance Segmentation Dataset

The NWPU VHR-10 instance segmentation dataset is the extended version of NWPU
VHR-10 dataset [48,49] by [11], which provides the pixel-wise annotation for each instance.
There are 10 object categories including airplane (AI), baseball diamond, ground track
field, vehicle (VC), ship, tennis court, harbor, storage tank, basketball court, and bridge in
total. The dataset consists of 650 very high-resolution (VHR) aerial images with targets and
150 VHR images with pure background. In our experiments, it is divided into the training
set (70% images) and the test set (30% images) for training and testing, respectively.

4.2. Evaluation Metrics

Following the instance segmentation in natural scenes, we adopt the MS COCO
evaluation metrics to evaluate the effectiveness of the methods. Similar to object detection,
the AP of instance segmentation result is defined over the IoU, which is calculated through
the overlap ratio of predicted mask and ground truth mask:

IoUmask =
Mp ∩Mg

Mp ∪Mg
, (26)

where Mp and Mg denote the predicted mask and the ground truth mask, respectively.
Based on a certain IoU threshold, the precision and recall value is defined by the instance-
wise classification results via:

Precision =
TP

TP + FP
, (27)

Recall =
TP

TP + FN
, (28)

where TP, FP, and FN represent true positive, false positive, and false negative, respec-
tively. Meanwhile, the AP of the predicted results is calculated through:

AP =
∫ 1

0
P(r) dr, (29)

where P is the precision value, r is the recall value. Generally, the AP value is calculated by
averaging 10 IoU threshold, where the IoU threshold value ranges from 0.5 to 0.95 with
the stride of 0.05. In addition to the AP, MS COCO evaluation metrics also include the
single threshold AP for instance AP50 (IoU = 0.5) and AP75 (IoU = 0.75). Moreover, APS,
APM, and APL are responsible for measuring the AP of small (area< 322 pixels), medium
(322 <area< 962 pixels), and large (area> 962 pixels) instance, respectively.

4.3. The Loss Functions

For simplicity, we choose cross entropy loss function for object classification, which is
defined as:

Lcls(x, class) = −xclass + log(
c−1

∑
i=0

ex[i]), (30)
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where class is the ground truth category label; x and c denote the predicted probability of a
certain category and the number of categories, respectively. The smoothl1 loss is responsible
for regressing the bounding boxes via:

Lreg =
1
N

N

∑
i=1

smoothl1(pi − gi), (31)

smoothl1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5, otherwise

, (32)

where pi is the predicted bounding box, and gi is the ground truth bounding box. N
denotes the number of the predicted bounding boxes. Following [14], we select binary
cross entropy (BCE) loss for mask prediction, which can be represented via:

LBCE = − 1
n

n

∑
i=1

(Ti(x,y)log(P̂i(x,y)) + (1− Ti(x,y))log(1− P̂i(x,y))), (33)

P̂i(x,y) =
1

1 + e−Pi(x,y)
, (34)

where Pi denotes the predicted pixel with coordinate (x, y) in the predicted mask; Ti is
ground truth with coordinate (x, y) in the ground truth mask.

4.4. Implementation Details

All the models in our experiments are coded with Pytorch framework. A single RTX
3090 with 24 GB memory is adopted for training and testing the models. We select the
stochastic gradient descent (SGD) as the optimizer for each model. In the training phase,
with the initial learning rate of 0.0025, each model is trained for 12 epochs with mini-batch
size of 2, and the learning rate is decreased by 0.1 at 8− th and 11− th epochs. As for
image size, each image in the NWPU VHR-10 instance segmentation dataset is resized
to the size of 1000 × 600 pixels for training and testing. Moreover, soft non-maximal
suppression (Soft-NMS) [50] with the threshold of 0.5 is selected as the bounding box filter.
The increasing IoU thresholds for each stage of the cascaded architectures are set at 0.5, 0.6,
and 0.7, respectively.

