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Abstract: Large-scale mapping of date palm trees is vital for their consistent monitoring and sus-
tainable management, considering their substantial commercial, environmental, and cultural value.
This study presents an automatic approach for the large-scale mapping of date palm trees from very-
high-spatial-resolution (VHSR) unmanned aerial vehicle (UAV) datasets, based on a deep learning
approach. A U-Shape convolutional neural network (U-Net), based on a deep residual learning
framework, was developed for the semantic segmentation of date palm trees. A comprehensive set
of labeled data was established to enable the training and evaluation of the proposed segmentation
model and increase its generalization capability. The performance of the proposed approach was
compared with those of various state-of-the-art fully convolutional networks (FCNs) with differ-
ent encoder architectures, including U-Net (based on VGG-16 backbone), pyramid scene parsing
network, and two variants of DeepLab V3+. Experimental results showed that the proposed model
outperformed other FCNs in the validation and testing datasets. The generalizability evaluation of
the proposed approach on a comprehensive and complex testing dataset exhibited higher classifica-
tion accuracy and showed that date palm trees could be automatically mapped from VHSR UAV
images with an F-score, mean intersection over union, precision, and recall of 91%, 85%, 0.91, and
0.92, respectively. The proposed approach provides an efficient deep learning architecture for the
automatic mapping of date palm trees from VHSR UAV-based images.

Keywords: date palm trees; tree species classification; semantic segmentation; fully convolutional
neural networks; unmanned aerial vehicle (UAV)

1. Introduction
1.1. Background

The date palm tree (Phoenix dactylifera L.) is one of the oldest perennial fruit trees [1]
and has been one of the most cultivated fruit trees since the Neolithic/Early Bronze Age [2].
The palm tree has unique and easily recognized characteristics, including a single trunk,
palm leaves, and fronds. The crown of a date palm tree is densely covered with long
pinnate leaves, which vary with the age of the tree and environmental conditions and can
be as long as 4 m, on average [3]. The average height of date palm trees typically ranges
from 15 m to 25 m [4]. Date palm trees can generally be grown in arid and semi-arid
environments and are planted extensively on the Arabian Peninsula, in West Asia, and
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in North Africa. These trees are resilient and capable of surviving in a very hot and dry
climates and tolerating saline and alkaline soils [5]. Date palm trees may live for more
than 100 years [6] if they are not attacked by pests (i.e., red palm weevil) or diseases. These
trees play a considerable role in harsh arid and semi-arid environments by supporting
and stabilizing desert ecosystems [6]. Date palm trees bear fruit at an average age of
five years, with an average annual yield of 400–600 kg/tree/year and may continue to
produce for up to 60 years [7]. According to the Food and Agriculture Organization [8], the
world production of dates has increased from 1,852,592 tons in 1961 to 9,075,446 tons in
2019. The world’s total harvested area increased six times from 1961 (240,972 ha) to 2019
(1,381,434 ha). The estimation of the population of palm trees and the harvest are derived
on the basis of the total quantity of the produced dates, and accurate quantification of
date palm trees is either limited or obsolete [9]. The precise information about the number,
distribution, and health of date palm trees is crucial for sustainable management, disease
and pest control, and yield estimation. Considering that palm trees are distributed over
large agricultural and urban areas, the mapping and consistent monitoring of these trees
using field-based surveys are impractical and can be laborious and time-intensive tasks.

Remote sensing technologies have substantially boosted the efficiency and accuracy of
vegetation mapping, as they offer valuable and feasible tools for acquiring and observing
large areas with comprehensive options for resolution [10–12]. A tremendous amount of
satellite-based data is being collected and has been used extensively for the extraction
of vegetation cover, forestry, and changes over the Earth’s surface at regional and global
scales [13–19]. However, satellite and piloted aircrafts are constrained by their ability to
deliver adequate spatial and temporal resolutions, which are essential to several applica-
tions that require short revisit times; such applications include discriminating vegetation
or crop types and monitoring their phonological stages and health [20,21]. The capabilities
of unmanned aerial vehicles (UAVs) in acquiring images with flexible revisit scheduling
at low altitudes with ultra-spatial and temporal resolutions have enabled the observation
of small individual plants and the extraction of information at a fine scale that can sup-
port farmers in their decision making, improve agricultural production, and optimize the
utilization of resources [22,23]. A plethora of studies have successfully employed UAV
platforms to acquire red–green–blue (RGB), multispectral, hyperspectral, and thermal
images for studying vegetation [24–31], invasive plants [32–34], plant diseases, pests and
stresses [35–40], agriculture [41–46], and individual trees [47,48].

