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Abstract: The target detection of the passive multiple-input multiple-output (MIMO) radar that
is comprised of multiple illuminators of opportunity and multiple receivers is investigated in this
paper. In the passive MIMO radar, the transmitted signals of illuminators of opportunity are
totally unknown, and the received signals are contaminated by the colored Gaussian noise with an
unknown covariance matrix. The generalized likelihood ratio test (GLRT) is explored for the passive
MIMO radar when the channel coefficients are also unknown, and the closed-form GLRT is derived.
Compared with the GLRT with unknown transmitted signals and channel coefficients but a known
covariance matrix, the proposed method is applicable for a more practical case whenthe covariance
matrix of colored noise is unknown, although it has higher computational complexity. Moreover, the
proposed GLRT can achieve similar performance as the GLRT with the known covariance matrix
when the number of training samples is large enough. Finally, the effectiveness of the proposed
GLRT is verified by several numerical examples.

Keywords: radar detection; passive radar; colored Gaussian noise; generalized likelihood ratio test;
multiple-input multiple-output

1. Introduction

In the field of radar, passive radar has been an important research area [1–28]. In
passive radar, the transmitters are usually the noncooperative illuminators of opportu-
nity. These illuminators can be digital audio broadcast stations [26], digital television
stations [27], or commercial cellular phone base stations [28]. Compared with active
radar [29–39], passive radar requires less infrastructure, and is also covert and low-cost,
since passive radar does not require to be equipped with its own transmitters. Due to this,
passive radar has been attracted great attention.

Compared with active radar that knows the transmitted signal, passive radar does
not know the transmitted signal, which complicates target detection for passive radar.
For passive radar detection, according to the property of the transmitted signal of the
illuminator of opportunity, the unknown transmitted signal is usually modeled as either
a stochastic model or a deterministic model. For the stochastic model, the transmitted
signal is usually modeled as a stochastic process, while it is deterministic but unknown
for the deterministic model. For the deterministic model, the traditional method that
utilizes the correlation between the direct-path (transmitter to receiver) and target-path
(transmitter to target to receiver) signals is proposed in [1]. However, the performance of
the method in [1] will be significantly degraded when the signal-to-noise ratio (SNR) of the
received direct-path signal is low. To improve the detection performance of passive radar,
the generalized likelihood ratio test (GLRT) [40] is proposed in [2], in which the unknown
parameters are replaced with the corresponding maximum likelihood estimates (MLEs).
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Moreover, for a bistatic passive polarimetric radar network, the GLRT is explored in [4].
For the stochastic model, the GLRT for a multistatic passive radar is investigated in [5],
where the unknown transmitted signal of the illuminator of opportunity is treated as a
stochastic process.

In general, the transmit power of the employed noncooperative illuminators of op-
portunity in passive radar is low, which limits the performance of target detection. Never-
theless, the detection performance of passive radar can be improved by utilizing multiple
illumators and receivers [7], named passive multiple-input multiple-output (MIMO) radar
in [23]. In [8], a linear fusion method is proposed for the passive MIMO radar. In this
method, for each receiver and transmitter pair of the passive MIMO radar, the cross-
correlation between the received target-path and direct-path signals is computed first,
and then the weighted combination of those cross correlations forms the final test. The
weights are optimized according to a revised deflection coefficient criterion. For passive
MIMO radar comprised of multiple illuminators, the GLRT is investigated in [9]. To obtain
the GLRT requires obtaining the unknown parameters estimations. In [41], based on the
expectation-maximization principle, the authors propose an iterative estimator to estimate
the target delay and Doppler for the bistatic radar, where the unknown signal transmit-
ted from the noncooperative illuminators of opportunity is molded as an autoregressive
process. Furthermore, in [42] the authors provide a survey of parameter estimation and
target detection with limited data for the phased-array radar, distributed MIMO radar, and
passive radar when the parametric auto-regressive model is used for target detection. To
derive a closed-form detector for the passive MIMO radar, the Rao test is derived in [10].
To reduce the computational complexity, the authors devise a detector for passive/active
MIMO radar in [11]. In [12], the signal transmitted by the noncooperative illuminator of
opportunity is assumed to be a discrete-time, zero-mean, second-order cyclostationary
signal. The most locally powerful, invariant-test-inspireddetector is proposed for the
MIMO passive bistatic radar system, which consists of a transmitter, a reference array, and
a surveillance array. In [13], the signal sequence of the sources of opportunity is treated
as Gaussian random vectors with zero mean and unknown covariance matrices, and the
noises in each surveillance channel and reference channel are assumed to be either indepen-
dent with identical variances or arbitrarily correlated. Under those assumptions, the GLRT
is investigated. In [16], both the Bayesian test and GLRT are derived for passive MIMO
radar when the noise variance is either known or unknown. In [17], the signal format of
the communication signal is exploited to improve the detection performance of the passive
MIMO radar when the variance of white noise is known/unknown. Moreover, in [18], the
GLRT for the passive MIMO radar is derived when the signal format of the communication
signal is known but the covariance matrix of the colored noise is unknown. In [19], it is
assumed that the direct-path signals are not available in the passive MIMO radar, and
the preamble information of the transmitted signals of noncooperative illuminators of
opportunity is known. Moreover, in [19], the noise is assumed to be Gaussian white noise,
and the GLRTs are, respectively, investigated when the white noise variance is known or
unknown. In practice, the signal format and preamble information of transmitted signals
may not be known, and the direct-path signals are usually available. In this case, the GLRT
for the passive MIMO radar network as depicted in Figure 1 is explored in [23]. In [23],
the target-path and direct-path signals are totally unknown, and the covariance matrix of
noise is known or the noise is already whitened. Whitening the noise is non-trivial and
would require some sort of training samples. However, in practice, these whitened data
are unlikely to be present.
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Figure 1. The notional passive MIMO radar consists of two multichannel receiver and two transmitters.

In this paper, we consider a more practical case where the covariance matrix of colored
noise in a passive MIMO radar network is unknown, i.e., the colored noise is un-whitened,
and the GLRT will be developed. The developed GLRT can simultaneously estimate the
statistics of the colored noise while performing the passive radar target detection. This is a
very practical problem: passive radar detection in un-whitened colored noise, for which
GLRT-based algorithms have not yet been published to date. These algorithms are highly
nontrivial and do not follow easily from the work in [23]. Moreover, the developed GLRT
approaches the previous GLRT performance with the known covariance matrix when the
number of training samples used to estimate the covariance matrix is increased.