4.5. Ablation Experiments

In this section, we conduct comprehensive experiments on AFEN, ERoIE, and PCC to
verify the effects of our proposed CPISNet. All the experiments are based on the Mask R-
CNN (meta top-down instance segmentation formula) with ResNet-101 backbone network.
Moreover, we select the iSAID validation set to test our instance segmentation results.

4.5.1. Effects of CPISNet

The instance segmentation results of AFEN, ERoIE, and PCC are individually reported
in Table 2. Quantitatively, AEFN, ERoIE, and PCC perform well in segmenting aerial
objects (gain 0.6%, 0.9%, and 1.9% AP increments, respectively). With regard to CPISNet, it
yields 2.6% AP increments than vanilla Mask R-CNN under the same training and testing
conditions. With various AP indicators, CPISNet even gains 3.1% AP50 increments and
5.3% APL increments, respectively.



Remote Sens. 2021, 13, 2788 13 of 24

Table 2. Effects of CPISNet. Please note that all results are evaluated on iSAID validation set.

Model AFEN ERoIE PCC AP AP50 AP75 APS APM APL

Mask R-CNN 36.0 58.4 38.8 22.7 43.3 49.7

Modules
X 36.6 59.3 39.6 23.8 43.1 51.7

X 36.9 59.2 39.9 23.1 44.0 52.1
X 37.9 60.2 41.0 24.0 45.3 53.8

CPISNet X X X 38.6 61.5 41.4 25.7 45.6 55.0

4.5.2. Experiments on AFEN

We have selected several classic feature extraction structures (ResNet, FPN, HRNet [51,52],
HRFPN [52]) to verify the effectiveness of AFEN. RegNetx with 3.2-gigabyte flops (3.2-GF)
retains the architecture setting of w0 = 88, wa = 26.31, wm = 2.25, gi = 48, d = 25, and
RegNetx with 4.0 GF means w0 = 96, wa = 38.65, wm = 2.43, gi = 40, d = 23. As shown
in Table 3, HRNet and RegNetx both serve as the efficient backbone network for instance
segmentation in high-resolution aerial images. The structure of HRNetw32-HRFPN and
RegNetx3.2GF-FPN achieve 0.3% AP, 0.1% AP better than ResNet101-FPN, respectively.
While our proposed AFEN can achieve higher mask prediction precision: 0.3% AP gain
from BPA under RegNetx-3.2GF backbone, and 0.6% AP gain with AFEN-4.0GF compared
to ResNet101-FPN. Results of ablation experiments indicate that AFEN is efficient in
high-quality feature extraction for high-resolution aerial images.

Table 3. Ablation experiment on AFEN. Please note that all results are evaluated on iSAID valida-
tion set.

Feature Extraction Structures AP AP50 AP75 APS APM APL

ResNet-101 + FPN 36.0 58.4 38.8 22.7 43.3 49.7
HRNetv2-w32 + HRFPN 36.3 58.7 39.0 24.4 42.5 51.1

RegNetx-3.2GF + FPN 36.1 59.0 38.3 23.9 43.1 49.4
AFEN-3.2GF 36.4 59.1 38.9 24.1 42.9 51.2
AFEN-4.0GF 36.6 59.3 39.6 23.8 43.1 51.7

4.5.3. Experiments on ERoIE

In this subsection, we implemented three stages of experiments, including effects of
the preliminarily elaborated module, effects of the post elaborated module, and effects of
the integral ERoIE, to verify the rationality of ERoIE.