Given the formidable and increasing amount of remotely sensed data, a wide spectrum
of machine learning (ML) techniques has been used and developed to extract meaningful
information and harness the unprecedented sources of data for versatile earth-related ap-
plications. Deep learning (DL), as a subfield of machine learning and artificial intelligence,
has received considerable attention in the field of remote sensing in the past few years and
has increasingly been used in a wide range of applications. In the same manner as the
function of the human brain, DL algorithms learn by establishing the natural relationships
between input and output data through multilayered, interconnected deep neural network
(DNN) architectures [49,50]. Different from the classical machine learning models, DNN is
data-driven, which eliminates the need for the construction of manually hand-crafted fea-
tures of hierarchal data representations; high-level deep features are automatically learned
from an input of imagery datasets. DL outperforms classical ML algorithms by effectively
tackling the curse of dimensionality and achieving a better and consistent level of classifi-
cation accuracies from massive image datasets without a significant drop in accuracy [51].
Convolutional neural networks are one of the most widely used deep supervised learning
models in a wide spectrum of remote sensing applications and have achieved extraordinary
improvement in recent years in the classification of remotely sensed data [52,53]. The use
of diverse CNNs in crops and plant phenology recognition [54–59], weed detection [60–62],
agriculture [51,63], vegetation mapping [64–68], tree crown detection and mapping [69–72],
and disease detection [73–77] has elicited considerable interest.
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1.2. Related Work

The mapping and detection of individual tree crowns, tree/plant/vegetation species,
crops, and wetlands from UAV-based images are achieved by diverse CNN architectures,
which are used to perform different tasks, including path-based classification [78–87],
object detection [88–97], and semantic segmentation [98–107]. Recently, semantic seg-
mentation, a commonly used term in computer vision where each pixel within the in-
put imagery is assigned to a particular class, has been a widely used technique in di-
verse earth-related applications [108]. Various architectures, such as fully convolutional
networks (FCNs), SegNet [109], U-Net [110], and DeepLab V3+ [111], have been used
successfully to delineate tree and vegetation species [70,98,100,101,103,105,106,112–124],
crops [51,57,58,102,125,126], wetlands [107,127], and weeds [61,99] from various remotely
sensed data. For instance, Freudenberg et al. [128] utilized U-Net architecture to detect oil
and coconut palms from WorldView 2, 3 satellite images. Their approach, which achieved
accuracies ranging from 89% to 92%, was proposed as a way to precisely monitor palm trees
at large scales. To obtain oil palm plantation maps from high spatial-resolution satellite
images, Dong et al. [129] proposed a U-Net structure with a residual channel attention unit
and a conditional random field for post-processing. The study achieved an overall accuracy
of 96.88% and a mean intersection-over-union of 90.58%. Morales et al. [105] semantically
segmented Mauritia flexuosa palm trees from UAV images, which were acquired under
different environments and light conditions on the basis of Google’s DeepLab V3+ architec-
ture. The presented DeepLab V3+ model outperformed four U-Net architectures and was
able to distinguish young palms or palms partially covered by other types of vegetation.
Torres et al. [100] evaluated five semantic segmentation architectures, including SegNet,
U-Net, FC-DenseNet, and two DeepLab V3+ variants for segmenting single tree species.
An intersection over union ranging from 77.1% to 92.5% was reported by the experimental
analysis, which demonstrated the effectiveness of the evaluated architecture.

To the best of the authors’ knowledge, the vast majority of date palm mapping studies
focus on the utilization of the traditional machine learning algorithms, such as traditional
maximum likelihood supervised classification [130], spectral indices and thresholding
analysis [131,132], hybrid per-pixel classification approach [133], fuzzy logic [134], and DT
rule-based object-based image analysis [135]. Only limited studies have been dedicated to
using deep learning techniques to detect date palm trees [9,136]. The current study aims
to (1) develop a deep semantic segmentation method based on U-Shape convolutional
network (U-Net) architecture and a pre-trained deep residual network for large-scale
mapping of date palm trees; (2) establish a comprehensive and versatile labeled dataset
to support the development of the proposed semantic segmentation model for date palm
trees from very-high spatial resolution unmanned aerial vehicle (UAV) images; (3) compare
the performance of the proposed approach with those of different state-of-the-art semantic
segmentation networks.