The major technical contributions of this paper are summarized as follows. (1) We
proposed a target detection method for the passive MIMO radar when the transmitted
signal, channel coefficients, and covariance matrix of colored Gaussian noise are unknown.
(2) A closed-form GLRT is derived in this paper.

The remainder of this paper is organized as follows. In Section 2, the signal model
and assumption are developed. In Section 3, the GLRT for the passive MIMO radar with
unknown colored noise is derived. Numerical results are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2. Signal Model and Assumption

In this section, the assumptions of a passive MIMO radar network will be made and
the signal model will be constructed.

In this paper, we assume that there are Nr receivers and Nt transmitters in the passive
MIMO radar network. In each receiver, there is an antenna array which can separate
the direct-path and target-path signals by spatial filtering [23]. Suppose that the signals
transmitted by different noncooperative illuminators of opportunity or transmitters occupy
different frequency bands (In a cellular system, this is usually true for the signals transmit-
ted by neighboring base stations in order to minimize the mutual interference.) [23]. Hence,
the received signals due to the transmission from different transmitter can be separated
by frequency domain. Moreover, suppose that in the received signals, the clutter has been
suppressed by clutter cancellation techniques [20,43], which is the same assumption made
in [23].

For each hypothesized range-Doppler cell under test, passive MIMO radar requires
to determine whether there is a target or not. For each range-Doppler cell under test, the
Doppler shift and range are known, which can be used to compensate the Doppler shift
and time delay of the received signal.

Following the compensation in [23], after delay-Doppler compensation, the target-
path signal (surveillance channel signal) vector of N time samples at the jth receiver due
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to the transmission from the ith transmitter is represented as ys
i,j =

[
ys

i,j(0), ys
i,j(1), . . . ,

ys
i,j(N − 1)

]T
, and the direct-path signal (reference channel signal) vector of N time samples

at the jth receiver due to the transmission from the ith transmitter is represented as

yr
i,j =

[
yr

i,j(0), yr
i,j(1), . . . , yr

i,j(N − 1)
]T

, for i = 0, 1, . . . , Nt − 1 and j = 0, 1, . . . , Nr − 1, as

per the model in [23], where (·)T denotes the transpose operator.
Similar to [29], we suppose that the training samples, i.e., secondary data, are available,

and they have the same probability distribution as the colored Gaussian noise in the
reference and surveillance channels (the training samples can be obtained by monitoring
the frequency bands, which do not have a communication signal in them). Moreover,
suppose that for each receiver and transmitter pair we can obtain K training samples, and
the kth training samples obtained in the jth receiver and in the frequency band occupied by

the ith transmitter is yn
i,j,k =

[
yn

i,j,k(0), yn
i,j,k(1), . . . , yn

i,j,k(N − 1)
]T

, for i = 0, 1, . . . , Nt − 1,
j = 0, 1, . . . , Nr − 1, and k = 0, 1, . . . , K− 1.

For the target detection in passive MIMO radar, under hypothesis H1, i.e., target
present, the compensated signals and secondary data can be represented as

H1 : ys
i,j = µs

i,jsi + ns
i,j

yr
i,j = µr

i,jsi + nr
i,j

yn
i,j,k = nn

i,j,k. (1)

Under hypothesis H0, i.e., target absent, the compensated signals and secondary data
can be described as

H0 : ys
i,j = ns

i,j

yr
i,j = µr

i,jsi + nr
i,j

yn
i,j,k = nn

i,j,k. (2)

In (1) and (2), µr
i,j and µs

i,j respectively denote the complex reference and surveillance chan-

nel coefficients from the ith transmitter to the jth receiver, si = [si(0), si(1), . . . , si(N − 1)]T is
an N × 1 vector collecting the unknown transmitted signal samples of the ith transmitter,

the N × 1 vectors ns
i,j =

[
ns

i,j(0), ns
i,j(1), . . . , ns

i,j(N − 1)
]T

and nr
i,j =

[
nr

i,j(0), nr
i,j(1), . . . ,

nr
i,j(N − 1)

]T
denote the surveillance and reference channel noise at the jth receiver fo-

cused on the transmission from the ith transmitter, respectively, and the N × 1 vector

nn
i,j,k =

[
nn

i,j,k(0), nsn
i,j,k(1), . . . , nn

i,j,k(N − 1)
]T

denotes the kth training samples obtained at
the jth receiver focused on the transmission from the ith transmitter.

Suppose that the colored noise vectors ns
i,j, nr

i,j, and nn
i,j,k, for i = 0, 1, . . . , Nt − 1,

j = 0, 1, . . . , Nr − 1, k = 0, 1, . . . , K− 1 are all independent identically distributed, and each
of them is the Gaussian random vector with zero mean and covariance matrix Σ ∈ CN×N ,
where Σ is a positive definite matrix, which is assumed to be unknown in this paper.

3. GLRT for Passive MIMO Radar

In this section, the probability distribution of the received signal is formulated and the
GLRT for passive MIMO radar is investigated.
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3.1. Probability Distribution of Received Signal

Following the assumption in Section II, under hypothesis H1, the joint conditional
probability density function (PDF) of the received target-path signal, direct-path signal,
and secondary data in (1) is

p1(yr, ys, yn|µr, µs, s, Σ) =
1

πNc0 |Σ|c0
exp

{
−

Nt−1

∑
i=0

Nr−1

∑
j=0

[
K−1

∑
k=0

(
yn

i,j,k

)H
Σ−1yn

i,j,k

+
(

ys
i,j − µs

i,jsi

)H
Σ−1

(
ys

i,j − µs
i,jsi

)
+
(

yr
i,j − µr

i,jsi

)H
Σ−1

(
yr

i,j − µr
i,jsi

)]}
, (3)

where c0 = NtNr(K + 2), |·| represents the determinant of a matrix, (·)H denotes Hermi-

tian conjugate operator, yr =

[(
yr

0
)T ,
(
yr

1
)T , . . . ,

(
yr

Nt−1

)T
]T

represents the received signal

vector that collects all the reference channel samples with yr
i =

[
yr

i,0, yr
i,1, . . . , yr

i,Nr−1

]T
,

ys =

[(
ys

0
)T ,
(
ys

1
)T , . . . ,

(
ys

Nt−1

)T
]T

denotes the received signal vector that collects all

the surveillance channel samples with ys
i =

[
ys

i,0, ys
i,1, . . . , ys

i,Nr−1

]T
, yn =

[(
yn

0
)T ,
(
yn

1
)T ,

. . . ,
(

yn
Nt−1

)T
]T

represents the received signal vector that collects all the training sam-

ples with yn
i =

[(
yn

i,0

)T
,
(

yn
i,1

)T
, . . . ,

(
yn

i,Nr−1

)T
]T

and yn
i,j =

[
yn

i,j,0, yn
i,j,1, . . . , yn

i,j,K−1

]T
,

µr =

[(
µr

0
)T ,
(
µr

1
)T , . . . ,

(
µr

Nt−1

)T
]T

denotes the vector that collects all the reference chan-

nel coefficients with µr
i =

[
µr

i,0, µr
i,1, . . . , µr

i,Nr−1

]T
, µs =

[(
µs

0
)T ,
(
µs

1
)T , . . . ,

(
µs

Nt−1

)T
]T

represents the vector that collects all the surveillance channel coefficients with µs
i =[