1. Stage 1: Effects of the Preliminarily Elaborated Module

On the basis of experiments in [53], we follow the criterion of selecting the most
effective convolution layer for the preliminarily elaborated module, and set DCN with the
kernel size of 5 here to be consistent with the previous statement in Section 3.2.2. Ulteri-
orly, we compare the effects of the single-level and fused-level elaborated strategy when
implementing DCN as the preliminarily elaborated module (element-wise experiments).
Please note that DCN is additionally selected as the default post elaborated module here.
Assuming the pooled RoI features from RoIAlign are B2, B3, B4, B5, the corresponding
feature maps are recorded as B2 − level, B3 − level, B4 − level, B5 − level, respectively.
As shown in Table 4, DCN for B3 − level elaboration and post-processing outperforms
remaining forms up to 0.3% AP in the single-level elaborated strategy, which is the same
as B1 + B2 + B3 in the fused-level elaborated strategy.
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Table 4. Effects of the preliminarily elaborated module. Please note that all results are evaluated on
iSAID validation set.

Elaborated Layer AP AP50 AP75 APS APM APL

B0 − level 36.4 58.6 39.4 23.1 43.4 51.3
B1 − level 36.6 58.7 39.7 23.0 43.8 51.2
B2 − level 36.7 58.9 39.9 22.9 44.0 51.5
B3 − level 36.5 58.7 39.5 22.7 44.0 52.0
B1 + B2 36.5 58.6 39.3 23.0 43.8 50.9
B2 + B3 36.4 58.5 39.2 22.7 43.5 51.5
B1 + B3 36.4 58.5 39.3 22.9 43.8 51.6

B1 + B2 + B3 36.7 58.6 39.7 23.0 43.6 51.6
B0 + B1 + B2 + B3 36.4 58.5 39.4 22.3 43.8 50.7

2. Stage 2: Effects of the Post Elaborated Module

Stage 2 focuses on evaluating the effects of the post elaborated module to ERoIE. In this
context, we individually measure the global enhancement capability of GCB and DCN for
post-processing. Without loss of generality, we replace the DCN to GCB for post elaboration
in stage 1. As shown in Table 5, effects of GCB are similar to DCN in the single elaborated
strategy. In particular, B0 + B1 + B2 + B3 in the fused-level elaborated strategy yields 0.6%
AP than B0 − level in the single-level elaborated strategy. Therefore, we select the DCN
with fused-level elaborated strategy of B0 + B1 + B2 + B3 to preliminarily elaborate the
RoIs, and the GCB to post elaborate the aggregated RoIs to formulate ERoIE.

Table 5. Effects of the post elaborated module. Please note that all results are evaluated on iSAID
validation set.

Elaborated Layer AP AP50 AP75 APS APM APL

B0 − level 36.3 58.6 39.3 22.9 43.4 51.1
B1 − level 36.4 58.9 39.1 23.2 43.5 51.2
B2 − level 36.7 58.8 39.8 22.9 43.7 51.8
B3 − level 36.6 58.7 39.6 22.8 43.7 51.5
B1 + B2 36.7 59.1 39.7 23.1 43.8 51.7
B2 + B3 36.5 59.0 39.2 22.8 43.7 51.1
B0 + B1 36.6 58.9 39.4 23.1 43.9 50.7

B1 + B2 + B3 36.6 58.7 39.4 22.6 43.9 51.6
B0 + B1 + B2 + B3 36.9 59.2 39.9 23.1 44.0 52.1

3. Stage 3: Effects of the Integral ERoIE

Stage 3 tends to research the effects of the integral ERoIE formula. Results are shown
in Table 6. Without appendages, ERoIE has a similar performance to SRoIE. When omitting
preliminary elaboration, adding post-processed GCB/DCN can improve 0.3% and 0.6%
AP, respectively. As for our integral ERoIE (best result in Table 6), it yields SRoIE 0.9% AP
compared to SRoIE, which verifies the effectiveness of DRoIE in instance segmentation for
high-resolution aerial images.
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Table 6. Ablation experiment on ERoIE. Please note that all results are evaluated on iSAID valida-
tion set.