2. Study Area and Materials
2.1. Experimental Site

The study area is located in the eastern region of Ajman Emirate, United Arab Emirates
(UAE). It is geographically located between latitude 25.36◦N and 25.43◦N and longitude
55.54◦E and 55.63◦E (World Geodetic System, 1984), as shown in Figure 1, and covers
approximately 85 km2. The climate of the UAE ranges from arid to hyper-arid, with a daily
high temperature ranging between 24 and 42 ◦C, with mean temperatures of 18 ◦C–34 ◦C
and extreme hot daytime temperatures occurring frequently, which reach above 40 ◦C in
the summer season [137,138]. The majority of the UAE experiences sporadic and irregular
rainfall in time and geographical distribution, whereas the average annual rainfall can be
less than 6 mm in the interior of the southern desert and can reach almost 160 mm in the
northern and eastern mountainous regions of the country [139].
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Figure 1. Geographical location of the study area: (a) the Middle East; (b) UAE; (c) location of the study area and the digital
elevation model of Ajman Emirate; (d) UAV image of the study area.

2.2. UAV Image Acquisition and Preprocessing

A commercial-grade off-the-shelf fixed-wing UAV (eBee-plus, senseFly®, Cheseaux-
sur-Lausanne, Switzerland) was used to acquire the VHSR images used in this research.
The UAV system was equipped with a senseFly S.O.D.A (sensor optimized for drone
applications) RGB camera (20 MP digital compact camera with a focal length of 28 mm that
acquires VHR visible-color images: red (660 nm), green (520 nm), blue (450 nm)) onboard
an inertial measurement unit and Global Navigation Satellite System (GNSS) with real-time
kinematic/postprocessed kinematic (RTK/PPK) modes to enable high horizontal accuracy.
Flight missions were planned and undertaken using senseFly’s eMotion flight controller
and data management software. Following the preflight planning and manual launch
of the eBee-plus, flight sessions were managed independently by the onboard autopilot.
Flight missions were undertaken at an average flying height of 100 m above elevation data
(AED), with 80% longitudinal and lateral overlaps. The utilized elevation data, provided
in senseFly’s eMotion software, were based on a 90 m resolution digital elevation model
derived from the Shuttle Radar Topography Mission (SRTM) combined with other data
sources (i.e., ASTER GDEM, SRTM30, cartographic data) [140]. Flight lines were oriented
perpendicular to the direction of the prevailing wind on the day of the survey. During
the flights, a ground-based Trimble R10 GNSS receiver was used in static mode as a base
reference station. The preprocessing of the acquired image data was initiated by rectifying
the drone locations where the images were captured during the flight, using the PPK
mode. Specifically, the ground GNSS RINEX (receiver independent exchange format)
data and drone-based GNSS data (drone flight log file) were processed using eMotion
software. Then, pix4Dmapper software (v.4.4.10; Prilly, Switzerland) was used to import
the geotagged overlapping images and develop the orthomosaic of the study area. The
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final product was one orthomosaic RGB image with an average ground sampling distance
of 5 cm.

2.3. Labeled Data

Having high-quality and sufficient training data is critical for machine learning algo-
rithms. For the sake of labeling remotely sensed data for semantic segmentation, which
requires each pixel in an image to be assigned to a category number (class), a corresponding
binary mask was manually prepared for the UAV data. In preparing the binary mask,
date palm tree pixels were encircled using ArcGIS Desktop software (v.10.7) to indicate
the presence of date palm trees in the study area (Figure 2). The corresponding ground
truth data served as a benchmark for the training and evaluation of the implemented
models. In this study, the labeling process was comprehensive enough to cover the entire
dataset and thereby incorporate as many versatile contexts as possible (i.e., palm trees in
farms with vegetation and soil backgrounds and palm trees in urban environments). Given
the fine details in the VHSR UAV data, the processing and analysis of large UAV images
are demanding and may consume much time and memory. Moreover, resampling these
data results in the loss of spatial resolution. As convolutional layers involve extensive
computations, the VHSR orthomosaic UAV data and the corresponding mask were divided
into equal-sized image tiles (512 × 512) to cope with the GPU memory limitations. An
image-label pair was produced for each image tile in the study area and its corresponding
mask (Figure 2). The generated image tiles were divided into three distinct sets: 65%
of the data was used for training, 15% was used for validation, and 20% was used for
testing purposes. Overall, 11,754 image tiles were selected for training and were artificially
enlarged thrice through data augmentation by rotating the image-label pair by 90◦, 180◦,
and 270◦ using the Sk-Image and Scipy libraries in Python. A total of 2300 image tiles were
selected from the generated image tiles for validation purposes. Meanwhile, 3900 image
tiles were kept for testing the generalizability of the model. The total number of image
tiles used in the current study was enough to develop an efficient DL model for date palm
tree mapping, as it is greater than the number of image tiles used in several successful
studies [58,103,114,115,122,123,127,128,141].