µs
i,0, µs

i,1, . . . , µs
i,Nr−1

]T
, and s =

[
(s0)

T , (s1)
T , . . . , (sNt−1)

T
]T

collects the si for all i.
Under hypothesis H0, the joint conditional PDF of the received target-path and direct-

path signals, and secondary data in (2) is

p0(yr, ys, yn|µr, s, Σ) =
1

πNc0 |Σ|c0
exp

{
−

Nt−1

∑
i=0

Nr−1

∑
j=0

[
K−1

∑
k=0

(
yn

i,j,k

)H
Σ−1yn

i,j,k

+
(

yr
i,j − µr

i,jsi

)H
Σ−1

(
yr

i,j − µr
i,jsi

)
+
(

ys
i,j

)H
Σ−1ys

i,j

]}
. (4)

3.2. GLRT Derivation

According to the Neyman–Pearson Lemma [44,45], we can obtain that the likelihood
ratio test has the largest detection probability when the probability of false alarm (Pfa)
is fixed. Nevertheless, for the problem considered in this paper, the likelihood ratio test
can not be obtained because the PDF of the received signals depends on the unknown
channel coefficients, transmitted signals, and covariance matrix of colored noise. To solve
this problem, a typical method is to use the maximum likelihood estimates of unknown
parameters as the true values. This method is called GLRT. The GLRT for our problem will
be investigated in this subsection.

For the passive MIMO radar, the GLRT can be written as

maxµr ,µs ,s,Σ p1(yr, ys, yn|µr, µs, s, Σ)

maxµr ,s,Σ p0(yr, ys, yn|µr, s, Σ)

H1
≷
H0

γ, (5)
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where γ is the detection threshold which is usually determined according to a desired Pfa
in practice.

The GLRT in (5) can also be written as

max
µr ,µs ,s,Σ

l1(yr, ys, yn|µr, µs, s, Σ)−max
µr ,s,Σ

l0(yr, ys, yn|µr, s, Σ)
H1
≷
H0

γ0, (6)

where γ0 = ln γ, l0(yr, ys, yn| µr, s, Σ) = ln p0(yr, ys, yn|µr, s, Σ) and l1(yr, ys, yn|µr, µs, s, Σ)
= ln p1(yr, ys, yn|µr, µs, s, Σ) denote the log-likelihood functions under H0 and H1, re-
spectively.

From (3), the log-likelihood function under H1 is

l1(yr, ys, yn|µr, µs, s, Σ) = c1 − c0 ln|Σ|−
Nt−1

∑
i=0

Nr−1

∑
j=0

[
K−1

∑
k=0

(
yn

i,j,k

)H
Σ−1yn

i,j,k

+
(

ys
i,j − µs

i,jsi

)H
Σ−1

(
ys

i,j − µs
i,jsi

)
+
(

yr
i,j − µr

i,jsi

)H
Σ−1

(
yr

i,j − µr
i,jsi

)]
, (7)

where c1 = −NNtNr(K + 2) ln π.
Similarly, from (4), the log-likelihood function under H0 is

l0(yr, ys, yn|µr, s, Σ) =c1 − c0 ln|Σ|−
Nt−1

∑
i=0

Nr−1

∑
j=0

[
K−1

∑
k=0

(
yn

i,j,k

)H
Σ−1yn

i,j,k

+
(

yr
i,j − µr

i,jsi

)H
Σ−1

(
yr

i,j − µr
i,jsi

)
+
(

ys
i,j

)H
Σ−1ys

i,j

]
. (8)

In order to obtain the optimal solution to the problem in (6), the optimal solution to
the optimization problem

max
µr ,µs ,s,Σ

l1(yr, ys, yn|µr, µs, s, Σ) (9)

is required to be obtained.
To obtain the optimal solution to the optimization problem in (9), let the derivative

of (7) with respect to the covariance matrix Σ be the zero matrix, and then we can achieve

Σ̂ =
1
c0

Nt−1

∑
i=0

Nr−1

∑
j=0

[(
yr

i,j − µr
i,jsi

)(
yr

i,j − µr
i,jsi

)H
+
(

ys
i,j − µs

i,jsi

)(
ys

i,j − µs
i,jsi

)H

+
K−1

∑
k=0

yn
i,j,k

(
yn

i,j,k

)H
]

, (10)

where Σ̂ satisfies (9) for any si, µr
ij, µs

ij, i = 0, 1, . . . , Nt − 1, j = 0, 1, . . . , Nr − 1.

According to Theorem 3.1.4 in [46], Σ̂ will be a positive definite matrix with probability
1 if and only if

N 6 NtNr(K + 2). (11)
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Suppose that the inequation in (11) is satisfied. Replacing Σ in (7) with Σ̂ in (10) and
utilizing the formula xHAx = tr

(
AxxH), (7) can be rewritten as

l1(yr, ys, yn|µr, µs, s, Σ̂
)
= c1 − c0 ln|Σ̂|−

Nt−1

∑
i=0

Nr−1

∑
j=0

K−1

∑
k=0

[(
yn

i,j,k

)H
Σ̂
−1yn

i,j,k

+
(

yr
i,j − µr

i,jsi

)H
Σ̂
−1
(

yr
i,j − µr

i,jsi

)
+
(

ys
i,j − µs

i,jsi

)H
Σ̂
−1
(

ys
i,j − µs

i,jsi

)]
=c1 − c0 ln|Σ̂|−tr

(
Σ̂
−1

Nt−1

∑
i=0

Nr−1

∑
j=0

K−1

∑
k=0

[
yn

i,j,k

(
yn

i,j,k

)H

+
(

yr
i,j − µr

i,jsi

)(
yr

i,j − µr
i,jsi

)H
+
(

ys
i,j − µs

i,jsi

)(
ys

i,j − µs
i,jsi

)H
])

(12)

=c1 − c0 ln|Σ̂|−tr(NtNr(K + 2)IN) (13)

=c1 + c2 − c0 ln|Σ̂|, (14)

where in going from (12) to (13) we use (10), c2 = −NNtNr(K + 2), and IN represents an
N × N identity matrix.