Effects of Integral ERoIE AP AP50 AP75 APS APM APL

SRoIE 36.0 58.4 38.8 22.7 43.3 49.7
ERoIE without appendages 36.0 58.4 38.7 22.1 43.2 50.3

+post GCB 36.3 58.8 39.2 22.4 43.7 51.4
+post DCN 36.6 59.0 39.6 23.3 43.9 51.3

ERoIE 36.9 59.2 39.9 23.1 44.0 52.1

4.5.4. Experiments on PCC

In this subsection, we have implemented two groups of experiments, including select-
ing the depth of mask branch and the effects of PCC, to verify the rationality of PCC.

1. Group 1: Selecting the Depth of Mask Branch

Distinguished from the scattered mask branch (contains four consecutive convolution
layers) in each stage of the cascaded architecture in Cascade Mask R-CNN and HTC, the
mask branch in PCC stacks the consecutive convolution layers with shortcut connection
within 2 convolution layers (denoted as a block). Here, the depth of mask branch is equal to
the number of blocks. As shown in Table 7, with a gradually increasing number of blocks,
PCC yields 0.6% AP increments until 8 blocks. Meanwhile, with over 8 blocks, the AP of
PCC begins to drop. It is worth mentioning that even with 2 blocks (equal to the number of
convolution layers in the scattered mask branch), PCC improves 1.3% AP based on vanilla
Mask R-CNN, which additionally verifies the effectiveness of PCC.

Table 7. Ablation experiment on the depth of mask branch. Please note that all results are evaluated
on iSAID validation set.

Number of Blocks AP AP50 AP75 APS APM APL

2 37.3 59.8 40.1 23.8 44.4 53.4
4 37.6 60.2 40.8 23.6 44.9 53.2
6 37.6 60.2 40.7 23.3 45.2 53.3
8 37.9 60.2 41.0 24.0 45.3 53.8
10 37.7 60.4 40.7 23.9 45.1 53.4

2. Group 2: Effects of PCC

Group 2 tends to evaluate the superiority of PCC in the structural level. Therefore,
we compare the performance of PCC with Cascade Mask Branch (Cascaded architecture
in Cascade Mask R-CNN) and Mask Information Flow (Cascaded architecture in HTC).
Table 8 lists the instance segmentation results of the cascaded architectures with ResNet-50
and ResNet-101 backbone network. Compared to Cascaded Mask Branch and Mask Infor-
mation Flow, PCC with ResNet-50 respectively outperforms 1.0% AP and 0.4% AP, which
is the same as PCC with ResNet-101. Moreover, PCC maintains significant increments in
threshold AP (AP50 and AP75) and area AP (APS, APM, and APL).
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Table 8. Ablation experiment on the effects of multiple cascaded architectures for instance segmenta-
tion in aerial images. Please note that all results are evaluated on iSAID validation set.

Cascaded Architectures Backbone AP AP50 AP75 APS APM APL

Cascaded Mask Branch R-50 36.0 58.0 38.7 23.7 42.9 48.9
R-101 36.9 59.1 40.3 23.1 44.1 51.6

Mask Information Flow R-50 36.6 59.1 39.3 23.7 43.7 51.3
R-101 37.5 60.1 40.5 23.2 44.7 53.6

PCC R-50 37.0 58.8 40.1 24.1 44.1 52.4
R-101 37.9 60.2 41.0 24.0 45.3 53.8

4.6. Instance Segmentation Results on iSAID

To measure the instance segmentation capability of CPISNet in the integral model
level, we select five state-of-the-art top-down instance segmentation methods, containing
Mask R-CNN, Mask Scoring R-CNN (MS R-CNN), Cascade Mask R-CNN (CM R-CNN),
HTC, and SCNet, with the default training and testing hyperparameters as in [54], except
for the dedicated hyperparameters that introduced in Section 4.4, for a fair comparison with
CPISNet. All the state-of-the-art methods adopt ResNet-101 and FPN for multi-scale feature
extraction; the momentum and weight decay for SGD are set at 0.9 and 0.0001, respectively.
Correspondingly, CPISNet adopts AFEN-4.0GF for multi-scale feature extraction here; the
momentum and weight decay for SGD are set at 0.9 and 0.00005, respectively. Meanwhile,
we add the frames per second (FPS) and model size to evaluate the practical engineering
application ability of each method. As presented in Table 9, our CPISNet achieves the
highest 38.6% AP compared to other methods. As for the non-cascaded methods, CPISNet
yields 2.6% and 1.7% AP increments than Mask R-CNN and MS R-CNN with similar model
size, respectively. Relatively, compared to the cascaded methods, CPISNet still maintains
over 1% AP increments (1.7% AP, 1.2% AP, and 1.3% AP increments than CM R-CNN,
HTC, and SCNet, respectively) with reduced model size.