Figure 2. Samples of different image-label pairs: (a,c,e) image tiles and (b,d,f) their corresponding masks.
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3. Methodology

Different from patch-based classification and object detection techniques that are
based on CNNs, fully convolutional neural networks (FCNs) could be used to delineate the
boundary and position of individual date palm trees by performing pixel-level semantic
segmentation. This section is dedicated to providing a brief description of the proposed
U-Net architecture, the compared FCN networks (e.g., DeepLab V3+ and PSPNet), the
utilized segmentation evaluation metrics, and the experimental setup.

3.1. U-Net

U-Net, a U-shaped architecture originally proposed for biomedical image semantic
segmentation, is one of the commonly used FCN architectures in studies to classify remotely
sensed data for multiple applications. It is a symmetric CNN architecture that compromises
the encoder (capturing the context in the input image), the bottleneck, and the decoder
(mapping and restoring the contextual information back to the original resolution). The
encoder part in a U-Net architecture, a contracting path comprising a set of convolutional
and max-pooling layers, receives the input image patches and produces an increased
number of down-sampled feature maps on the basis of the depth of the network. The
decoder part, an expanding path comprising a set of convolutional, concatenation, and
upsampling layers, seeks to retrieve the precise locations and fine characteristics of the
features that have been learned by the encoder to semantically segment images. Such
retrieval is usually achieved by continuously upsampling feature maps and concatenating
them with learned high-resolution features obtained from the corresponding blocks from
the encoder.

In this study, a deep residual learning network (ResNet) [142] was considered the
encoder backbone of the U-Net network for extracting features from input datasets. ResNet,
an network architecture that was motivated by the design of Visual Geometry Group
network (VGG) [143], was designed to solve the problem of deep gradient explosion and
gradient vanishing when the number of layers in the network increases. ResNet architecture
encompasses several sets of blocks (i.e., a sequence of convolution, batch normalization,
and ReLu) that implement a specific type of connection method, which is referred to as
shortcut connection or skip connection. The output feature maps of a particular layer
(x) are forwarded and added to a deeper layer (y = F (x) + x). The depth of the ResNet
may vary according to the basis of the number of the designed residual layers. ResNet-18,
ResNet-50, and ResNet-101 are some common examples of ResNet variations. In this paper,
a pertained ResNet-50 based on ImageNet was used as a backbone to increase classification
performance and the generalizability of the proposed model. Additional implementation
details of the proposed approach are shown in Figure 3 and Table 1.
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Figure 3. U-Net architecture based on ResNet-50 adopted in this study.

Table 1. The architecture of the proposed U-Net network.

Path Unit Kernel Size (k), Feature Map (fm) Output Size
(Width × Height × Channels)

Input 512 × 512 × 3

Encoder

ZeroPadding2D 518 × 518 × 3
Conv2D k = (7 × 7), fm = 64

Batch normalization + Relu k = (3 × 3), fm = 64 256 × 256× 64
ZeroPadding2D Fm = 64 258 × 258× 64
MaxPooling2D k = (3 × 3), fm = 64 128 × 128 × 64

Convltional block 2 × Identity block
 k = (1× 1), fm = 64

k = (3× 3), fm = 64
k = (1× 1), fm = 256

× 3
128 × 128 × 256

Convltional block 3 × Identity block
 k = (1× 1), fm = 128

k = (3× 3), fm = 128
k = (1× 1), fm = 512

× 4
64 × 64 × 512

Convltional block 5 × Identity block
 k = (1× 1), fm = 256

k = (3× 3), fm = 256
k = (1× 1), fm = 1024

× 6
32 × 32 × 1024

Convltional blockIdentity block
 k = (1× 1), fm = 512

k = (3× 3), fm = 512
k = (1× 1), fm = 2048

× 2
16 × 16 × 2048
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Table 1. Cont.

Path Unit Kernel Size (k), Feature Map (fm) Output Size
(Width × Height × Channels)

Bottleneck

Conv2D k = (1× 1), fm = 512 16 × 16 × 512
Batch normalization + Relu k = (1× 1), fm = 512 16 × 16× 512

Conv2D k = (3× 3), fm = 512 16 × 16 × 512
Batch normalization + Relu k = (3× 3), fm = 512 16 × 16 × 512

Conv2D k = (1× 1), fm = 2048 16 × 16 × 2048
Batch normalization k = (1× 1), fm = 2048 16 × 16 × 2048