Let Ysr = [Ys, Yr] denote the N× 2Nr Nt matrix that collects all the received surveillance
and reference channel signals, where Ys =

[
Ys

0, Ys
1, . . . , Ys

Nt−1

]
, Yr =

[
Yr

0, Yr
1, . . . , Yr

Nt−1

]
,

Ys
i =

[
ys

i,0, ys
i,1, . . . , ys

i,Nr−1

]
, and Yr

i =
[

yr
i,0, yr

i,1, . . . , yr
i,Nr−1

]
, for i = 0, 1, . . . , Nt − 1.

Let S = [ s0, s1, . . . , sNt−1 ] denote an N × Nt matrix that collects all the unknown trans-
mit signals. Let Usr = [Us, Ur] represent an Nt× 2NtNr matrix which collects all the surveil-
lance and reference channel coefficients, where Us = blkdiag

{
(µs

0)
T , (µs

1)
T , . . . , (µs

Nt−1)
T
}

,

Ur = blkdiag
{
(µr

0)
T , (µr

1)
T , . . . , (µr

Nt−1)
T
}

, and blkdiag{A0, A1, . . . , Am} denote the
block diagonal matrix with the main diagonal elements being the matrix blocks.

Then (10) can also be rewritten as

Σ̂ =
1
c0

[
(Ysr − SUsr)(Ysr − SUsr)

H + Rn

]
, (15)

where

Rn =
Nt−1

∑
i=0

Nr−1

∑
j=0

K−1

∑
k=0

yn
i,j,k

(
yn

i,j,k

)H
. (16)

Using (15), the optimization problem in (9) can be rewritten as

max
µr ,µs ,s

l1(yr, ys, yn|µr, µs, s, Σ̂
)
= max

S,Usr
l1(yr, ys, yn|S, Usr, Σ̂

)
= max

S,Usr
c1 + c2 − c0 ln|Σ̂|. (17)

We can see that the log-likelihood function in (17) can be viewed as either a function
of µr, µs, s, and Σ̂, or a function of S, Usr, and Σ̂.

Ignoring the constant terms in (17), the optimization problem in (17) can be rewritten as

min
S,Usr

ln|Σ̂|. (18)

Note that ∣∣Σ̂∣∣ = 1
cN

0

∣∣∣(Ysr − SUsr)(Ysr − SUsr)
H + Rn

∣∣∣. (19)

Using Theorem 3.1.4 in [46], we can achieve that the matrix

Q =Rn + (Ysr − SUsr)(Ysr − SUsr)
H = c0Σ̂ (20)
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which is a positive definite matrix with probability one, if

N ≤ NtNr(K + 2). (21)

If the inequation in (21) satisfies, then Σ̂ in (19) is a positive definite matrix with
probability one. In order to minimize ln|Σ̂| with respect to S for any Usr as in (18), let the
derivative of ln|Σ̂| with respect to S∗ be the zero matrix, i.e.,

∂ ln|Σ̂|
∂S∗

= tr
{

Q−1 ∂Q
∂S∗

}
= −Q−1YsrUH

sr + Q−1SUsrUH
sr = Q−1

(
SUsrUH

sr − YsrUH
sr

)
= 0, (22)

where (·)∗ represents the conjugate operator.
Since the matrix Q−1 is a nonsingular matrix, from (22) we can obtain the S that

satisfies (18) for any Usr as

Ŝ = YsrUH
sr

(
UsrUH

sr

)†
, (23)

where (A)† denotes the Moore Penrose inverse of A.
Using (23), the optimization problem in (18) can be rewritten as

min
Usr

∣∣∣Rn +
(
Ysr − YsrŨsr

)(
Ysr − YsrŨsr

)H
∣∣∣, (24)

where Ũsr = UH
sr
(
UsrUH

sr
)†Usr.

Let F be the object function in (24). We can achieve

F =
∣∣∣Rn +

(
Ysr − YsrŨsr

)(
Ysr − YsrŨsr

)H
∣∣∣ = ∣∣∣Rn + Ysr

(
I2Nr Nt − Ũsr

)(
I2Nr Nt − Ũsr

)HYH
sr

∣∣∣
=
∣∣∣Rn + YsrP⊥UH

sr
P⊥H

UH
sr

YH
sr

∣∣∣, (25)

where

P⊥UH
sr
=I2Nr Nt − Ũsr = I2Nr Nt −UH

sr

(
UsrUH

sr

)†
Usr (26)

is the orthogonal projection matrix of UH
sr [47].

Note that P⊥
UH

sr
= P⊥H

UH
sr

, and P⊥
UH

sr
P⊥

UH
sr
= P⊥

UH
sr

. Hence, (25) can be simplified as

F =
∣∣∣Rn + YsrP⊥UH

sr
P⊥H

UH
sr

YH
sr

∣∣∣ = ∣∣∣Rn + YsrP⊥UH
sr

YH
sr

∣∣∣. (27)

Since P⊥
UH

sr
is orthogonal projection matrix, the eigenvalues of P⊥

UH
sr

are either 1 or 0.

Using Theorem 21.5.7 in [47], we can obtain that P⊥
UH

sr
is orthogonally diagonalizable, i.e.,

P⊥UH
sr
=VDVH = [Vm, V2Nr Nt−m]

[
Im 0m×(2Nr Nt−m)

0(2Nr Nt−m)×m 02Nr Nt−m

][
VH

m
VH

2Nr Nt−m

]
= VmVH

m , (28)

where D = diag{Im, 02Nr Nt−m} with 0n denotes an n × n zero matrix, V is an orthog-
onal matrix, i.e., VVH = VHV = I2Nr Nt , Vm collects the first m column vectors of V,
V2Nr Nt−m collects the last 2Nr Nt −m column vectors of V, VH

mVm = Im, VH
2Nr Nt−mVm =

0(2Nr Nt−m)×m with 0n×m denotes an n×m zero matrix, and m = ρ
(

P⊥
UH

sr

)
with ρ(·) repre-

sents the rank of a matrix.
Plugging (28) into (27) yields

F =
∣∣∣Rn + YsrVmVH

mYH
sr

∣∣∣. (29)
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According to Theorem 3.1.4 in [46], if