Considering the scale variance of objects in high-resolution aerial images, we further
introduce the multi-scale training strategy to improve the scale sensitivity of our CPISNet,
termed CPISNet*. While training, the aerial images are rescaled to the size of 1200× 800,
1000× 800, 800× 800, 600× 800, and 400× 800 pixels. As for testing, the size of aerial
images retains 800× 800 pixels. Without bells and whistles, CPISNet* further improves 0.8%
AP with the same model size as CPISNet and slightly inferior FPS. In general, CPISNet*
yields Mask R-CNN 3.4% in AP. With various threshold AP indicators, AP50 and AP75
improve 4% and 3.6%, respectively. Moreover, CPISNet* outperforms vanilla Mask R-CNN
3.9%, 3.3%, and 4.5% in segmenting small, medium, and large objects in high-resolution
aerial images, respectively. Qualitatively, we provide the comparison of visualized instance
segmentation results of vanilla Mask R-CNN and our proposed CPISNet* in Figure 7. As
illustrated in row 2, Figure 7, the instance segmentation of Mask R-CNN retains aliasing
masks, missing segmentations, and poorly segmented mask. Fortunately, our proposed
CPISNet* can effectively suppress such defects in instance segmentation for high-resolution
aerial images.
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Figure 7. Comparison of visualized instance segmentation results of vanilla Mask R-CNN and
our proposed CPISNet* in iSAID. Row 1 to row 3 denote ground truth, Mask R-CNN results, and
CPISNet* results, respectively. Please note that red rectangle, purple rectangle, and blue dotted
rectangle in row 2 represent aliasing masks of dense objects, missing segmentation, and poorly
segmented mask, respectively.

Table 9. Instance segmentation results of the state-of-the-art methods on iSAID validation set.

Method AP AP50 AP75 APS APM APL FPS Model Size

Mask R-CNN 36.0 58.4 38.8 22.7 43.3 49.7 13.6 504.2 Mb
MS R-CNN 36.9 58.3 40.3 22.7 44.0 51.9 12.9 634.4 Mb
CM R-CNN 36.9 59.1 40.3 23.1 44.1 51.6 11.5 768.4 Mb

HTC 37.4 60.2 40.1 23.5 44.6 53.5 7.4 791.9 Mb
SCNet 37.3 59.5 40.3 23.3 44.8 52.3 6.7 908.4 Mb

CPISNet 38.6 61.5 41.4 25.7 45.6 55.0 6.1 663.3 Mb
CPISNet* 39.4 62.4 42.4 26.6 46.6 54.2 5.3 663.3 Mb

To measure the meticulous results of CPISNet*, we report the class-wise AP of each
method for each aerial category in Table 10. Notably, storage tank achieves 80.5% AP
(highest AP among 15 aerial categories) and ship obtains 7.2% AP improvement (highest
AP improvement among 15 aerial categories) in iSAID validation set. Meanwhile, we
observe that for some categories, e.g., tennis court and roundabout, CPISNet* yields ∼5%
AP improvement than Mask R-CNN. Qualitatively, we have visualized the class-wise
instance segmentation results in Figure 8. Please note that each subfigure represents the
foremost aerial categories. Identical to the quantitative results, CPISNet* is capable of
segmenting the hard samples, e.g., densely distributed objects (row 1, column 3–4), small
objects (row 2, column 3–4), and objects with nonrigid boundaries (row 1, column 1 and
row 3, column 3), in high-resolution aerial images. Quantitative and qualitative results on
iSAID validation set indicate our proposed CPISNet is more effective in segmenting aerial
objects than state-of-the-art methods.
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Table 10. Class-wise instance segmentation results of the state-of-the-art methods on iSAID validation set.