Decoder

Upsampling2D fm = 2048 32 × 32 × 2048

Decoder block
 k = (1× 1), fm = 2048

k = (1× 1), fm = 2048
k = (1× 1), fm = 2048

 32 × 32 × 2048

Concatenate_1 fm = 3072 32, 32, 3072
Upsampling2D fm = 3072 64, 64, 3072

Decoder block
 k = (1× 1), fm = 1024

k = (1× 1), fm = 1024
k = (1× 1), fm = 1024

 64, 64, 1024

Concatenate005F2 fm = 1536 64, 64, 1536
Upsampling2D fm = 1536 128, 128, 1536

Decoder block
 k = (1× 1), f = 512

k = (1× 1), f = 512
k = (1× 1), f = 512

 128, 128, 512

Concatenate_3 f = 768 128, 128, 768
Upsampling2D f = 768 256, 256, 768

Decoder block
 k = (1× 1), fm = 256

k = (1× 1), fm = 256
k = (1× 1), fm = 256

 256, 256, 256

Concatenate_4 fm = 320 256, 256, 320
Upsampling2D fm = 320 512, 512, 320

Decoder block
 k = (1× 1), fm = 64

k = (1× 1), fm = 64
k = (1× 1), fm = 64

 512, 512, 64

Output Conv2D + sigmoid k = (1 × 1), fm = 1 512, 512, 1

3.2. DeepLabV3+

The family of DeepLab architectures proposed by the Google research team adopts
multiscale atrous (i.e., holes) convolutions to solve the problems of multiscale objects
in image segmentation. Different from the traditional convolution operation, the atrous
convolution maintains the same resolution of features without increasing the number of
parameters [144]. Four DeepLab architectures have been proposed over the past few years.
First, the first version of DeepLab architectures, DeepLab V1, incorporates deep convo-
lutional neural networks and probabilistic graph models (i.e., conditional random field).
Second, the DeepLab V2 introduces Atrous Spatial Pyramid Pooling (ASPP) mechanism
for extracting multiscale contextual information by using multiple parallel dilated convolu-
tions with different dilation rates [145,146]. While the DeepLab V3 utilizes an improved
ASPP module [111], the latest DeepLab architecture, that is DeepLab V3+ [147], improves
previous DeepLab versions by introducing a decoder to refine segmentation results and
produce more distinctive boundaries. Overall, DeepLab V3+ architecture encompasses an
encoder, ASPP module, and a decoder (Figure 4). The adopted encoder network serves as
a feature extractor, which reduces feature maps and captures the rich semantic information.
The design of the encoder varies depending on the adopted backbone network. Multilevel
features of the input image are captured through the ASPP mechanism to solve the multi-
scale problem of image segmentation of objects. Eventually, the decoder gradually retrieves
the spatial information to produce more refined and sharp segmentation results [147]. In
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this study, the performance of the proposed approach was compared with those of two
variants of DeepLab V3+, based on ResNet-50 [142] and Xception [148] backbone networks.

Figure 4. DeepLab V3+ architecture.

3.3. Pyramid Scene Parsing Network

Similar to DeepLab V3+, the pyramid scene parsing network (PSPNet) [149] utilizes a
spatial pyramid pooling module between the encoder and decoder structure to capture
global contextual information [150] and integrate multiscale features by controlling the size
of the receptive field [151]. As shown in Figure 5, feature maps are extracted by the encoder
(adopted CNN architecture), and then a series of parallel poolings is used with different grid
scales for aggregating contextual information from various regions in extracted features
and obtaining a broad spectrum of information. Convoluted low-dimension feature maps
are then upsampled through bilinear interpolation, concatenated, and ultimately fed to a
convolution layer with a proper activation function to extract a probability map(s). The
backbone network of the adopted PSPNet was based on ResNet-50 [142] in this study.
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Figure 5. PSPNet architecture.

3.4. Evaluation Metrics

To quantitatively evaluate and analyze the performance of various semantic segmen-
tation architectures for detecting date palm trees, various pixel-by-pixel accuracy measures
were utilized. Dice similarity coefficient (DSC) (also known as the F-score) and Mean
Intersection-Over-Union (Mean-IOU) (also known as the Jaccard Index) metrics were uti-
lized to evaluate the performance of the different trained models on independent testing
datasets. These measures are generally used to compute the amount of agreement between
the semantically segmented pixels (CNN output) and the hand-annotated masks. These
measures can mathematically be expressed in accordance with Equations (1)–(4). Their
computed values range from 0 to 1, wherein the value of 1 indicates the utmost similarity
between the predicted and labeled mask (high segmentation accuracy), and 0 shows no
similarity between them.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

DSC(m, p)= 2× |m ∩ p|
|m|+|p| = 2× Precision× Recall

Precision + Recall
(3)

Mean− IOU(m, p) =
|m ∩ p|

|m|+|p| − |m ∩ p| (4)

where m denotes the binary ground truth mask, and p represents the predicted semantic
segmentation. TP, TN, FP, and FN symbolize the numbers of true positive, true negative,
false positive, and false negative, respectively.