NtNrK ≥ N, (30)

the matrix Rn will be positively definite with probability one. We assume that (30) is sat-
isfied. By using |An×nBn×n| = |An×n||Bn×n| and |Im + Am×nBn×m| = |In + Bn×mAm×n|,
(29) can be rewritten as

F =|Rn|
∣∣∣IN + R−1

n YsrVmVH
mYH

sr

∣∣∣ = |Rn|
∣∣∣Ir + VH

mYH
srR−1

n YsrVm

∣∣∣. (31)

Since VH
mVm = Im, (31) can be simplified as

F =|Rn|
∣∣∣VH

mI2Nr Nt Vm + VH
mYH

srR−1
n YsrVm

∣∣∣
=|Rn|

∣∣∣VH
m

(
I2Nr Nt + YH

srR−1
n Ysr

)
Vm

∣∣∣
=|Rn|

∣∣∣VH
mΨVm

∣∣∣, (32)

where

Ψ = I2Nr Nt + YH
srR−1

n Ysr (33)

is a 2Nr Nt × 2Nr Nt positive definite matrix.
From (32), the optimization problem in (24) can be rewritten as the following opti-

mization problem
min
Vm

F = |Rn|
∣∣∣VH

mΨVm

∣∣∣
subject to VH

m Vm = Im.
(34)

To solve the optimization problem in (34), we introduce Theorem 1 (the proof is given
in Appendix A).

Theorem 1. Let A be an n× n positive Hermitian matrix, and Xm = [x1, x2, . . . , xm] be an n×m
matrix with m ≤ n. The solution to

arg min
Xm

|XH
m AXm|

subject to XH
m Xm = Im

(35)

is X̂m = [x̂1, x̂2, . . . , x̂m], which collects the m eigenvectors corresponding to the m smallest
eigenvalues of A, i.e., x̂i ∈ {v1, v2, . . . , vm} and x̂i 6= x̂j, for i 6= j, where v1, v2, . . . , vm are the m
eigenvectors corresponding to the m smallest eigenvalues of A. Moreover, the optimum value of the
objective function in (35) is the product of m smallest eigenvalues of A.

According to Theorem 1, the optimal solution to (34) is V̂m = [ψ1, ψ2, . . . , ψm] and the
optimal value is F̂(m) = |Rn|∏m

i=1 λi, where λi, for i = 1, 2, . . . , 2Nr Nt, is the eigenvalue
of Ψ, ψi is the corresponding eigenvector, and 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λ2Nr Nt . Note that the

optimal value F̂(m) depends on the rank m = ρ
(

P⊥UH

)
. Obviously, the smaller the m, the

smaller the optimal value F̂(m) will be.
Since PUH

sr
= Ũsr = UH

sr
(
UsrUH

sr
)†Usr is the projection matrix of UH

sr and the rank of

UH
sr satisfies ρ

(
UH

sr
)
≤ Nt, the rank of PUH

sr
is ρ
(

PUH
sr

)
≤ Nt. Since P⊥

UH
sr
= I2Nr Nt − PUH

sr
, the

rank of P⊥
UH

sr
satisfies

m =ρ
(

P⊥UH
sr

)
= 2Nr Nt − ρ

(
PUH

sr

)
≥ 2Nr Nt − Nt. (36)
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Using (36) and Theorem 1, we can obtain that the optimal solution to the optimization
problem in (34) is

V̂2Nr Nt−Nt =Ψ2Nr Nt−Nt =
[
ψ1, ψ2, . . . , ψ2Nr Nt−Nt

]
(37)

and the corresponding optimal value is

F̂(2Nr Nt − Nt) = |Rn|
2Nr Nt−Nt

∏
i=1

λi. (38)

The optimal solution Ûsr to the optimization problem in (24) is (the proof is shown in
Appendix B)

Ûsr = ΓHΩΨH
Nt

, (39)

where ΨNt =
[
ψ2Nr Nt−Nt+1, ψ2Nr Nt−Nt+2, . . . , ψ2Nr Nt

]
, Ω is any Nt × Nt invertible diago-

nal matrix, and Γ is any Nt × Nt orthogonal matrix, i.e., ΓHΓ = ΓΓH = INt .
Using (9), (17), and (38), we can obtain

max
µr ,µs ,s,Σ

l1(yr, ys, yn|µr, µs, s, Σ) = max
µr ,µs ,s

l1(yr, ys, yn|µr, µs, s, Σ̂
)

=max
S,Usr

l1(yr, ys, yn|S, Usr, Σ̂
)
= max

S,Usr
c1 + c2 − c0 ln|Σ̂|

=c1 + c2 − c0 ln
F̂(2Nr Nt − Nt)

cN
0

= c1 + c2 + c3 − c0 ln

(
|Rn|

2Nr Nt−Nt

∏
i=1

λi

)
, (40)

where c3 = NNtNr(K + 2) ln[NtNr(K + 2)].
Similar to the previous processing, under the hypothesis H0, the following optimiza-

tion problem is required to be solved

max
µr ,s,Σ

l0(yr, ys, yn|µr, s, Σ). (41)

Using the previous estimation method, we can achieve that

Σ̂ =
1
c0

Nt−1

∑
i=0

Nr−1

∑
j=0

[(
yr

i,j − µr
i,jsi

)(
yr

i,j − µr
i,jsi

)H
+ys

i,j

(
ys

i,j

)H
+

K−1

∑
k=0

yn
i,j,k

(
yn

i,j,k

)H
]

=
1
c0

[
(Yr − SUr)(Yr − SUr)

H + Rsn

]
, (42)

is the optimal solution to the optimization problem in (41) for any si, µr
ij, i = 0, 1, . . . , Nt− 1,

j = 0, 1, . . . , Nr − 1, where

Rsn =
Nt−1

∑
i=0

Nr−1

∑
j=0

ys
i,j

(
ys

i,j

)H
+

Nt−1

∑
i=0

Nr−1

∑
j=0

K−1

∑
k=0

yn
i,j,k

(
yn

i,j,k

)H
. (43)

Substituting (42) into (8) with Σ = Σ̂ produces

l0(yr, ys, yn|µr, s, Σ̂
)
=c1 + c2 − c0 ln|Σ̂|. (44)

From (44), we can achieve that the optimization problem in (41) can be reformulated as

max
µr ,s

l0(yr, ys, yn|µr, s, Σ̂
)
= max

S,Ur
l0(yr, ys, yn|S, Ur, Σ̂

)
= max

S,Ur
c1 + c2 − c0 ln|Σ̂|. (45)
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In (45), we can see that the log-likelihood function l0(·) can be viewed as either a
function of µr, s, and Σ̂, or a function of S, Ur, and Σ̂.