Method SV LV PL ST SH SP HB TC GTF SBF BD BR BC RA HC

Mask R-CNN 40.2 35.0 54.4 77.6 40.1 29.5 21.9 36.9 11.7 4.0 30.9 34.5 46.6 49.2 27.3
MS R-CNN 40.5 35.0 55.9 77.4 41.7 30.7 23.4 37.7 11.8 5.1 31.5 37.6 47.7 49.9 28.1
CM R-CNN 41.1 35.9 54.4 77.7 43.5 30.6 22.9 38.6 12.0 4.6 31.6 35.1 48.0 50.2 27.8

HTC 41.4 35.5 54.6 78.6 42.9 32.4 23.3 39.8 12.3 4.5 32.1 36.2 47.9 50.8 28.4
SCNet 41.8 35.5 56.6 78.5 41.2 32.6 21.9 39.8 12.1 3.9 31.6 36.4 47.5 51.6 28.9

CPISNet 42.9 37.8 54.6 78.8 41.1 36.6 23.9 41.2 13.0 7.6 33.7 35.9 48.5 53.4 30.1
CPISNet* 43.6 37.2 55.6 80.5 42.8 36.7 25.0 41.8 12.8 5.8 35.4 39.3 49.8 54.3 30.0

Following [17], we further measure the generalization ability of the state-of-the-art
methods on iSAID test set. Please note that the quantitative results in Tables 11 and 12
are tested on the official evaluation server. As shown in Table 11, compared to vanilla
Mask R-CNN, our CPISNet* achieves even better AP improvement in iSAID test set (3.8%)
than that in iSAID validation set (3.4%), which reflects the strong generalization ability
of CPISNet*. With various AP indicators, CPISNet* still exceeds vanilla Mask R-CNN
over 4% increments. Table 12 reports the class-wise AP of the methods. Intuitively, the
small vehicle and helicopter challenge the generalization ability of instance segmentation
methods due to the small size and unique geometric variations. However, our proposed
CPISNet* not only improves the AP of small vehicle and helicopter, but also remains in the
ascendancy for other categories, e.g., 6.7% AP increments for the basketball court.

Table 11. Instance segmentation results of the state-of-the-art methods on iSAID test set.

Method AP AP50 AP75 APS APM APL

Mask R-CNN 36.2 58.6 38.8 38.9 44.2 12.0
MS R-CNN 37.0 57.8 40.5 39.7 46.0 14.3
CM R-CNN 37.1 59.0 40.1 39.8 46.4 12.9

HTC 37.5 59.6 40.8 40.2 47.4 14.2
SCNet 38.1 60.4 41.2 40.9 46.9 12.6

CPISNet 39.1 62.2 42.5 41.8 49.6 17.6
CPISNet* 40.0 62.7 43.9 42.9 50.4 16.5

Table 12. Class-wise instance segmentation results of the state-of-the-art methods on iSAID test set.