3.5. Loss Function

The Dice loss [152], which is a regionally based loss that optimizes the network by
using the dice coefficient, was used in this study on the basis of the empirical evaluation.
This loss can mitigate the class imbalance between the foreground class (i.e., palm trees)
and the background class in binary segmentation tasks [153,154]. Equation (4) expresses
the formulation of Dice loss (LDice).

LDice = 1− 2 ∑N
i pimi+ξ

∑N
i p2

i + ∑N
i m2

i +ξ
, (5)
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where pi ∈ {0, 1} is the predicted probability (sigmoid output) of the ith pixel in the image,
mi is the labeled mask of the ith pixel in the image (0 ≤ mi ≤ 1), and ξ is a minimal constant
value to avoid the division by zero problems in the denominator.

3.6. Experimental Setup

Segmentation models were built using the TensorFlow deep learning framework and
executed using multiple graphics processing unit (GPU) hardware. The data parallelism
approach using the TensorFlow MirroredStrategy, which enables synchronous distributed
training on multiple GPUs in one server, was applied to fit the semantic segmentation
models on a Linux cluster, with the following specifications: Intel®, Xeon®, 2.3 GHz, 512 GB
of RAM, eight NVIDIATM Tesla K80 (GK210GL) GPUs, and 100 TB of storage. Figure 6
depicts the distributed training strategy used in this study. Eight replicas were created, and
each variable in the segmentation model was mirrored across all replicas. The global batch
size was set to 32, and the global batch was divided into small minibatches over the eight
GPUs. Each GPU independently performed forward and backward parallel passes, and the
gradients for the different batches of datasets were computed separately. An independent
validation set (2300 image-mask pairs) was used after each training epoch to compute the
loss and accuracy of the trained model, thereby avoiding overfitting, and then evaluate its
generalizability. Dice loss was computed between outputs of the replicated models and
corresponding masks of input image sets as an objective function. The dice coefficient was
used to evaluate the segmentation outputs. The gradients of the objective function were
gathered and averaged, and an identical update was applied to each independent network.

Figure 6. Mirrored distributed training strategy.

The hyperparameters of all segmentation models were empirically tuned by conduct-
ing a set of experiments. The encoder part of all models was initialized using ImageNet
pretrained weights, and these weights were fine-tuned with further training. Among the
stochastic gradient-based optimization algorithms, the adaptive momentum estimation
(ADAM) optimizer [155] was chosen in this study for all FCN networks because of its
efficiency in improving convergence and dealing with vanishing learning rates [156]. All
segmentation models were trained for 100 epochs by using the ADAM optimizer with
an initial learning rate of 0.001 and momentum hyperparameters β1 and β2 of 0.9 and
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0.999, respectively. The training process continued until the model converged or until a
maximum number of epochs was reached. Various techniques, including early stopping,
were used to avoid overfitting. Early stopping was applied to control the training when the
performance in the validation dataset degraded over a particular number of consecutive
epochs. L2 regularization was also added to all convolutional layers to avoid overfitting.

4. Results
4.1. Evaluation of Segmentation Performance

The performance of the proposed segmentation model (U-Net based on a pretrained
ResNet-50) for mapping date palm trees was compared with different state-of-the-art
fully convolutional networks, including U-Net (VGG-16 backbone network), DeepLab
V3+ (ResNet-50 backbone network), DeepLab V3+ (Xception backbone network), and
PSPNet (ResNet-50 backbone network). Figure 7 displays the evolution of the loss and dice
similarity coefficient curves of the proposed approach over the epochs. Several accuracy
measures, including precision, recall, F-score, and Mean-IOU metrics, were applied to the
validation dataset for all models to evaluate the performance of the proposed architecture
against other segmentation architectures quantitatively, as shown in Figure 8. Among them,
the proposed model outperformed other segmentation architectures, followed by PSPNet,
DeepLab V3+ (Xception backbone network), U-Net (VGG-16 backbone network), and
DeepLab V3+ (ResNet-50 backbone network). The proposed approach achieved an F-score,
Mean-IOU, precision, and recall of 92%, 85%, 0.92, and 0.91, respectively. A precision
metric of 0.92 indicates positive detections relative to the labeled data (consistency of 92%
between 2300 labeled and predicted images).

Figure 7. Metric evolution over epochs of the proposed approach.
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Figure 8. Evaluation metrics for all models obtained from the validation dataset.