Ignoring the constant terms in (45), the optimization problem in (45) can be rewritten as

min
S,Ur

ln|Σ̂|. (46)

Using Theorem 3.1.4 in [46], we can achieve that the matrix Σ̂ is a positive definite
matrix with probability one, if

N ≤ NtNr(K + 2). (47)

Assume that (47) is true. In order to minimize ln|Σ̂| with respect to S for any Ur
as in (46), let the derivative of ln|Σ̂| with respect to S be the zero matrix, and we can
achieve that

Ŝ = YrUH
r

(
UrUH

r

)†
. (48)

Using (48), the optimization problem in (46) can be rewritten as

min
Ur

∣∣∣(Yr − YrŨr
)(

Yr − YrŨr
)H

+ Rsn

∣∣∣, (49)

where Ũr = UH
r
(
UrUH

r
)†Ur.

Similar to previous processing, we can achieve that the optimal solution Ûr to the
problem in (49) is

Ûr = Γ ′HΩ′Ψ′HNt
, (50)

where Ω′ is any Nt × Nt invertible diagonal matrix, Γ ′ is any Nt × Nt orthogonal matrix,
and Ψ′Nt

=
[
ψ′Nr Nt−Nt+1, ψ′Nr Nt−Nt+2, . . . , ψ′Nr Nt

]
, in which ψ′i, for i = 1, 2, · · · , Nr Nt, is

the eigenvector corresponding to the eigenvalue λ′i of

Ψ′ = INr Nt + YH
r R−1

sn Yr (51)

that is an Nr Nt × Nr Nt positive definite matrix, and 1 ≤ λ′1 ≤ λ′2 ≤ · · · ≤ λ′Nr Nt
.

The optimal value of (49) is

F̂′(Nr Nt − Nt) = |Rsn|
Nr Nt−Nt

∏
i=1

λ′i. (52)

Using (41), (45), and (52), we can obtain

max
µr ,s,Σ

l0(yr, ys, yn|µr, s, Σ) = max
µr ,s

l0(yr, ys, yn|µr, s, Σ̂
)
= max

S,Ur
l0(yr, ys, yn|S, Ur, Σ̂

)
=max

S,Ur
c1 + c2 − c0 ln|Σ̂|= c1 + c2 − c0 ln

F̂′(Nr Nt − Nt)

cN
0

=c1 + c2 + c3 − c0 ln

(
|Rsn|

Nr Nt−Nt

∏
i=1

λ′i

)
. (53)

Substituting (40) and (53) into (6) yields

c0 ln
|Rsn|∏Nr Nt−Nt

i=1 λ′i
|Rn|∏2Nr Nt−Nt

i=1 λi

H1
≷
H0

γ0, (54)
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i.e., the GLRT is equivalent to

|Rsn|∏Nr Nt−Nt
i=1 λ′i

|Rn|∏2Nr Nt−Nt
i=1 λi

H1
≷
H0

γ̃, (55)

where γ̃ = exp
{

γ0/c0
}

.

3.3. Performance Analysis and Discussion

The computational complexity of the proposed GLRT in (55) is approximately
O
(
3N3 + 3N2Nr Nt + 5NN2

r N2
t + NNr Nt + 9N3

r N3
t + 2Nr NtK

)
. The computational com-

plexity of the GLRT in [23] is approximately O
(

NN2
r Nt + 9N3

r N3
t
)
. Obviously, the com-

putational complexity of the proposed method is higher than the GLRT in [23], since the
proposed method does not know the covariance matrix of colored noise, which complicates
the target detection and increases the computational complexity.

In practice, the proposed GLRT will determine whether there is a target or not for
each range and Doppler cell. Hence, for multiple targets that are in different range or
Doppler cells, the proposed GLRT is applicable. That is to say, the proposed GLRT work
for multi-target detection.

4. Simulation

In this section, several simulations results are provided to show the performance of the
proposed GLRT. In the following simulations, when the channel coefficients, transmitted
signal, and covariance matrix of colored noise are unknown, the proposed GLRT is de-
noted by ‘UK CovM’. When the channel coefficients and transmitted signals are unknown
whereas the covariance matrix of colored noise is known, the GLRT in [23] is denoted by ‘K
CovM’. In the simulations, the results are obtained by performing 105 Monte Carlo experi-
ments. The number of transmitted signal samples, receivers, and transmitters is N = 10,
Nr = 2, and Nt = 2, respectively. Furthermore, the transmitted signal of the ith transmitter
is si = exp{jθi}, where θi ∈ RN×1 is a random phase vector with each independent compo-
nent uniformly distributed on [0, 2π] (same as [23]). Suppose that all the independent noise
vectors in {nr

i,j, ns
i,j, and nn

i,j,k, for i = 0, 1, . . . , Nt − 1, j = 0, 1, . . . , Nr − 1, k = 0, 1, . . . , K− 1}
obey the same complex Gaussian distribution with zero mean and covariance matrix Σt,
where the mth row and nth column element of Σt is m/n, for m ≤ n.

The SNR of the received target-path signal is defined as

TNR =
1

NNr Ntσ2
1

Nt−1

∑
i=0

Nr−1

∑
j=0
‖ µs

ijsi ‖2, (56)

where σ2
1 represents the colored noise power in the surveillance channel.

The SNR of the received direct-path signal is defined as

DNR =
1

NNr Ntσ2
2

Nt−1

∑
i=0

Nr−1

∑
j=0
‖ µr

ijsi ‖2, (57)

where σ2
2 represents the colored noise power in the reference channel.

In the simulation, µs
ij and µr

ij are randomly drawn from the Gaussian distribution with
zero mean and unit variance. Then, they are scaled to achieve the desired TNR and DNR
according to (56) and (57), respectively.

4.1. Variation of Pd with Pfa

The dependence of the probability of detection (Pd) on Pfa is illustrated in Figure 2. In
Figure 2a, the TNR is −15 dB and the DNR is −30 dB. We choose the number of training
samples to be K = 3, K = 9, and K = 15, respectively. In Figure 2b, the TNRs are set
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as −18 dB, −15 dB, and −12 dB, respectively. The DNR is −30 dB and K = 15 training
samples are used.