Method SV LV PL ST SH SP HB TC GTF SBF BD BR BC RA HC

Mask R-CNN 13.2 29.6 42.9 34.1 46.1 37.4 29.2 75.4 27.1 36.3 51.3 17.6 49.0 43.3 9.6
MS R-CNN 14.0 30.0 43.8 33.9 46.6 37.9 30.1 76.1 29.7 35.7 54.2 17.7 49.9 44.4 11.8
CM R-CNN 14.2 30.4 43.5 34.5 47.1 38.3 30.5 76.6 28.1 37.4 53.0 18.2 50.5 44.2 10.2

HTC 14.5 31.7 43.9 34.8 47.7 38.7 31.0 77.3 29.7 37.9 53.3 18.9 50.2 43.9 9.3
SCNet 14.2 31.7 45.1 35.9 48.0 39.2 31.1 77.0 30.2 36.3 56.6 18.7 51.5 46.7 9.7

CPISNet 14.9 32.9 46.2 35.8 49.5 40.6 32.7 77.6 31.9 39.3 54.3 19.9 52.9 45.2 13.2
CPISNet* 14.9 34.0 47.3 36.0 50.2 41.6 33.9 78.8 31.6 40.2 56.2 20.2 55.7 47.6 12.0
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Figure 8. Class-wise instance segmentation results generated by CPISNet*. Red dotted rectangle represents the enlarged
detail of small objects.

4.7. Instance Segmentation Results on NWPU-VHR-10 Dataset

Similar to the experiments on iSAID, we supplement the instance segmentation exper-
iments on NWPU VHR-10 dataset to additionally verify the rationality of CPISNet. Still,
we select the same control methods as the experiments in iSAID. Considering the image
size in NWPU VHR-10 dataset, we define CPISNet* as CPISNet with multi-scale training
strategy by rescaling the image size to 1000× 1200, 1000× 1000, 1000× 800, 1000× 600,
and 1000× 400 pixels. Distinguished from the results on iSAID, CPISNet and CPISNet*
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have widened the gap in instance segmentation performance of high-resolution aerial
images compared to the state-of-the-art methods. As shown in Table 13, CPISNet* achieves
the highest 67.5% AP among the state-of-the-art methods and yields 9.2% AP increments
than Mask R-CNN. Compared to SCNet, CPISNet* yields 5.2% AP increments and 27.0%
reduced model size but merely 2.1 slowed FPS. With various AP indicators, CPISNet*
exceeds over 10% improvements (11.4% in AP50 and 16.5% in APL) than Mask R-CNN.
Moreover, as illustrated in Figure 9, CPISNet* can suppress false alarms, deal with non-
rigid boundaries and accurately distinguish the densely distributed objects (unavailable in
semantic segmentation).

Table 13. Instance segmentation results of the state-of-the-art methods on NWPU VHR-10 test set.

Method AP AP50 AP75 APS APM APL FPS Model Size

Mask R-CNN 58.3 90.9 63.5 46.5 59.6 57.5 12.2 503.9 Mb
MS R-CNN 59.5 90.8 65.2 43.9 61.1 56.8 11.1 634.1 Mb
CM R-CNN 60.4 92.6 67.5 48.1 61.0 63.0 10.6 768.3 Mb

HTC 61.4 92.2 67.0 49.3 62.1 60.8 7.5 791.8 Mb
SCNet 62.3 91.3 69.4 49.8 62.8 68.2 7.1 908.2 Mb

CPISNet 66.1 93.7 73.1 53.3 66.2 75.5 5.2 663.1 Mb
CPISNet* 67.5 94.3 74.9 55.4 67.7 74.0 5 663.1 Mb

Figure 9. Comparison of the visualized instance segmentation results of vanilla Mask R-CNN and
our proposed CPISNet* in NWPU VHR-10 instance segmentation dataset. Rows 1 to 3 denote ground
truth, Mask R-CNN results and CPISNet* results, respectively. Please note that the red rectangle,
orange rectangle, and blue rectangle in row 2 represent aliasing masks of dense objects, false alarm,
and poorly segmented mask, respectively.

Next, we report the class-wise instance segmentation results in Table 14. As shown in
Table 14, ground track field receives the highest AP value of 92.5% among 10 categories.
Moreover, the airplane, tennis court, and basketball court achieve the remarkable AP
increments of 14.7%, 14.9%, and 14.0% than Mask R-CNN, respectively. For some particular
categories, e.g., bridge with an unbalanced aspect ratio and airplane with the irregular
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boundary, the AP value has dramatically improved but still very low. Qualitatively, we
have visualized the class-wise instance segmentation results in Figure 10. Identical to the
quantitative results, the predicted masks of CPISNet* fit the object boundary well. Each
category interpreted by CPISNet* completely presents its characteristic.