The output of semantic segmentation models is a probability map ranging from 0 to 1,
thereby indicating the probability of the presence or absence of date palm trees in an image.
Here, a threshold value greater than 0.5 was applied to the probability map to derive the
segmentation results. Figure 9 shows six randomly selected images from the validation
dataset and their corresponding masks and experimental results of the five segmentation
models. The original image and ground truth are shown on the left side of the image,
and the result of the proposed approach is illustrated on the right side of the image. All
segmentation models provided satisfactory segmentation results, with an F-score ranging
from 81% to 92% and Mean-IOU ranging from 78% to 85%. However, a disparity can be
observed between the results of the five segmentation models in terms of the size and
boundary of the detected palm trees. Quantitative and visual analyses showed that the
proposed approach presents significant potential in mapping date palm trees from UAV
images, because it provides a satisfactory delineation of date palm trees.

4.2. Generalizability Evaluation

As described in Section 2.3 a total of 3900 images, extracted from the VHSR orthomosaic
UAV product, were selected as the testing dataset to evaluate the generalization capability
of the proposed network. Figure 10 illustrates the segmentation quality metric for semantic
segmentation of the testing dataset achieved by the trained deep learning models. Figure 11
displays nine randomly selected images from the testing dataset and their corresponding
masks and segmentation outputs of the trained models. The proposed segmentation model
demonstrates excellent generalization capacity because it achieved an F-score of 91% and
Mean-IOU of 85%. The compared segmentation models also maintained a similar range
of accuracies. The proposed model demonstrates an efficient model for date palm tree
mapping from UAV images via the comparative evaluation of segmentation results.
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Figure 9. Comparison of six randomly selected images (a–f) from the validation dataset and their corresponding seg-
mentation results. The left column shows the selected RGB images, followed by the corresponding ground truth label,
and segmentation results of the evaluated models including U-Net (based on VGG-16 network), DeepLab V3+ (based on
ResNet-50 network), DeepLab V3+ (based on Xception network), PSPNet and the proposed approach).

Figure 10. Summary of evaluation metrics of segmentation models obtained from the testing dataset.
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Figure 11. Comparison of nine randomly selected images (a–i) from the testing dataset and their corresponding segmentation
results. The left side of the figure shows the selected RGB images followed by the corresponding ground truth label and
classification results of the evaluated models.

5. Discussion

Large-scale mapping of date palm trees is essential for their consistent monitoring
and sustainable management, given the substantial commercial, environmental, and land-
scaping values of date palm trees. Mapping and monitoring date palm trees using ground
surveys is challenging because these trees are planted in different agricultural and urban
environments. The increasing availability and continuous development of commercial
UAV systems have amplified the popularity and utilization of UAV-based images in a
wide range of earth-related studies. Different from satellite-based images, large-scale
UAV images are acquired in different seasons, flight heights, spatial resolutions, weather
conditions, sunlight angles, and image illuminations. Developing an accurate transferable
approach for large-scale mapping of date palm trees from UAV images can be challenging
because feature values may vary significantly based on the source of data, image object
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segmentation level, and intraclass variability among classes, given the dependence of tradi-
tional machine learning techniques on the selection of shallow handcrafted features (i.e.,
band ratio, color invariants, and geometrical features). Thus, misclassification is expected
when traditional machine learning is applied to different imageries [108].

In the current study, a deep semantic segmentation model based on U-Net architecture
and a deep residual network was proposed for the large-scale mapping of date palm trees.
A pretrained ResNet-50 based on ImageNet was adopted in the encoder module of U-Net.
A comprehensive labeled dataset was developed to support the development of the pro-
posed semantic segmentation for date palm trees from very-high spatial resolution (VHSR)
UAV images. The labeled dataset was compiled from different agricultural and urban
environments with a substantial variance in tree crown sizes, shapes, ages, health status,
and backgrounds. The model was trained on eight GPUs (NIVIDIATM Tesla K80) through
synchronous distributed training. The developed model was evaluated with independent
validation and testing datasets. The performance of the proposed model was also com-
pared with different advanced segmentation networks with various encoder backbones,
including two variants of the DeepLab V3+ [147] (based on pretrained ResNet-50 and
Xception backbones), PSPNet [149] (based on pretrained ResNet-50), and U-Net (based on
a pretrained VGG-16) [143]. All segmentation models were tested on an NIVIDIATM Titan
RTX graphics card with 24 Gb RAM. Table 2 compares the number of parameters, training
time per epoch, and the testing time of the evaluated segmentation models.

Table 2. Training and testing details for each model.