Figure 2a shows that the performance of the proposed GLRT is close to that of the
GLRT in [23] when more than nine training samples are employed for the illustrated cases.
This is due to that the estimate of unknown covariance matrix of colored noise becomes
more and more accurate with the increase of training samples. As depicted in Figure 2b, the
performance of the proposed GLRT and that of the GLRT in [23] are improved when the
TNR is increased, since more accurate estimates of unknown parameters can be obtained
with higher TNR.
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Figure 2. Pdvs. Pfa. (a) TNR = −15 dB. (b) K = 15.

Under different DNRs, the dependence of Pd on Pfa is illustrated in Figure 3. In
Figure 3, the TNR is chosen to be −15 dB, and there are K = 15 training samples. The
DNRs are −30 dB, −10 dB, and 10 dB, respectively. When the DNR is improved, both the
performance of the proposed GLRT and that of the GLRT in [23] are improved, since more
accurate estimates of unknown parameters are obtained with high DNR. Compared with
the proposed GLRT, the GLRT in [23] can achieve greater performance gain when the DNR
is increased, since the proposed GLRT needs to estimate more unknown parameters.

10
-3

10
-2

10
-1

10
0

P
fa

0

0.2

0.4

0.6

0.8

1

P
d

UK CovM, DNR=-30dB

K CovM, DNR=-30dB

UK CovM, DNR=-10dB

K CovM, DNR=-10dB

UK CovM, DNR=10dB

K CovM, DNR=10dB

Figure 3. Pd vs. Pfa (TNR = −15 dB, K = 15).

4.2. Variation of Pd with TNR

The dependence of the Pd on TNR is illustrated in Figure 4. In Figure 4a, we consider
that there are K = 6, K = 9, K = 15, and K = 21 training samples, respectively. The Pfa
is chosen to be 10−3, and the DNR is set as −30 dB. In Figure 4b, the DNR is −30 dB,
and we consider that there are K = 18 training samples. The Pfas are 10−3, 10−2, and
10−1, respectively.
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As shown in Figure 4, the Pd of both the GLRT in [23] and the proposed GLRT is
increased with the increase of TNR, because the estimates of the unknown parameters
become more accurate when TNR is increased. Moreover, as the number of training
samples increases, the proposed GLRT gradually approaches the GLRT in [23]. Increasing
the Pfa, the detection threshold will be reduced, and hence the Pd will be improved.
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Figure 4. The variation of Pd with TNR. (a) DNR = −30 dB, Pfa = 10−3. (b) DNR = −30 dB, K = 18.

In Figure 5a, the variation of the Pd with TNR is illustrated with different DNRs. In
Figure 5a, the DNRs are considered to be −30 dB, −10 dB, and 10 dB, respectively, and
there are K = 21 training samples. The Pfa is set as 10−3.

In Figure 5b, the variation of the Pd with TNR for different numbers of receivers
and transmitters is shown. In Figure 5b, there are K = 20 training samples, the DNR is
−30 dB, and the Pfa is chosen to be 10−3. There are (Nt = 1, Nr = 2), (Nt = 2, Nr = 2),
(Nt = 2, Nr = 3), and (Nt = 3, Nr = 3) transmitters and receivers, respectively.

In Figure 5a, as expected, with an increase in DNR, the performance of both the GLRT
in [23] and the proposed GLRT is improved, because the estimate accuracy of unknown
parameters is improved when the DNR is improved. In Figure 5b, as expected, the Pd is
improved when either the number of transmitters or the number of receivers is improved.
Obviously, with more transmitters and receivers, we can obtain more observations that
will contribute to obtaining more accurate estimates of unknown parameters. Hence, we
can achieve higher Pd with more transmitters and receivers.
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Figure 5. The variation of Pd with TNR. (a) Pfa = 10−3, K = 21. (b) Pfa = 10−3, K = 20, DNR = −30 dB.
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4.3. Pd Loss

The performance of the GLRT in [23] is better than that of the proposed GLRT, since
the covariance matrix is unknown for the proposed GLRT. To measure the performance
degradation, the following Pd loss is utilized, which is defined as

LPd = PdK − PdUK , (58)

where PdUK denotes the Pd of the proposed GLRT, and PdK denotes the Pd of the GLRT
in [23].

In Figure 6, the Pd loss of the proposed method is shown. In Figure 6a, the Pfa is 10−3,
the DNR is −30 dB, and the TNRs are, respectively, set as −14 dB, −12 dB, −10 dB, and
−8 dB. In Figure 6b, the DNR is considered to be −30 dB, the TNR is chosen to be −12 dB,
and the Pfas are 10−3, 10−2, and 10−1, respectively.

As expected, the Pd loss decreases as the number of training samples increases. This
is due to that we can achieve more accurate estimates of the unknown covariance matrix of
colored noise with the increase of the number of training samples. As shown in Figure 6,
when there are more than 25 training samples, the Pd loss will be close to 0. For low TNR,
the Pd loss is smaller as shown in Figure 6a. For low TNR, both the GLRT in [23] and the
proposed GLRT have small Pd, which will result in a small Pd loss. Moreover, the proposed
GLRT needs to estimate more unknown parameters than the GLRT in [23]. Using the same
training samples, the GLRT in [23] will achieve more performance improvement when
the TNR is increased. Hence, the Pd loss will be increased when the TNR is increased.
In Figure 6b, for large Pfa, the Pd loss is larger. Under large Pfa, both the Pd of the GLRT
in [23] and that of the proposed GLRT are large. For large Pfa, to achieve the same Pd loss,
it needs more training samples for the proposed GLRT.
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Figure 6. The Pd loss of the proposed method. (a) DNR = −30 dB, Pfa = 10−3. (b) DNR = −30 dB,
TNR = −12 dB.

In Figure 7, the dependence of the Pd loss on the number of training samples is
illustrated. In Figure 7, the TNR is −12 dB, the Pfa is 10−3, and the DNRs are −30 dB,
−10 dB, and 10 dB, respectively. As the number of training samples increases, the Pd loss
is decreased. Moreover, the proposed GLRT will need more training samples to obtain the
same Pd loss when the DNR is improved.
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Figure 7. The Pd loss of the proposed method (TNR = −12 dB, Pfa = 10−3).