Table 14. Class-wise instance segmentation results of the state-of-the-art methods on NWPU VHR-10
test set.

Method AI BD GTF VC SH TC HB ST BC BR

Mask R-CNN 28.4 81.4 84.3 50.6 52.8 59.6 60.7 69.6 69.6 25.8
MS R-CNN 29.6 81.8 85.4 52.5 52.5 61.7 59.6 69.1 72.4 30.3
CM R-CNN 26.3 82.9 86.2 52.5 56.2 64.6 62.9 70.5 72.7 29.4

HTC 28.7 83.3 87.6 54.4 57.9 64.8 63.0 72.3 73.4 28.0
SCNet 32.9 85.8 89.1 55.1 58.6 69.5 64.4 70.0 72.9 24.7

CPISNet 41.5 86.2 91.6 57.4 57.6 73.3 67.6 74.2 75.7 35.9
CPISNet* 43.1 86.2 92.5 59.7 58.2 74.5 66.6 74.6 83.6 35.7

Figure 10. Class-wise instance segmentation results of NWPU VHR-10 instance segmentation dataset
generated by CPISNet*.

5. Discussion

Considering the defects of object detection and semantic segmentation in high-resolution
aerial images, we employ the instance segmentation to interpret the objects in high-
resolution aerial images, which can locate the objects with object boundary, classify the
objects in pixel-level, and distinguish the objects within a certain category by a different
color. The superiority of instance segmentation in high-resolution aerial images can be
observed from Figures 7–10. Despite the effectiveness of CPISNet in segmenting the aerial
objects for both iSAID and NWPU VHR-10 instance segmentation dataset, it still encounters
difficulties in segmenting the nested objects, e.g., the ground track field and soccer ball
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field. Moreover, the objects with small size, large aspect ratio, and irregular boundary
challenge the precision of instance segmentation. Future research will focus on tackling the
above-mentioned problems and, in addition, improving the FPS of the proposed model
under the premise of maintaining high instance segmentation precision in two aspects.
First, as the pairwise convolution layers in the mask branch are mapped with shortcut
connection, implementing the channel pruning operation may accelerate the procedure of
mask prediction (similar to optimizing the backbone network) and further improve the
FPS of the model. Second, the reusable bounding box stages in the cascaded architecture
of CPISNet may reduce its inference speed. Therefore, to increase the FPS of the model, it
is useful to replace the shared fully connected layers to the layers such as global average
pooling layer in each bounding box stage.

6. Conclusions

In this paper, we propose a novel instance segmentation network for interpreting
multi-category aerial objects, termed CPISNet. The CPISNet follows the top-down instance
segmentation formula. First, it adopts the AFEN to extract the multi-level bottom-up
augmented feature maps in design space level. Second, ERoIE is designed to extract
the mask RoIs via the refined bounding boxes output from PCC and multi-level features
output from AFEN. Finally, the convolution block with shortcut connection is responsible
for generating the binary mask for instance segmentation. Experimental conclusions can be
drawn on the iSAID and NWPU VHR-10 instance segmentation dataset: (1) Each individual
module in CPISNet acts on the whole instance segmentation utility; (2)CPISNet* exceeds
vanilla Mask R-CNN 3.4%/3.8% AP on iSAID validation/test set and 9.2% AP on NWPU
VHR-10 instance segmentation dataset; (3) The aliasing masks, missing segmentations,
false alarms, and poorly segmented masks can be avoided to some extent for CPISNet; (4)
CPISNet receives high precision of instance segmentation for aerial images and interprets
the objects with fitting boundary.
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