Model Backbone No. of Trainable
Parameters (M)

Training
Time/Epoch (m)

Test Time
(s)/Image

U-Net ResNet-50 ~157.280 ~75 ~0.17
U-Net VGG-16 ~25.858 ~43 ~0.1

DeepLab V3+ ResNet-50 ~17.795 ~25 ~0.07
DeepLab V3+ Xception ~21.558 ~29 ~0.09

PSPNet ResNet-50 ~46.631 ~65 ~0.14

The proposed approach maintained high accuracy in the validation and testing
datasets and indicated that date palm trees can be mapped with an average F-score (>91%)
and Mean-IOU (>85%). With a F-score that ranges from 88% to 92% and a Mean-IoU that
ranges from 78% to 85%, all of the evaluated segmentation models provided satisfactory
segmentation results on the testing dataset. U-net architecture based on ResNet-50 architec-
ture outperformed other segmentation models, with a F-score ranging from 1.2%–10% and
Mean-IOU ranging from 2%–16%. This was followed by PSPNet (ResNet-50 Backbone),
DeepLab V3+ (Xception Backbone), U-net (VGG-16 Backbone), and DeepLab V3+ (ResNet-
50 Backbone). Numerous studies that have used and compared different deep semantic
segmentation architectures for tree, crop, and vegetation mapping have reported similar
ranges of segmentation metrics [57,70,100,102,117,125]. For instance, five semantic segmen-
tation architectures, including SegNet, U-Net, FC-DenseNet, and DeepLab V3+( based on
Xception and MobileNetV2 backbones), were evaluated in Reference [100] for segmenting
threatened single tree species from UAV-based images. An intersection-over-union that
ranges from 77.1% to 92.5% and F1-score between 87.0% and 96.1% were reported by their
experimental analysis. FC-DenseNet and U-Net models were superior to DeepLab V3+
(MobileNetV2), SegNet, and DeepLab V3+ (Xception). Cao and Zhang [112] utilized an
improved U-Net model by replacing the convolutional layer in the U-Net network with a
residual unit of ResNet for classifying different tree species from high-spatial-resolution air-
borne images. The developed approach was then followed by post-classification processing
using conditional random fields to obtain smoother tree boundaries. An overall classifi-
cation accuracy of 87% was achieved by the improved U-Net network. Ferreira et al. [70]
achieved high accuracy by incorporating ResNet-18 in the DeepLab V3+ architecture to
detect and classify Amazonian palm species from UAV images.
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The proposed model in this study shows an efficient approach for date palm tree map-
ping from UAV images. It can segment date palm trees in relatively complex agricultural
and urban environments and where palm trees are partially obscured by higher trees and
shadow. Figures 9 and 11 depict the segmentation outputs of randomly selected images
(512 × 512 pixels) from the validation and testing dataset. Although the differences in
evaluation scores between ResUnet-50 and some of the evaluated architectures may not
appear significant, it demonstrates better delineation of date palm trees. Considering that
it is computationally intensive to train and test large UAV imagery in a deep semantic
segmentation model, the UAV data were split into smaller tiles (512 × 512 pixels) and
fed to the trained network and predicted the presence of date palm trees. In the splitting
process of a large image, an overlap between the tiles may be considered to ensure better
delineation of the palm trees around the edges of the generated image tiles. The final
prediction is reconstructed by merging the segmentation outputs of the classified tiles. For
instance, Figure 12 shows the segmentation output of the proposed model for different
image tiles with larger sizes (5120 × 5120 pixels) without performing any post-processing
operations. However, a minor misclassification might be encountered in the reconstructed
product. For instance, when a palm tree is divided into two separate images, the shape/size
of these predicted palm trees might vary slightly. In addition, some minor vertical lines
can be observed, as shown in Figure 12d–f. These errors can be refined by post-processing
computer-vision operations [70].

Figure 12. (a–f) Segmentation output of the proposed model for different randomly selected image tiles with larger sizes.
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6. Conclusions

This study presented an automatic approach for the large-scale mapping of date
palm trees from VHSR UAV images based on a deep semantic segmentation model. A
pre-trained deep residual learning framework (ResNet-50) was used as the backbone of
the encoder module of a U-Net. A large and diverse labeled dataset was created to aid in
the development of the proposed semantic segmentation model. A distributed training
strategy was used to train the model on multiple GPUs. The proposed segmentation model
was evaluated with different state-of-the-art fully convolutional networks, including U-Net
(VGG-16), PSPNet (based on ResNet-50), and two variations of DeepLab V3+ (ResNet-
50 and Xception backbones). Experimental results showed that the proposed approach
was superior to other semantic segmentation models in validation and testing datasets,
achieving an F-score of 91% and Mean-IOU of 85%. The proposed deep fully convolutional
network is an efficient tool for the accurate mapping and delineation of date palm tree
VHSR UAV images, thereby building and updating geospatial databases and enabling
consistent monitoring of date palm trees.
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