5. Conclusions

In this paper, target detection of a passive MIMO radar is studied when the transmitted
signals, complex channel coefficients, and covariance matrix of colored Gaussian noise are
unknown. A GLRT for passive MIMO radar is derived by utilizing the training samples.
Simulation results show that the proposed GLRT can almost achieve the same performance
of a GLRT with a known covariance matrix if there are sufficient training samples. In this
paper, we assume that the noise and clutter are independent and identically distributed,
while they might be heterogeneous in practice. In our future work, target detection for
passive MIMO radar in the heterogeneous environment will be investigated. Moreover, the
intelligent methods has become a hot topic for target detection nowadays, such as machine-
learning-based approaches. In our future work, we will also investigate the intelligent
method for target detection in the passive MIMO radar network.
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Appendix A. Proof of Theorem 1

Since A is a positive Hermitian matrix, according to Theorem 21.5.7 in [47], A is
orthogonally diagonalizable, i.e., A = VDVH , where V = [v1, v2, . . . , vn] is an orthogonal
matrix, D = diag{d1, d2, . . . , dn} is a diagonal matrix, and 0 < d1 ≤ d2 ≤, . . . ,≤ dn.

For any n×m matrix Xm that satisfies the constraint in (35), we can obtain that the
m×m matrix G(Xm) = XH

m AXm is also a positive Hermitian matrix, since A is a positive
Hermitian matrix. Thus, according to Theorem 21.5.7 in [47], G(Xm) is orthogonally diag-
onalizable, i.e., G(Xm) = WΦWH , where W = [w1, w2, . . . , wm] is an m×m orthogonal
matrix, Φ = diag{φ1, φ2, . . . , φm} is a diagonal matrix, and 0 < φ1 ≤ φ2 ≤, . . . ,≤ φm.

Let G(Xm) = |XH
m AXm| = |G(Xm)| represent the objective function in (35). Since W is

an orthogonal matrix, we can obtain

G(Xm) = |XH
m AXm| = |WHXH

m AXmW| = |ZH
m AZm|, (A1)

where Zm = XmW with the ith column of Zm being zi = Xmwi, for i = 1, 2, . . . , m.
Since G(Xm) = WΦWH , we can obtain

G(Xm) = |Φ| =
m

∏
i=1

φi (A2)

= |ZH
m AZm| = G(Zm), (A3)

where from (A2) to (A3) we use (A1).
Suppose that ∏m

i=1 φi < ∏m
i=1 di, i.e., suppose that there is a solution Zm that satisfies

G(Zm) = ∏m
i=1 φi < ∏m

i=1 di. Since φi and di, for i = 1, 2, . . . , m, are positive and non-
decreasing with the increase of i, there must be some i′ that satisfies

φi′ < di′ . (A4)

Note that ZH
m Zm = Im. Hence, the first i′ columns of Zm, denoted as Zi′ , form the basis

for an i′-dimensional subspace Si′ of n-dimensional complex space Cn. Any n× 1 vector x
in the subspace Si′ can be represented as

x =
i′

∑
i=1

αizi, (A5)

where αi, for i = 1, 2, . . . , i′, are the coefficients of x in the i′-dimensional subspace Si′ .
Hence, we can obtain

max
x∈Si′ ,x 6=0

xHAx
xHx

= max
αi ,i=1,2,...,i′

∑i′
i=1 |αi|2φi

∑i′
i=1 |αi|2

= φi′ . (A6)

Using Theorem 4.2.6 in [48], we can obtain that

min
dim(S)=i′

max
x∈S,x 6=0

xHAx
xHx

= di′ ≤ φi′ , (A7)

where dim(S) represents the dimension of the subspace S. Obviously, the obtained solution
in (A7) contradicts the assumption in (A4). This completes the proof. Theorem 1 can also
be proved by majorization theory [49,50].
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Appendix B. Maximum Likelihood Estimate Û

The optimal solution to (34) is V̂2Nr Nt−Nt = Ψ2Nr Nt−Nt =
[
ψ1, ψ2, . . . , ψ2Nr Nt−Nt

]
.

Hence, we can obtain

P⊥ÛH
sr
= I2Nr Nt − ÛH

sr

(
ÛsrÛH

sr

)†
Ûsr = I2Nr Nt − PÛH

sr
= Ψ2Nr Nt−Nt Ψ

H
2Nr Nt−Nt

. (A8)

Furthermore, we can obtain

PÛH
sr
=ÛH

sr

(
ÛsrÛH

sr

)†
Ûsr = I2Nr Nt − P⊥ÛH

sr
= I2Nr Nt −Ψ2Nr Nt−Nt Ψ

H
2Nr Nt−Nt

. (A9)

Note that Ψ = [Ψ2Nr Nt−Nt , ΨNt ] and ΨΨH = I2Nr Nt , where ΨNt =
[
ψ2Nr Nt−Nt+1,

ψ2Nr Nt−Nt+2, . . . , ψ2Nr Nt

]
is a 2Nr Nt × Nt full-column rank matrix. Hence, we can ob-

tain that

PÛH
sr
=ΨΨH −Ψ2Nr Nt−Nt Ψ

H
2Nr Nt−Nt

=
[
Ψ2Nr Nt−Nt ΨNt

][ I2Nr Nt−Nt 0(2Nr Nt−Nt)×Nt

0Nt×(2Nr Nt−Nt) INt

][
ΨH

2Nr Nt−Nt
ΨH

Nt

]

−
[
Ψ2Nr Nt−Nt ΨNt

][ I2Nr Nt−Nt 0(2Nr Nt−Nt)×Nt

0Nt×(2Nr Nt−Nt) 0Nt

][
ΨH

2Nr Nt−Nt
ΨH

Nt

]

=
[
Ψ2Nr Nt−Nt ΨNt

][ 02Nr Nt−Nt 0(2Nr Nt−Nt)×Nt

0Nt×(2Nr Nt−Nt) INt

][
ΨH

2Nr Nt−Nt
ΨH

Nt

]
= ΨNt Ψ

H
Nt

. (A10)

Now we show that ÛH
sr = ΨNt ΩΓ, where Ω is any Nt × Nt invertible diagonal matrix,

and Γ is any Nt × Nt orthogonal matrix, i.e., ΓHΓ = ΓΓH = INt . We can verify that

PÛH
sr
= ÛH

sr

(
ÛsrÛH

sr

)†
Ûsr = ΨNt ΩΓ

(
ΓHΩΨH

Nt
ΨNt ΩΓ

)†
ΓHΩΨH

Nt
. (A11)

Note that ΨH
Nt

ΨNt = INt and
(

ΓHΩΨH
Nt

ΨNt ΩΓ
)†

= ΓHΩ−2Γ. Hence, (A11) can be
simplified as

PÛH
sr
= ΨNt ΩΓΓHΩ−2ΓΓHΩΨH

Nt
= ΨNt Ψ

H
Nt

, (A12)

which is the same result in (A10).
Hence, the maximum likelihood estimate Ûsr is

Ûsr = ΓHΩΨH
Nt

. (A13)
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